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Abstract Association rule mining aims to extract the correlation or causal structure existing

between a set of frequent items or attributes in a database. These associations are represented by

mean of rules. Association rule mining methods provide a robust but non-linear approach to find

associations. The search for association rules is an NP-complete problem. The complexities mainly

arise in exploiting huge number of database transactions and items. In this article we propose a new

algorithm to extract the best rules in a reasonable time of execution but without assuring always the

optimal solutions. The new derived algorithm is based on Quantum Swarm Evolutionary approach;

it gives better results compared to genetic algorithms.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Data mining methods such as association rule mining (Agra-
wal et al., 1993a,b) are gaining popularity for their power
and ease of use. Association rule learning methods provide a

robust and non-linear approach to find associations (correla-
tions) and causal structures among sets of frequent items or
attributes in a database. Association rule algorithms, such as

Apriori (Agrawal et al., 1993a,b), examine a long list of trans-
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Saud University.
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actions in order to determine which items are most frequently
purchased together. The challenge of extracting association

patterns from data draws upon research in databases, machine
learning and optimization to deliver advanced intelligent solu-
tions. The algorithms for performing association rule mining

are NP-complete as they were proved in Angiulli et al.
(2001), the authors of Angiulli et al. (2001) have shown that
association rule mining can be reduced to finding a CLIQUE

in a graph which is NP-complete. The complexities mainly
arise in exploiting huge number of items and database
transactions.

Many algorithms have been proposed for mining associa-

tion rules; we can categorize these algorithms into two
branches: (1) Exact algorithms such as Apriori (Agrawal
et al., 1993a,b) and FP-Growth (Pei et al., 2000). These algo-

rithms guaranty the optimal solution despite the time required
to obtain that solution. (2) Evolutionary algorithms (Lopes
et al., 1999; Melab and El-Ghazali, 2000), which give good

solution and may be non-optimal ones but in a reasonable time
(polynomial) of execution.
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Association rule mining in large databases is a very com-

plex process and exact algorithms are very expensive to use.
We think that evolutionary computing provides much help
in this arena. In this article, we address the issue of using a
Quantum Swarm Evolutionary Algorithm (QSE) (Wang

et al., 2006) for mining association rules. QSE is a hybridiza-
tion of Quantum Evolutionary Algorithm (QEA) (Han and
Kim, 2002) and particle swarm optimization (PSO) (Kennedy

and Eberhart, 1995).
QEA approach is better than classical evolutionary algo-

rithms like genetic algorithm, instead of using binary, numeric

or symbolic representation; QEA uses a Q-bit as a probabilistic
representation, defined as the smallest unit of information. A
Q-bit individual is defined by a string of Q-bits called multiple

Q-bits. The Q-bit individual has the advantage that it can
represent a linear superposition of states (binary solutions) in
search space probabilistically. Thus, the Q-bit representation
has a better characteristic of population diversity than chro-

mosome representation used in genetic algorithm. A Q-gate
is also defined as a variation operator of QEA to drive the indi-
viduals toward better solutions and eventually toward a single

state.
QSE (Wang et al., 2006) employs a novel quantum bit

expression mechanism called quantum angle and adopted

the improved PSO to update Q-bit of QEA automatically.
The authors of Wang et al. (2006) prove that QSE is better
than QEA.

The remainder of this article is organized as follows:

Section 2 presents basics of association rule mining. In Section
3, we give a general description of quantum computing and
particle swarm optimization. In Section 4, we present a new

approach to mine association rules. Section 5 illustrates our
experimental results.
2. Association rule mining

2.1. Problem definition

Association rule mining is formally defined as follows. Let

I ¼ fi1; i2; . . . ; img be a set of Boolean attributes called items
and S ¼ fs1; s2; . . . ; sng be a multi-set of records representing
data instances or transactions, where each record or data in-
stance si 2 S is constituted from the non-repeatable attributes

from I. The presence of a Boolean attribute in a data instance
si means that its value is 1, if it is absent, its value is set to 0.
For example, let I ¼ fA;B;Cg be a set of Boolean attributes

and let S ¼ fhA;Bi; hCi; hCig be a multi-set of data instances,
the multi-set S can be rewritten as follows:

S ¼ fhA ¼ 1;B ¼ 1;C ¼ 0i; hA ¼ 0;B ¼ 0;C ¼ 1i;
hA ¼ 0;B ¼ 0;C ¼ 1ig

For categorical attribute, instead of having one attribute in I,

we have as many attributes as the number of attribute values.
For example, the more general multi-set of data instances S gi-
ven by:

{Æheight-166 = 1, height-170 = 0, height-174 = 0, gender-
male = 0, gender-female = 1æ,
Æheight-166 = 0, height-170 = 1, height-174 = 0, gender-

male = 1, gender-female = 0æ,
Æheight-166 = 0, height-170 = 0, height-174 = 1, gender-

male = 0, gender-female = 1æ}

is intended to abstract a multi-set of three data instances hav-

ing two categorical attributes: height and gender. The values of
(height, gender) are {(166, female), (170, male), (174, female)},
respectively.

An association rule is denoted by IF C THEN P when C

states for Condition(s) and P for Prediction(s) where C,
P � I and C \ P= B.

In this article we are particularly interested by the conjunc-

tive association rules where C is a conjunction of one or more
condition(s) and P is also a conjunction of one or more predic-
tion(s). The following notations are used in the remainder of the

article:

� ŒCŒ: The number of data instances which are covered by

(i.e. satisfying) the C part of the rule.
� ŒPŒ: The number of data instances which are covered by the
P part of the rule.
� ŒC&PŒ: The number of data instances which are covered by

both the C part and the P part of the rule.
� N: The total number of data instances being mined.

The confidence b of a rule is the probability of the occur-

rence of P knowing that C is observed; b is equal to jC&Pj
jCj .

The prediction frequency a is equal to jPj
N
. Note that the support

is equal to the fraction jC&Pj
jNj .

2.2. Fitness function

The quality of a candidate rule is evaluated by means of a fit-
ness function. Several fitness functions have been defined in the

literature (Agrawal et al., 1993a,b; Lopes et al., 1999). They
can be basic or complex. An example of a basic function is
the support of a rule (the percentage of data instances satisfy-

ing the C part of the rule) and the confidence factor (the
percentage of data instances satisfying the implication IF C
THEN P). It is claimed that such basic fitness function is

not sufficient. In this article we adopt the complex fitness
function of Lopes et al. (1999). This function is derived from
information theory and it is based on J-measure Jm given by:

Jm ¼
jCj
N
� b � log b

a

� �� �
The fitness function F is the following:

F ¼
w1 � ðJmÞ þ w2 � npu

nT

� �
w1 þ w2

where npu is the number of potentially useful attributes. A gi-

ven attribute A is said to be potentially useful if there is at least
one data instance having both the A’s value specified in the
part C and the prediction attribute(s). The term nT is the total

number of attributes in the part C of the rule; w1, w2 are user
defined weights set to 0.6 and 0.4, respectively.

3. Quantum computing and particle swarm optimization

Quantum computing (QC) is an emergent field calling upon sev-

eral specialties: physics, engineering, chemistry, computer sci-
ence and mathematics. QC uses the specificities of quantum
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mechanics for processing and transformation of data stored in

two-state quantum bits or Q-bit(s) for short. A Q-bit can take
state value 0, 1 or a superposition of the two states at the same
time. The state of a Q-bit can be represented as Œwæ = aŒ0æ +
bŒ1æ where a and b are the amplitudes of Œ0æ and Œ1æ, respec-
tively, in this state. When we measure this Q-bit, we see Œ 0æ with
probability ŒaŒ2, and Œ1æ with probability ŒbŒ2 such that
ŒaŒ2 + ŒbŒ2 = 1.

The idea of superposition makes it possible to represent an
exponential whole of states with a small number of Q-bits.
According to the quantum laws like interference, the linearity

of quantum operations makes the quantum computing more
powerful than the classical machines.

In order to exploit effectively the power of quantum com-

puting, it is necessary to create efficient quantum algorithms.
A quantum algorithm consists in applying a succession of
quantum operations on quantum systems. Shor (1994) demon-
strated that QC could solve efficiently NP-complete problems

by describing a polynomial time quantum algorithm for factor-
ing numbers.

One of the most known algorithms is Quantum-inspired

Evolutionary Algorithm (QEA) (Han and Kim, 2002), which
is inspired by the concept of quantum computing. This
algorithm has been first used to solve knapsack problem (Han

and Kim, 2002) and then it has first used to solve different
NP-complete problems like Traveling Salesman Problem (Talbi
et al., 2004) and Multiple Sequence Alignment (Layeb et al.,
2006, 2008).

Meanwhile, particle swarm optimization (PSO) has demon-
strated a good performance in many functions and parameter
optimization problems. PSO is a population-based optimiza-

tion strategy. It is initialized with a group of random particles
and then updates their velocities and positions with the follow-
ing formula:

vðtþ 1Þ ¼ vðtÞ þ c1 � randðÞ � ðpbestðtÞ � presentðtÞÞ
þ c2 � randðÞ � ðgbestðtÞ � presentðtÞÞ

presentðtþ 1Þ ¼ presentðtÞ þ vðtþ 1Þ

where vðtÞ is the particle velocity, presentðtÞ is the current par-
ticle. pbestðtÞ and gbestðtÞ are defined as individual best and
global best. randðÞ is a random number between [0,1]. c1, c2

are learning factors; usually c1 = c2 = 2 (Wang et al., 2006).
In the next section we will tailor the hybrid Quantum

Swarm Evolutionary Algorithm (QSE) (Wang et al., 2006) to

the problem of mining association rules.

4. The QSE-RM approach

In this section we first present QEA-RM for association rule
mining and then we give a PSO version of QEA-RM named
QSE-RM.

In order to show how QEA concepts have been tailored to
the problem of association rule mining, a formulation of the
problem in terms of quantum representation is presented and

a Quantum Swarm Evolutionary Algorithm for association
rules mining QSE-RM is derived.

4.1. Quantum representation

QEA-RM uses the novel representation based on the concept

of string of Q-bits called multiple Q-bit defined as below:
Q ¼
a1

b1

���� a2

b2

���� . . .
am

bm

����
� �

where ŒatŒ2 + ŒbtŒ2 = 1, t ¼ 1; . . . ;m, m is the number of Q-
bits. Quantum Evolutionary Algorithm with the multiple Q-

bit representation has a better diversity than classical genetic
algorithm since it can represent superposition of states. Only
one multiple Q-bit with three Q-bits such as:

1ffiffi
2
p

1ffiffi
2
p

�����
1ffiffi
2
p

� 1ffiffi
2
p

�����
1
2 ffiffi
3
p

2

�����
" #

is enough to represent the following system with eight states:

1

4
j000i þ

ffiffiffi
3
p

4
j001i � 1

4
j010i �

ffiffiffi
3
p

4
j011i þ 1

4
j100i þ

ffiffiffi
3
p

4
j101i

� 1

4
j110i �

ffiffiffi
3
p

4
j111i

This means that the probabilities to represent the states Œ000æ,
Œ001æ, Œ010æ, Œ011æ, Œ100æ, Œ101æ, Œ110æ, Œ111æ are 1/16, 3/16,
1/16, 3/16, 1/16, 3/16, 1/16, 1/16 respectively. However in

genetic algorithm one needs eight chromosomes for encoding.
For the data instances S of Section 2.1 given by

S¼ fhA¼ 1;B¼ 1;C¼ 0i; hA¼ 0;B¼ 0;C¼ 1i; hA¼ 0;B¼ 0;
C ¼ 1ig one would have a multiple Q-bits representation con-
stituted from 3 Q-bits.

4.2. Measurement

The measurement of single Q-bit projects the quantum state
onto one of the basis states associated with the measuring de-

vice. The process of measurement changes the state to that
measured. The multiple Q-bit measurement can be treated as
a series of single Q-bit measurements to yield a binary solution

P. In association rules, the occurrence of 1 in P means that the
corresponding item or the attribute value is present in P how-
ever 0 means that the corresponding item or attribute value is
absent from P.

4.3. Structure of QEA-RM

The Quantum-inspired Evolutionary Algorithm for associa-
tion rules mining (QEA-RM) is described as follows:

Procedure QEA-RM

begin
t ‹ 0

initialize population of Q-bit individuals QðtÞ
project QðtÞ into binary solutions P ðtÞ
compute fitness of P ðtÞ
generate association rule from each P ðtÞ if there is any

store the best solutions among P ðtÞ
while (not end-condition) do
t ‹ t+ 1

project Q(t � 1) into binary solutions P ðtÞ
compute fitness from P ðtÞ
generate association rule from each P ðtÞ if there is any
update QðtÞ using Q-gate
store the best solutions among P ðtÞ

end

end



Table 1 Lookup table.

xi bi fðxÞP fðbÞ Dhi s(ai,bi)

aibi > 0 aibi < 0 ai = 0 bi = 0

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False 0 0 0 0 0

0 1 True Delta �1 +1 ±1 0

1 0 False Delta �1 +1 ±1 0

1 0 True Delta +1 �1 0 ±1

1 1 False Delta +1 �1 0 ±1

1 1 True Delta +1 �1 0 ±1
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In the step ‘‘initialize population of Q-bit individuals QðtÞ’’
the values of ai and bi are initialized with 1=

ffiffiffi
2
p

. The step ‘‘pro-
ject QðtÞ into binary solutions PðtÞ’’ generates binary solutions
by observing the states of population QðtÞ; for each bit in mul-

tiple Q-bit we generate a random variable between 0 and 1; if
random(0,1) < ŒbiŒ2 then we generate 1 else 0 is generated. In
the step ‘‘compute fitness of PðtÞ’’, each binary solution PðtÞ is
evaluated for the fitness value computed by the formula F of
Section 2.2. The step ‘‘update QðtÞ using Q-gate’’ is introduced
as follows (Han and Kim, 2002):

Procedure update QðtÞ
begin
i ‹ 0
while (i < m) do
i ‹ i+ 1
determine Dhi with the lookup table

½a0i b0i�
T ¼ UðDhiÞ½ai bi�

T

end

end

Quantum gate UðDh1ptiÞ is a variable operator, it can be
chosen according to the problem. We use the quantum gate de-

fined in Han and Kim (2002) as follows:

UðDhiÞ ¼
cosðnðDhiÞÞ � sinðnðDhiÞÞ
sinðnðDhiÞÞ cosðnðDhiÞÞ

����
����

where nðDhiÞ ¼ sðai; biÞ � Dhi; s(ai,bi) and Dhi represents the
rotation direction and angle, respectively. The lookup table is

presented in Table 1, Delta is the step size and should be
designed in compliance with the application problem. How-
ever, it has not had the theoretical basis till now, even though

it usually is set as small value. Many applications set
Delta = 0.01p. The function f(x) (resp. f(b)) is the profit of
the binary solution x (resp. best solution b). For example, if

the condition f(x) P f(b) is satisfied and xi, bi are 1 and 0,
respectively, we can set the value of Dhi as 0.01p and sðai; biÞ
as +1, �1, or 0 according to the condition of ai, bi; so as to

increase the probability of the state Œ1æ.

4.4. Structure of QSE-RM

In order to introduce QSE-RM we present quantum angle. A
quantum angle (Wang et al., 2006) is defined as an arbitrary
angle h and a Q-bit is presented as [h]. Then [h] is equivalent

to the original Q-bit as sinðhÞ
cosðhÞ

h i
. It satisfies the condition:
j sinðhÞj2 þ j cosðhÞj2 ¼ 1:

Then a multiple Q-bit
a1

b1

���� a2

b2

���� . . .
am

bm

����
� �

could be re-

placed by: [h1 Œ h2 Œ . . . Œ hm].
The common rotation gate

½a0i b0i�
T ¼ UðDhiÞ½ai bi�

T

where UðDhiÞ ¼
cosðnðDhiÞÞ � sinðnðDhiÞÞ
sinðnðDhiÞÞ cosðnðDhiÞÞ

����
����, is replaced by

½h0i� ¼ ½hi þ nðDhiÞ�.
QSE-RM uses the concept of swarm intelligence of the PSO

and regards all multiple Q-bit in the population as an intelli-
gent group, which is named quantum swarm. First QSE-RM

finds the local best quantum angle and the global best value
from the local ones. Then according to these values, quantum
angles are updated by quantum gate. The QSE-RM based on

QEA-RM is given as follows:

1. Use quantum angle to encode Q-bit QðtÞ using QðtÞ ¼
fqt

1; q
t
2; . . . ; qt

mg and qt
i ¼ ½h

t
j1jh

t
j2j . . . jht

jm�
2. Project QðtÞ into binary solutions PðtÞ by observing the

state of QðtÞ through j cosðhÞj2 as follows: for quantum
angle, we generate a random variable between 0 and 1; if

randomð0; 1Þ > j cosðhÞj2 then we generate 1 else 0 is
generated.

3. The ‘‘update QðtÞ using Q-gate’’ is modified with the fol-

lowing PSO formula (Wang et al., 2006):

vtþ1ji ¼ v � ðx � vtji þ c1 � randðÞ � ðht
jiðpbestÞ � ht

jiÞ
þ c2 � randðÞ � ðht

iðgbestÞ � ht
jiÞÞ

htþ1
ji ¼ ht

ji þ vtþ1ji

where vtji, ht
ji, ht

jiðpbestÞ and ht
iðgbestÞ are the velocity, current

position, individual best and global best of the ith Q-bit of
the jth multiple Q-bit. The parameters v, x, c1, c2 are, respec-
tively, set to 0.99, 0.7298, 1.42, 1.57.

5. Test and evaluation

In this section we compare Quantum Swarm Evolutionary
Algorithm (QSE-RM) to the non-parallel version of Genetic
Algorithm (GA-PVMINER) (Lopes et al., 1999). Since the

parameters of QSE-RM are different from the parameters
of GA-PVMINER, the comparison between QSE-RM and
GA-PVMINER is done by fixing a threshold of time



Table 2 Structure of the Nursery School database.

Attribute name Attribute values

1 Parents Usual, pretentious, great_pret

2 Has_nurs Proper, less_proper, improper, critical, very_crit

3 Form Complete, completed,incomplete, foster

4 Children 1, 2, 3, more

5 Housing Convenient, less_conv, critical

6 Finance Convenient, inconv

7 Social Non-prob, slightly_prob, problematic

8 Health Recommended, priority, not_recom

9 Recommendation Not_recom, recommend, very_recom, priority, spec_prior
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execution. In the remainder of this section, we will see that for
the same goal and for the same time of execution, QSE-RM
has generated rules with fitness better than the fitness of rules
given by GA-PVMINER. Recall that QSE-RM and GA-

PVMINER algorithms belong to the class of evolutionary
algorithms. Evolutionary algorithms give good solution and
may be non-optimal ones but in a reasonable time (polyno-

mial) of execution. All the tests were performed on 1.86 GHz
Intel� Centrino� PC machine with 1.00 GB RAM, running
on Windows XP platform. QSE-RM algorithm is written with

MATLAB programming language. The dataset used for test-
ing, namely the nursery school dataset, is a public domain
Table 3 Results for goal Recommendation = not_recom.

Rule ŒC&PŒ

1 IF Housing = convenient AND

Finance = inconv THEN

Recommendation = not_recom

720

2 IF Parents = great_pret AND

Has_nurs = proper AND

Children = 2 AND

Housing = less_conv AND

Finance = inconv AND

Social = nonprob AND

Health = not_recom THEN

Recommendation = not_recom

4

3 IF Parents = great_pret AND

Health = not_recom THEN

Recommendation = not_recom

1440

4 IF Health = not_recom THEN

Recommendation = not_recom

4320

Table 4 Results for goal Recommendation = spec_prior.

Rule ŒC&PŒ

1 IF Has_nurs = very_crit AND

Health = priority THEN

Recommendation = spec_prior

855

2 IF Parents = pretentious AND

Has_nurs = very_crit AND

Children = 1 AND

Housing = critical AND

Finance = convenient AND

Social = slightly_prob AND

Health = priority THEN

Recommendation = spec_prior

4

and available from UCI repository (http://www.archive.ics.u-
ci.edu/ml/) of machine learning. Nursery database was derived
from a hierarchical decision model originally developed to
rank applications for nursery schools (Bohanec and Rajkovic,

1990).
The Nursery database contains 12,960 instances and 9 attri-

butes, all of them categorical. The structure of Nursery data-

base is given in Table 2.
As it is done in Lopes et al. (1999) we have specified three

goal attributes, namely Recommendation, Social and Finance.

A threshold of execution time is fixed. In all cases, our results
are better than those found by GA-PVMINER.
b Fitness J-measure

0.33 0.40003 0.00005144

1 0.40036 0.00059339

1 0.40010 0.00016954

1 0.40005 0.00008476

b Fitness J-measure

0.98 0.40011 0.00017626

1 0.40038 0.00062905

http://www.archive.ics.uci.edu/ml/
http://www.archive.ics.uci.edu/ml/
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For the goal ‘‘Recommendation = not_recom’’, the best rule

found by GA-PVMINER is given in the first row of Table 3.
In addition to this rule, our algorithm QSE-RM has discov-
ered other more interesting rules, which are given in rows 2,
3 and 4 of Table 3. For example, the following rule is very

important than the best rule given by GA-PVMINER:

\IF Health ¼ not recom THEN Recommendation

¼ not recom"

with support ŒC&PŒ = 4320, confidence b= 1 and fitness =
0.40005.

For the goal ‘‘Recommendation = spec_prior’’, the best rule

found by GA-PVMINER is given in the first row of Table 4.
In addition to this rule, our algorithm QSE-RM has discov-
ered other more interesting rule with fitness = 0.40038 (see
row 2 of Table 4).

The authors of Lopes et al. (1999) stated that the best rule
found by their GA-PVMINER algorithm is:

\IF Has nurs ¼ very crit AND Health

¼ priority THEN Recommendation

¼ spec prior"

with confidence b= 0.9 and fitness = 0.4. The following rule
is more important than the previous rule for the support
reason:

\IF Finance ¼ inconv AND Health

¼ not recom THEN Recommendation

¼ not recom"

with support ŒC&PŒ = 2160, confidence b= 1 and fitness =
0.400.

Concerning the goals Social and Finance our results are
also better than those found by GA-PVMINER.

6. Conclusion

In this article, we discussed the use of Quantum Swarm Evolu-

tionary approach (Wang et al., 2006) to improve the process
of mining association rules. A derived algorithm QSE-RM is
proposed. The experimental studies prove the effectiveness
QSE-RM algorithm comparing with PVMINER (Lopes et al.,

1999). As ongoing work we study the effect of parallelization
of QSE-RM in the same spirit of PGA-RM (Melab and
El-Ghazali, 2000) and we plan to add more hybridization to

QSE-RM.
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