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Abstract The Kingdom of Saudi Arabia is the world’s largest producer of date fruit. It produces

almost 400 date varieties in bulk. During the harvesting season the date grading and sorting pose

problems for date growers. Since it is a labor intensive and time consuming process, it delays the

post harvesting operations which costs them dearly.

The date grading and sorting is a repetitive process. In practice, it is carried out by humans man-

ually through visual inspection. The manual inspection poses further problems in maintaining con-

sistency in grading and uniformity in sorting. To speed up the process as well as maintain the

consistency and uniformity we have designed and implemented a prototypical computer vision

based date grading and sorting system. We have defined a set of external quality features. The sys-

tem uses RGB images of the date fruits. From these images, it automatically extracts the aforemen-

tioned external date quality features. Based on the extracted features it classifies dates into three

quality categories (grades 1, 2 and 3) defined by experts. We have studied the performance of a back

propagation neural network classifier and tested the accuracy of the system on preselected date sam-

ples. The test results show that the system can sort 80% dates accurately.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
y. Production and hosting by

Saud University.
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1. Introduction

The Kingdom of Saudi Arabia is the world’s largest date pro-
ducer. It produces almost 400 date varieties in bulk. After har-

vesting, if the dates are not processed timely (within harvesting
season), it may cost dearly to the date growers. In post harvest-
ing operations the date grading and sorting process is the

prime source of delay. The reason is that it is a repetitive, labor
intensive and time consuming process and it is carried out by
humans manually through visual inspection. The manual pro-

cessing pose added problems of maintaining the consistency
and uniformity in date grading. Therefore, a computer medi-
ated system that can mimic the human grading and sorting

process may adequately expedite the process as well it may sort
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dates into uniform and consistent quality groups. For this pur-
pose, intensive research works are being conducted to design
and built intelligent, reliable, flexible and effective systems that

can quickly sort a variety of fruit and other agricultural pro-
duce. The feasibility and applicability of such a system are
being explored in every agriculture oriented country (Raji

and Alamutu, 2005).
In this research, we investigate the requirements for design-

ing a computer mediated date fruit quality assessment and

sorting system. We have developed a technique that can effec-
tively meet these requirements and tested its’ effectiveness on
real-life data. We have built a date sorter prototype. This pa-
per elaborates on its design and performance.

The organization of the paper is as follows.
In Section 2, we describe the basic components of a com-

puter vision system which is the core component of every com-

puter mediated system. In Section 3, we briefly present the
related work on agricultural product processing and the fruit
quality factors (also referred to as factors or features) that

are used for fruit grading, approaches to extract them from
the fruit image. In Section 4, we describe image processing
and pattern recognition techniques that we have developed

and used to built the proposed date fruit grading and sorting
system. We present the test results of our experiments in
Section 5, and conclude the paper in Section 6 with a discus-
sion on this research finding and on possible future work.

2. Computer-mediated fruit quality assessment and sorting

systems

A computer-mediated fruit quality assessment and sorting sys-
tem has two subsystems: a computer vision system and a fruit
handling system. The computer vision system has two modules,

namely the image processing module and the pattern recogni-
tion module. The technological advances in image technology
and pattern recognition techniques are making it possible to

automate inspection processes like fruit quality assessment.
A typical computer vision system that can visually inspect
fruit, assess its quality and sort it may consists of an electrome-

chanical fruit handler that can place a fruit on a conveyer belt
to carry the fruit through a computer vision system to the sort-
ing bins. The computer vision system captures the image of the
underlying fruit and transmits it to an image processor. The

processor, after processing the image, presents it to a pattern
recognizer. The recognizer performs the quality assessments
and classifies the underlying fruit into pre-specified quality

classes, and directs the sorter to direct the fruit to the appropri-
ate bin. Fig. 1 shown below depicts the components of the
system.
Figure 1 A layout of computer mediated fruit sorting system.
3. Related works

The design requirements for building a computer mediated
fruit sorting system vary from fruit to fruit (product to product

as well) for which it is designed to process. Therefore, most of
the research works are focused on building dedicated systems
that can sort a particular fruit or product type. Although, there

are efforts to built general fruit sorting and classification sys-
tems (Kondo, 2003; Gay and Berruto, 2002) but most of the
systems are dedicated systems like the system that can sort
tomatoes (Laykin et al., 2002; Polder et al., 2000), apples

(Unay and Gosselin, 2002, 2005a,b; Mehl et al., 2004; Li and
Heinemann, 2007), citrus fruit (Aguilera et al., 2006; Reguna-
than and Suk Lee, 2005; Calpe et al., 1996), pepper berries

(Abdesselam and Abdullah, 2000) and eggplant (Saito et al.,
2003). Dedicated quality control vision based systems are also
being built for other agricultural products like cereal grain

(Choudhary et al., 2008), lentils (Shahin and Symons, 2001),
corn products (Gunasekaran et al., 1987), tree leaves (Oskar,
2001), eggshell (Garcia et al., 2000) and fish grading (Hu

et al., 1998). In addition to these applications, the systems
are reported for wood processing like panel surface inspection
(Aguilera et al., 2006), weed sensing (Polder et al., 2000) and
trash measurement (Siddaiah et al., 2002).

The performances of grading systems depends on the qual-
ity factors that are used in their design. For fruit grading there
are many factors that farmers use for measuring the fruit qual-

ity. These factors can be classified into two groups – the exter-
nal quality factors and the internal quality factors. The external
quality factors can be defined and extracted from the visual

appearance of the fruit. Commonly used factors aresize, shape,
color, gloss, surface defects and decay, and texture (fruit sur-
face patterns). The internal quality factors can be defined by

the fruit smell like aroma, taste, flavor, sweetness and sourness,
and fruit nutritive value like vitamins, minerals, nutrients and
carbohydrates, and other elements like dry matter content, to-
tal soluble solids content, sugar content, and juice acidity.

There are some quality factors like firmness, crispness, and
toughness that can be defined by touching the fruit and may
be considered external or internal factors.

Computer-mediated approaches to assess the fruit quality
differ from one another on the basis of the quality factors
and the classification methods that are used in their design.

If they use internal quality factors and do not destroy the fruit
while measuring them, such approaches are referred to as non-
destructive approaches (Antihus et al., 2006; Nicola et al., 2006;
Zude et al., 2006; Lu, 2004; Slaughter et al., 2003; Subedi et al.,

2007).These techniques generally utilize spectroscopic and
hyperspectral imaging. Paclık et al. (2006) have investigated
the applicability of the rich spectral information provided by

hyperspectral sensors that can capture detailed material com-
position in industrial applications. For a survey on noninva-
sive (nondestructive) techniques for fresh fruit and vegetable

internal quality analysis readers may refer to Butz et al.
(2005). Polder et al. (2000) have applied the hyperspectral
imaging for measuring the ripeness of tomatoes and the results

show that hyperspectral images offer more discriminating
power than standard RGB-images in discriminating the ripe-
ness. This technique has many advantages as compared to
the classical methods. It is proving beneficial in determining

the fruit defects (Li and Heinemann, 2007), discovering fruit
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quality attributes (ElMasry et al., 2007; He et al., 2005) and
fruit quality evaluation (Zerbin, 2006) in general.

For marketing purposes, fruits are generally graded on the

basis of their external quality features – the features that can be
judged by visually inspecting and touching and occasionally
smelling the fruit. The visual inspection, because of its practi-

cability and simplicity, is the most frequent option in practice.
Therefore, intensive research is being conducted to automate
visual inspection process. Continued advancements in image

processing and pattern recognition fields are providing effec-
tive tools and techniques to built systems capable of grading
and sorting almost every agricultural produce. These systems
differ from one another on the basis of image capturing pro-

cesses, imaging equipment, image processing techniques and
pattern recognition (mainly feature extraction and classifica-
tion) methods that they are employ. However, these machines

can be distinguished further from one and another on the basis
of quality factors that they extract and use, and the agricul-
tural product for which they are designed – as every product

poses unique yet different requirements. In what to follows,
we briefly present a review on external quality factor based sys-
tems that have been designed and tested for different fruits and

agricultural products.
To automate the tomato inspection process Laykin et al.,

2002 have described a system that captures images of the whole
view of the underlying tomato using color cameras. The system

extracts: color, color homogeneity, bruise and shape features.
It can detect the stem and remove it from the image. In their
experiment, they recorded different stages of the tomato color

development and the quality grade of each tomato was judged
by two experts. The verdict of the two judges was used as
benchmark to evaluate the reliability of the system. They also

studied the change in color homogeneity between the harvest
date and after storage.

An intensive study on apple quality inspection is carried out

by Unay (2006). The apple images were captured through col-
or/monochrome camera in diffusely illuminated tunnel with
two different light sources (fluorescent tubes and incandescent
spots). To improve the image quality a noise removal opera-

tion was performed before applying the image segmentation
operation to detect the defect type. The image intensity and
texture based shape features were extracted from each

segmented portion of the image. The performance of several
classification methods (Linear Discriminant Classifier (LDC),
k-Nearest Neighbors (k-NN), Fuzzy k-NN, Support Vector

Machine (SVM), Decision Tree and Multi-layer Perceptrons
(MLP)) were studied for defect segmentation and detection.
They identify bruise, flesh damage, frost damage, hail, hail
with perforation, limb rub, other, e.g., scar tissue, rot, russet

and scald defects. More information on their research can be
found in Unay and Gosselin (2002, 2005a,b). Kavdır and
Guyer (2008) studied different techniques for apple processing.

They defined features such as hue angle (for color), shape de-
fect, circumference, firmness, weight, blush percentage (red
natural spots on the surface of the apple), russet (natural net-

like formation on the surface of an apple), bruise content and
number of natural defects. Several classification techniques:
decision rule, 1-NN, 2-NN, 3-NN, Decision Tree and MLP

were studied. They found that the multi-layer perceptron
(MLP) produced the highest classification results (up to 90%).

Recce et al. (1996) developed techniques for orange grading.
They performed histogram analysis of the image intensity and
defined defect feature operators. They used feature operators
for grading oranges into three quality bands according to their
surface characteristics. Blasco et al. (2007) used Sony XC-003P

camera and fluorescent tube light to capture the images of the
mandarin fruit. They developed and used region growing seg-
mentation algorithm and determined the defective regions

through experiments and classify fruit into defective and non-
defective classes.

Abdesselam and Abdullah (2000) developed pepper berries

grading system using the brightness mean of the intensity and
brightness uniformity in the images taken in different lighting
environment to measure the robustness. They found the aver-
age intensity defined as I= (R + G + B)/3 yielded good re-

sults when compared with the Blue (B) component.
Kondo (2003) describes a grading robot for peaches, pears,

and apples. The robot picks a fruit from a tray and acquires its

image through the mounted TV cameras and determines its
quality grade from the color, size, shape bruise, disease, and in-
sect injury features. In a similar research, Xiaobo et al. (2007)

describe apple fruit grading from color by analyzing the
images taken from color CCD camera. They defined and used
seventeen color features and used a method called organization

feature parameter for classification and found their method
was more accurate than BP-ANN, but lower than SVM. Feng
et al. (2008) describe a strawberry harvesting robot. It uses a
global camera and a local camera for imaging. They developed

a color space based image segmentation algorithm. From the
binary image, the robot determines the strawberry blob and
calculates the location of the fruit. The color space based fruit

ripeness judgment method guided the robot to pick the fruit
according to its ripeness and classify it according to its shape.
Experimental results show that this method can achieve 93%

accuracy of strawberry’s stem detection and 90% of ripeness
and shape quality judgment.

Apart from fruit grading, researchers are trying to investi-

gate fruit characteristics that can be used for improving the
fruit grading process (Morimoto et al., 2000) and for new
applications like fruit volume estimation techniques as de-
scribed by Forbes (2000) for fruit packaging applications. Cal-

pe et al. (1996) have investigated degree of ripeness from the
RGB components to improve the fruit grading. To improve
the grading process and to address the need posed by new

applications, new technologies are being invented continu-
ously. Gay and Berruto (2002) have described innovative im-
age acquisition techniques for fruit color grading and they

report that they have achieved an average classification error
less than 2%.

The effectiveness of computer vision techniques has been
investigated for a large range of agricultural produce like: egg-

plant grading (Saito et al., 2003), crack detection in corn shell
(Gunasekaran et al., 1987), weed sensing (Steward and Tian,
1998), in cotton processing (Siddaiah et al., 2002), lentils grad-

ing (Shahin and Symons, 2001), cereal grain classification (Pal-
iwal et al., 2001), leaf classification (Oskar, 2001), fish grading
(Hu et al., 1998), eggshell defect detection (Garcı́a-Alegre

et al., 1998) and wood panel surface grading (Aguilera et al.,
2006).

In literature very little research papers are found on com-

puter vision based automated date grading and sorting sys-
tems. However, there have been efforts to develop both: the
internal (Wulfsohn et al., 1993; Lee et al., 2008; Schmilovitch
et al., 1999) and the external (Fadel et al., 2006) quality factor
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based techniques for this purpose. In what to follows we de-
scribe our external quality factor based date grading and sort-
ing system.

4. The proposed date fruit grading and sorting system

In this section, we describe the date fruit grading and sorting

system that we have built. The system has a motor driven con-
veyer belt and a fruit placer. The fruit placer places one fruit at
a time on the belt and the belt carries it to the imaging chamber

where the fruit image is captured and transferred to the con-
nected image processing and classification system (in this case
a PC that is connected to the imaging chamber). The classifica-

tion result is send to a sorting unit that directs the fruit to an
appropriate bin by moving a strip which is controlled by a mo-
tor. The detailed design and techniques used for developing the

components of the system are described below.

4.1. Image capturing chamber

The image capturing chamber is a wooden box that was

painted black inside to reduce the light reflection. The ceiling
of the chamber was quoted with reflective material to reduce
the shading effect. Two Logitech (Quick cam for notebooks)

cameras were mounted facing each other in the chamber.
One 80 W red lamp (initially 7 W and 40 W lamps were used
but they did not give good lightening effect) was mounted at

the top center of the chamber. The cameras were mounted
right under the light source for the best imaging. The size of
the captured image was 320 · 240 pixels. It was kept small
for fast feature extraction and processing. A sample image is

shown in Fig. 2.

4.2. Preprocessing module

A binarization threshold was estimated from the image inten-
sity histogram. The threshold was used to convert the underly-
Figure 2 A dates image.

Figure 3 Segmented image.
ing image into a binary image. Fig. 3 below shows the
binarized image of the original image (shown in Fig 2).
Fig. 4 shows the edges that surround the binarized regions.

These edges were extracted by applying Sobel edge operator.

4.3. Feature definition and extraction

We have defined external quality factors that we refer to as fea-
tures. These features are flabbiness, size, shape, intensity and
defects. We describe below the properties, usefulness and

extraction mechanism of these features.

4.3.1. Flabbiness

The flabbiness is used by farmers to determine the date quality.

The flabbiest date is considered of the best quality. We have
used the color intensity distribution in the image as an estimate
of flabbiness. It is observed that the image of the least flabby

date is darker than the flabbier date (see Fig. 5 below). The col-
or intensity distribution is obtained from the gray level image
that is obtained form the original RGB colored image using
the relationship: G(x, y) = C(x, y)ÆR + C(x, y)ÆG + C(x,

y)ÆB, where C(x, y)ÆR, C(x, y)ÆG and C(x, y)ÆB are the red,
green and blue components of the pixel x, y in the color image
C, and G(x, y) is the transformed gray level.

4.3.2. Size

The fruit size is another quality attribute used by farmers – the
bigger size fruit is considered of better quality. The size is esti-

mated by calculating the area covered by the fruit image. To
compute the area, first the fruit image is binarized to separate
the fruit image from its background. The number of pixels that

cover the fruit image is counted and considered as an estimate
of size. We categorize fruits as big, medium and small using the
average area and variance relationship: A� kr2; where A is the

average of the normalized area and r2 is the variance obtained
from the training data set. If the normalized pixel count in a
fruit image is A, and A< A� kr2; where k is has been exper-

imentally estimated to be 1.45, then the fruit is categorized as
small. If A� kr2 < A< Aþ kr2 then it is categorized as med-
ium; otherwise it is considered big.
Figure 4 Edges.

Figure 5 Flabbier fruit is brighter.
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4.3.3. Shape

The farmers use shape irregularity as a quality measure. Fruits

having irregular shapes are considered of better quality. We
estimated it from the outer profile of the fruit image. The esti-
mation steps are described below.

(1) Using an edge tracking operator to estimate the outmost
edge points of the fruit image.

(2) Link the outermost edge points to form the outermost
profile of the fruit image.

(3) Compute the centroid ðxg; ygÞ of the profile.
(4) Starting from the topmost and leftmost point of the pro-

file and moving clockwise calculate the sequence
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
rðtÞ ¼ ðxt � xgÞ þ ðyt � ygÞ
2
;

for t= 1, 2, 3, . . ., N, were xt and yt are the Cartesian

coordinates of the profile at profile boundary time t,
and N is the total number of points in the profile.
(5) Compute the Fourier coefficients of r(t)
an ¼
XN
t¼1

rðtÞe
�2jpnt

N

The value of the first coefficient was used as the irregularity

measure.

4.3.4. Intensity

We have observed that the better quality date yield high inten-

sity images. The intensity is estimated in terms of the number
of wrinkles. The number of edges was considered as the num-
ber of wrinkles. To determine the intensity the image is bina-

rized and edges are extracted using Sobel operator and
labeled. The intensity measure is defined as I ¼ a

A
; where a is

the area covered by edges, A is the total fruit area and

0 6 I 6 1.
Figure 7 Bruises.

Figure 6 Bird flicks.
4.3.5. Defects

The bruises (Fig. 7.) and bird flicks (Fig. 6) are common de-

fects in date fruits. The bird flicks appear brighter in the image
so they are determined from the color intensity. An estimate of
the average brightness and variations in intensity of the bird

flicked area were obtained. The average brightness was thor-
oughly examined and the bird flicked area size was tracked
and estimated. A pixel belongs to the bird flicked area if the

brightness of a pixel lies in the interval Ib � kr2
b; where Ib is

the average brightness of the pixels and r2
b is the variance in

the bird flicked area, and k is an experimentally determined
constant. The bruises are estimated from the shape as they gen-

erally deform the shape by tearing the fruit. In our observation
finding an accurate estimate of bruises is an extremely difficult
task.

4.4. Classification

We first visually examined the fruits that we used in this exper-

iment and graded them manually according to their features.
The fruits having good shape, large size, high intensity, high
flabbiness and no defects were branded as of the best quality,

i.e., grade 1. The grade 2 fruits have distorted shape, medium
size, low flabbiness, low intensity and no defects and fruits
having defects were considered as grade 3 fruits regardless of
other features. A sample of grades 1–3 fruits are shown in

Fig. 8 below.
For classification, we used back propagation neural net-

work (BPNN) which is described below.

4.4.1. Back propagation neural network

The back propagation neural network (BPNN) contains an in-
put layer, at least one hidden layer and one output layer. In the

network, the information flows from left to right. The input
feature vector X= (xi) is presented to the input layer and it
is passed to output layer via hidden layer. These layers are con-

nected by weights among neurons.
In a training cycle of the network, every training set pattern

is presented as input to the network and the output ok is com-

puted. The output is compared with the desired response dk. In
case of error the weight of the network is modified to reduce
the error. The training cycle is repeated across the training pat-
tern to modify the weights of the network till the error attains

some predefined tolerance level.

4.4.2. Implementation

To classify dates we studied two BPNN models. The first mod-
el has three layers: input layer, one hidden layer and an output
layer. The input layer has five neurons representing five feature
Figure 8 Grades 1, 2 and 3 fruit samples (from left to right).



Figure 9 Date fruit grader sorter prototype.

34 Y. Al Ohali
elements: flabbiness, size, shape, intensity and defects. The hid-
den layer has 10 neurons and the output layer has three neu-
rons: each neuron representing the fruit grade described

earlier. The second model has same number of neurons in
the output and hidden layers as model one but only two neu-
rons, representing tow features only: the color (representing

brightness) and diameter (representing size) features, in the in-
put layer. The transfer function in the first layer is tan-sigmoid,
and in the output layer is linear. Batch training was used to

train the networks.

5. Experiments

As described earlier, we implemented two back-propagation
neural network models. In Table 1, we present the results of
our experiment where the two neural network models are re-

ferred to as models 1 and 2.
The system was trained on 1200 (400 Samples/Grade) train-

ing set samples. It was tested on 660 (220 Samples/Grade) test
samples. The confusion tables of the test experiment are shown

in Tables 2 and 3 respectively.
The Table 1 shows the percentages of correctly classified

test set fruit. We investigated reasons of misclassification and

observed the following (Tables 2 and 3).

(1) The grade 1 samples were misclassified as grade 3

because of the shape and size features and they were
confused with grade 2 because of the color features.

(2) The grade 2 fruit were misclassified as grade 1 because of
the variations in size, wrinkles and color features, and

they were confused with grade 3 because of the varia-
tions in the shape, size, color and wrinkle features.
Table 1 Experimental results.

Models Fruit Grade

1 (%) 2 (%) 3 (%)

1 55 76 71

2 71 80 66

Table 2 Model-1 confusion table.

Input grade Recognized as grade

1 2 3

1 121 53 46

2 13 168 39

3 11 52 157

Table 3 Model-2 confusion table.

Input grade Recognized as grade

1 2 3

1 156 26 38

2 17 176 27

3 24 51 145
(3) The grade 3 fruit were misclassified as grade 1 because of
the variations in the defect feature. The reasons for the
misclassification were mainly due to the limited visibility

of the defects. The subnormal visibility affected the
extraction of size and the shape features.

The results indicate that model two (with fewer input fea-

tures) yielded better results (in general) and we are investigat-
ing reason for the better performance.

6. Discussions and future work

In this research we built a working model of a date fruit grad-
ing and sorting system including both: the hardware and the

software. The working prototype of the system is shown in
Fig. 9 below. The hardware includes the conveyer, camera con-
trol and helm control systems. The software system analyzes

the fruit image and classifies them. The maximum accuracy
of the system is 80% which is attained by model 2 in classifying
the grade 2 fruit.

We observed problems in detecting the flabbiness from the
color. An impact sensor might improve flabbiness detection.
Our fruit quality grading into three grades was based on hu-
man perception. A formal feature distribution based method

need to be developed to determine the fruit quality grade from
the samples. We feel that this should improve the classification
accuracy. To determine the feature based grades we are inves-

tigating the suitability of the unsupervised learning techniques.
We are in the process of applying self organizing map to obtain
the fruit grade clusters using the feature distribution in large

samples.
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Antihus, Hernández Gómez, He, Yong, Pereira, Garcı́a Annia, 2006.

Non-destructive measurement of acidity, soluble solids and firm-

ness of Satsuma mandarin using Vis/NIR-spectroscopy techniques.

Journal of Food Engineering 77, 313–319.

Blasco, J., Aleixos, N., Molto, E., 2007. Computer vision detection of

peel defects in Citrus by means of a region oriented segmentation

algorithm. Journal of Food Engineering 81, 535–543.



Computer vision based date fruit grading system: Design and implementation 35
Butz, Peter, Hofmann, Claudia, Tauscher, Bernhard, 2005. Recent

developments in noninvasive techniques for fresh fruit and vege-

table internal quality analysis. Journal of Food Science 70 (9),

R131–141.

Calpe, Javier, Pla, Filiberto, Monfort, Jordi, Diaz, Pedro, Boada, Juan

Carlos, 1996. Robust Low-Cost Vision System for Fruit Grading,

MELECON apos, 96, vol. 3, pp. 1710–1713.

Choudhary, R., Paliwal, J., Jayas, D.S., 2008. Classification of cereal

grains using wavelet, morphological, colour, and textural features

of non-touching kernel images. Biosystems Engineering 99 (3), 330–

337.

ElMasry, Gamal, Wang, Ning, ElSayed, Adel, Ngadi, Michael, 2007.

Hyperspectral imaging for nondestructive determination of some

quality attributes for strawberry. Journal of Food Engineering 81,

98–107.

Fadel, M., Kurmestegy, L., Rashed, M., Rashed, Z., 2006. Fruit Color

Properties of Different Cultivars of Dates (Phoenix dactylifera, L.),

vol. VIII. Agricultural Engineering International: the CIGR

Ejournal (Manuscript FP 05 005).

Feng, Guo, Qixin, Cao, Masateru, Nagata, 2008. Fruit detachment

and classification method for strawberry harvesting robot. Inter-

national Journal of Advanced Robotic Systems 5 (1), 41–48.

Forbes, Keith, 2000. Volume Estimation of Fruit from Digital Profile

Images. MS Thesis, Department of Electrical Engineering, Uni-

versity of Cape Town, Cape Town.

Garcı́a-Alegre, M.C., Ribeiro, A., Guinea, D., Cristobal, G., 1998.

Eggshell Defect Detection based on Color Processing, SPIE 2000,

San Jose, pp. 280–287.

Gay, Paolo, Berruto, Remigio, 2002. Innovative Techniques for Fruit

Color Grading. Available from: <http://www.deiafa.unito.it>.

Gunasekaran, S., Cooper, T.M., Berlage, A.G., Krishnan, P., 1987.

Image processing for stress cracks in corn kernels. ASAE 30 (1),

266–271.

He, Yong, Zhang, Yun, Pereira, Annia G, Gómez, Antihus H, Wang,
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