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Abstract. Enhancing the performance of large database systems depends heavily on the cost of performing
join operations. When two very large tables are joined, optimizing such operation is considered one of the
interesting research topics to many researchers, especially when both tables, to be joined, are very large to fit
in main memory. In such case, join is usually performed by any other method than hash Join algorithms. In
this paper, a novel join algorithm that is based on the use of quadtrees, is introduced. Applying the proposed
algorithm on two very large tables, that are too large to fit in main memory, is proven to be fast and efficient.
In the proposed new algorithm, both tables are represented by a storage efficient quadtree that is designed to
handle one-dimensional arrays (1-D arrays). The algorithm works on the two 1-D arrays of the two tables to
perform join operations. For the new algorithm, time and space complexities are studied. Experimental studies
show the efficiency and superiority of this algorithm. The proposed join algorithm requires minimum number
of I/O operations and operates in main memory with O(n log (n/k)) time complexity, where k is number of key
groups with same first letter, and (n/k) is much smaller than 7.

1. Introduction

Time required for data transfer between main
memory and external storage devices, is considered
as one of the major problems that face database
designers. Transferring data from/to external
storage devices, where bandwidth is significantly
low, to/from main memory, where bandwidth is
significantly high, is the main factor that affects
database systems performance [1, 10, 9]. One of the
major problems that is addressed by many
researchers is to minimize the amount of data
written to and read from disks. Usually database
tables are quite large and fitting them in main
memory is not possible, even when database
systems are operated on main frame computers.
Since large tables do not fit in main memory,
sorting must be done in at least two passes [3, 5].
Each pass reads and writes to the disk. CPU-based
sorting algorithms incur significant cache misses on
data sets that do not fit in the L1, L2 or L3 data

caches [4,7]. In such cases, sorting partitions
comparable to the size of main memory is not
efficient. Based on that, in most database systems,
we face a tradeoff between disk /O performance
and CPU computation time spent in sorting the
partitions. In [3, 11], merge-based external sorting
algorithms spent time in Phase 1 can be reduced by
choosing run sizes comparable to the CPU cache
sizes. This choice affects the time spent in Phase 2,
when the merge operations are done on a large
number of small runs [2, 12].

The new proposed join algorithm is based on
the use of quadtrees in indexing. Each table index is
represented by a 1-D quadtree tree [1]. Originally,
quadtrees have been use to represent two-
dimensional images. In this paper, we adopt the
concept of quadtress and apply it on 1-D arrays.
The utilization of 1-D quadtree to accelerate join
operations on large databases will be investigated.

The rest of the paper is organized as follows: the
representation of 1-D arrays using quadtrees is
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depicted in section 2. The proposed technique and
algorithm are described in section 3. In section 4,
the time complexity analysis is presented. The
performance results that represent the quadtrees and
keyed quadtrees sizes, time required to build the
keyed quadtree, and the FQJOIN algorithm
performance are demonstrated in section 5.
Conclusions and references are followed.

2. Quadtrees for 1-D Arrays

A quadtree for 1-D arrays is an adaptation of the
original quadtree defined in references [6], and [8].
It is adapted to represent 1-D textual data [1].

2.1. The original quadtree

The original quadtree represents 2-d binary
images by splitting the image recursively into 4
regions until each region contains only black or
white pixels [13]. An example demonstrating the
original quadtree is shown in Fig. 1.
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Fig. 1.a. A binary image.

2.2. The quadtree for 1-D arrays

The quadtree for 1-D arrays represents 1-d
binary data (binary 1-d array) [1]. The
representation of 1-d data by quadtree for 1-D
arrays is presented in Fig. 2.
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Fig. 1. b. The division of the binary image.
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Fig.1. c. Quadtree representing image in Fig. 1.a.

Fig. 1. Representation of 2-D Binary Images.
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Fig. 2.c. The quadtree for 1-D arrays.

(binary representation is 1111000011101001)

Fig. 2. The representation of 1-d arrays by 1-D quadtrees.

An example showing how to represent non-
binary array using the quadtree for 1-D arrays is
studied. The formation of a 1-D tree for a non-
binary 1-d array is shown in Fig. 3. For the rest of
this paper, the term “quadtree” is analogous to the
term “quadtree for 1-D array”.
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The binary representation for Al is
111001000110101. As it can be concluded from
literature,  quadtrees are  very  compact
representations for very large sparse binary data [6].
Therefore decomposing non binary arrays into
several binary arrays is represented in a compact
manner using 1-D trees.

3. The Proposed JOIN Algorithm: FQJOIN

In this paper, our main concern is the efficient
execution of the equijoin operation, which is one of
the most common database operations. Several
techniques have been developed for performing join
operations efficiently. Among many methods, hash-
based join algorithms are considered to be fast and
easy-to-implement. But, joins on large datasets
require high computing power and large memory
space to maintain intermediate data structures (i.e.,
the hash table). Therefore, we approached the
problem by preprocessing and building quadtree
indices for the tables to be joined, which can fit in
memory and perform fast and efficient join
algorithms. Building the quad tree indices can be
done on partitions of the tables, therefore there is no
restriction even if the smallest table does not fit in
main memory.

3.1 Keyed quadtrees
The proposed join algorithm is tailored
especially for large databases. FQJOIN is used to

join two tables R1 and R2. Neither R1 nor R2 can
fit in main memory. As a matter of fact, both tables
are magnitude larger than the size of main memory.
FQJOIN wuses quadtrees to expedite the join
process. FQJOIN joins two tables R1 and R2 by
building progressively quadtrees for each of them
depending on the first letter of different keys.
Algorithms to build quadtree for a large table R
whose size is n, where n is magnitude larger than
the main memory, is presented below. A keyed
quadtree is built in such algorithms. The definition
of a keyed quadtree is a quadtree with keys attached
to it. A clarification is shown in Fig. 4.
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Algorithm BUILD-QUADTREE (R, n)
{
i=1
1. repeat
{
a) Bring block B; of R from hard
disk to main memory;
(size of B; should be less than
main memory and should be in
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the form 2" where 1 is an integer
greater than zero)
b) Scan B;and form the part P; of the
keyed quadtree for this part for each
set of keys starting with the same
character.
c) i=i+l
/
until i > log(n)
/

The sizes of the keyed quadtrees are very small
and all of them, for the two tables, can be fitted in
main memory for further processing. In section 5,
we give the experimental results that show the
storage requirements of the keyed quadtrees, and a
comparison between the memory requirements of
keyed quadtrees and ordinary join indexes.

3.2 The Joining : FQJOIN Algorithm

In this section, the proposed join algorithm,
namely the FQJOIN algorithm, is presented and
discussed. The proposed algorithm considers only
equijoin queries. The algorithm may need minor
modification to be applied on non-equijoin queries.
The algorithm is based on using keyed quadtrees.
The new technique results in enhanced time
complexity. The proposed algorithm consists of two
parts. In the first part, the FQJOIN-M is called k
times, where k > 0, to join k pairs of quadtree
groups with same first letter. In the second part,
FQJOIN-IO arranges the tuples into nearby clusters
that belong to the same hard disk blocks.

Algorithm FQJOIN( R1, R2)

{

For each pair of keyed quadtrees Q1; and Q2;, i

=1 to k, where k is the number of partitions
FQJOIN-M(Q1,;, 02);

FQJOIN-IO (Posl, Pos2),

/

Algorithm FQJOIN-M(Q1,;, Q2;)
{j=0;
{

S1; = Sort key(Q1));
S2; = Sort key(Q2));
Mi(pl, p2,) = Merge-join (S1,, §2,) ;
For each tuple in M;
{

Posl(j) = pointer(pl;) in Table

RI;
Pos2(j) = pointer(p2;) in Table
R2;
Jt+
/
}
Algorithm FQJOIN-IO(Pos1, Pos2)
{
1. Optimize the 1/O operation by arranging
the required tuples indicated by Posl and
Pos?2 into nearby clusters that belongs to
the same hard disk blocks;
2. Perform the required I/O operations to
bring tuples of all M;’s;
3. Display the result;
}

4. Time Complexity

In this section, the time complexity of the new
proposed joining algorithm is investigated. The
performance study is being carried on to study the
total performance of the algorithms both from time
complexity and I/O requirements.

The new proposed joining algorithm is
composed of two execution of the algorithm
BUILD-QUADTREE and one execution of the
FQJOIN algorithm. In its turn the FQJOIN
algorithm is composed of several executions of
FQJOIN-M which is performed in main memory
and one execution of FQJOIN-IO which requires
I/O operations. Performance study is being carried
on and it studies the total performance of the
algorithms both from time complexity and I/O
requirements. The performance is indicated as
execution time of the FQJOIN algorithm.

4.1 Time complexity analysis of build-quadtree
The process of scanning the elements of a table
of n tuples, and extracting the keyed quadtrees, is
done in linear time, requires O(n) comparison. It
requires n/b I/O operations where b is the size of
I/O block. This is indicated in equations (1) and (2).

T BUILD-QUADTREE is O(n)

M
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I/ OBUILD-QUADTREE =(n/b) @)

4.2 Time complexity analysis of FQJOIN-M

The execution time of FQJOIN-M depends on
the size of the quadtree for a specific key. We
assume that the first character of all keys is
uniformly distributed. Therefore, all quadtrees of
different keys are of the same size. Therefore, time
complexity of FQJOIN-M(QI;, Q2;), where both
Ql;, Q2; are of size n/k, k is the number of different
key groups with same first letter, is indicated in
equation 3.

T FQJOIN-M(Q1ki, Q2ki) isO(n/klog(n/k)) 3)

The explanation of equation 3 is that FQJOIN-
M(Q1;, Q2;) is a merge-join algorithm, where
sorting of keys of both quadtrees (for each key) are
performed first which is done in the order of
O(n/klog(n/k) and then merging is done
between the two sets of keys in time proportional
to n/k.

The execution of the algorithm FQJOIN-M is
done k times, leading to deriving equation (4) from
equation (3).

TFQJOIN-M(Qli,QZi)foralli isO(k(n/klog(n/k))
or TFQJOIN—M(Qli ,Q2;)foralli is O(nlog(n/k))

“

The algorithm FQJOIN-M is done entirely in
memory and doesn’t need any I/O operations this is
indicated in equation (5).

I/OFQJOIN—M(Qli,in)foralli =0 5)

4.3 1/0 requirements of FQJOIN-IO

The algorithm FQJOIN-IO is I/O bound
algorithm with no significance computational load
in main memory. Its I/O requirements depend on
the size of the resultant joined table Rju, and the
distribution of its tuples among the different blocks.

Assume that the tuples of R, are distributed
among m blocks. The I/O requirements are
indicated in equation (6).

[/0 =m
FQJOIN-1O ©

4.4 Time complexity analysis of the Algorithm
FQJOIN(R1, R2)

The time complexity and the I/O requirements
of the entire joining process are derived from
equations (1) to (6) and are depicted in equations
(7) and (8).

Trqiow isO(nlog(n/ k) +n) or

Trqiow isO(nlog(n/k)) @)

In this paper, we compare our results with the
sort-merge-join algorithm. It can be shown that our
proposed join algorithm has time complexity of
order less than the sort-merge join algorithms. Also,
it can perform decently even if both tables are
magnitude larger than main memory, which cannot
be done in case of hash-based join algorithms. I/O
requirements depend on two factors, the block size
and the size of the resultant joined table. There is a
huge room for the optimization of the times of the
I/O operations by varying size of b if possible or by
optimizing the I/O operations performed to display
the resultant joined table.

5. Performance Results

Several experiments have been performed and
analyzed to show the system performance on the
following aspect:

e Quadtrees and keyed quadtrees sizes.

e The time required to build the keyed
quadtree.

e  The FQJOIN algorithm performance
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The results are compared with ordinary join
indexes to show the significance of using quadtrees
in join operations.

5.1 Quadtrees and Keyed Quadtrees Sizes

In our experimental results, we have used
twenty tables of sizes ranging from 10,000 tuples to
80,000 tuples for each experiment. The simulation
results in Figure 5, have shown the average number
of bits required to build quadtrees for different
tables sizes. In figure 6, the experimental results
have shown a comparison between the average
number of bits required by keyed quadtree and
ordinary index. The results showed that, for very
large tables, the proposed keyed quadtree is using
almost half of the memory required by ordinary
indexes. This difference is due to the extra size
needed for addresses in ordinary indexes which is
replaced by the binary representation of quadtrees.

5.2 The Time Required to Build Keyed
Quadtrees

In Figure 7, the time required to build the keyed
quadtree and the ordinary index is presented. The
experimental results have used tables of sizes
ranging from 10,000 to 80,000 tuples, assuming the
block size is 5000 tuples. It is clear that the
quadtrees building requires O(n) time, while
building ordinary indexes requires O(n log n) time.

5.3 The FQJOIN algorithm performance

Performance study is being carried on and it
studies the total performance of the algorithms both
from time complexity and I/O requirements. The
performance is indicated as execution time of the
FQJOIN algorithm. The experiments are held on
different sized tables with different sized resultant
joined tables. The block size is fixed to 5000 tuples
in the first set of experiments in the simulation
study. In the second set of experiments, the block
size varies from 5000 to 40,000 to study its effect
on the execution time.

The second fold of the performance study is to
compare the execution time of the proposed
algorithm to other join algorithms. The proposed
algorithm is compared to the merge sort based Join
algorithm. The sort-merge Join algorithm is studied
as an alternative to join large tables, nested join
algorithm and hash-based join are not suitable for
large tables that neither one of them fit in main
memory. The following figures show the simulation

results.

The performance of join operations has been
improved by applying the proposed quadtree join
algorithm and compared its performance against
other optimized sort-merge join algorithms. The
FQJOIN algorithm 1is implemented and its
performance is evaluated on equijoin queries. These
queries are performed on two tables with variable
sizes. The experiments have been repeated on
different sets of tables and the average performance
is calculated. The experiments showed the
advantage of the quadtree join algorithms in terms
of execution time. From figures 8 and 9, it is
noticed that FQJOIN is 4 times faster than the sort-
merge join algorithm. It is predicted that it even
performs much faster in very large databases.

6. Conclusions

The performance of most DBMS and DSMS
queries is dominated by the cost of Join Queries. It
is very crucial to optimize join algorithms
especially for large database, when both relations,
to be joined, are very large to fit in main memory.
In this case, usually join is performed by any other
method than hash Join algorithms. In this paper, a
new join algorithm for large databases has been
introduced. The algorithm has been proven to be
fast and efficient even if both relations to be joined
are too large to fit in main memory. The new join
algorithm represents both relations by a storage
efficient quadtrees for 1-D arrays. Tailored
mechanism has been carried out that expedites the
Join operations. The new algorithm has been
presented; time and space complexities have been
studied. Experimental studies have shown the
efficiency and superiority of this algorithm. The
proposed join algorithm requires minimum number
of I/O operations and operates in main memory
with O(n log (n/k)) time complexity, where £ is
number of key groups with same first letter, and
(n/k) is much smaller than n. Comparison of the
new proposed algorithm and some well-known
algorithms has proven that the new algorithm
outperforms the other algorithms. Further, there is
no auxiliary arithmetic operations with indices
required. In conclusion, the main contribution of
this research has been the introduction of the
quadtree and its application in speeding up join
algorithms.
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