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Abstract. The General Abstract Model for Multi-set mAnipulation (GAMMA) is a parallel computational and 
programming paradigm.  It utilizes the multi-set data structure and a program structure that is defined as a pair of 
<condition, action>. The elements of the multi-sets are consumed in successive chemical reactions to produce 
new elements according to a set of conditions. In this paper, we exploit the expressiveness of Gamma to elegantly 
and succinctly specify the normalization aspects in relational databases and use its computational power to 
achieve greater performance in verifying and realizing relational database normal forms. We present two 
approaches in database designs and discuss the performance of Gamma on the extensive computation involved in 
the relational database normalization process. 
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1. Introduction 
 

The production of high performance software has 
become a necessary and important aspect in reducing 
the rising cost of computing arising from the 
limitations of sequential execution of most software 
systems. One approach to combat this rising cost is to 
apply parallelism into the production (design and 
implementation) of software to ensure its efficient 
computation at minimal cost. 

GAMMA (Banâtre et al. 2000; Berry and 
Boudol, 1992) has been found to be an efficient and 
simple tool with high-level abstraction best suited to 
achieve high level of parallelism in the production of 
computer applications. An interesting feature of 
GAMMA is its very powerful capability to express 
parallel specifications in a simple manner, devoid of 
details required for the implementations of such 
specifications. 
 

A wide range of today’s applications incorporates 
databases upon which they build their functionalities. 
Hence the high performance and the integrity of a 
database are indeed very crucial to any of these 
applications (Elmasri And Navathe, 2007; Wong et 
al., 1998). Database normalization is a procedural 
technique of ensuring the elimination of 
inconsistencies/redundancies that could affect the 
database integrity (Diederich and Milton, 1998; 
Elmasri and Navathe, 2007). 

In this paper, we present not only our effort in 
achieving high performance databases by applying 
the GAMMA framework to the normalization 
process in the database design, but also the different 
technicalities involved in applying this framework to 
these normalization processes. In addition, we give 
from the Gamma point of view the specification of 
relational database normal forms that separates the 
concerns of architecture and implementation issues 
from the task of developing a correct solution for the 
normalization problem. Specifically, we (i) present 
two approaches to verify relational database normal 
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forms including Boyce-Codd normal form (BCNF) 
(Codd, 1970; Codd, 1972; Codd, 1974) using 
Gamma, (ii) show how the Gamma specification 
mechanism is employed to succinctly decompose a 
set of attributes, taking into consideration a set of 
functional dependencies, into relational database 
normal forms, (iii) empirically compare the 
performance of the two approaches using a fairly 
large number of attributes representing real data, and 
(iv) present experimental results to show the 
performance gained using the Gamma parallel 
processing capability compared to that of the 
sequential processing of relational database 
normalization.  

The first approach of the two normalization 
approaches presented here is a top-down approach 
where a set of attributes are verified against the 
conditions of Boyce-Codd normal form ( BCNF ) 
with respect to a set of functional dependencies. If 
the BCNF cannot be attained, a verification of the 
third normal form (3NF) takes places. If the 3NF 
fails, decomposition into the 3NF that is lossless and 
which preserves the set of functional dependencies is 
obtained. The second approach is a bottom-up 
approach where the first normal form (1NF), the 
second normal form (2NF), and the third normal 
form are verified respectively. We observe that both 
approaches made it succinctly possible using 
Gamma. We experiment with the specifications on a 
virtual machine implementing the Gamma paradigm 
to demonstrate the computational performance 
gained from the natural parallelism of the Gamma 
paradigm. We show a superior performance as 
compared to the sequential machine. We also 
highlight a comparison between the top-down 
approach and the bottom-up approach in our 
experimental work. 

The remaining of the paper is organized as 
follows: Section 2 presents related work and briefly 
describes Gamma. Section 3 presents the Gamma-
based top-down approach. Section 4 presents the 
Gamma-based bottom-up approach. Section 5 
highlights the implementation of a Gamma virtual 
machine on top of a Java machine. Section 6 reports 
on the performance of the Gamma machine on 
processing the normalization aspects of the relation 
database. Section 7 concludes the paper. 

 

2. Related Work 
 

Since the introduction of the relational database 
model (Codd, 1970; Codd, 1972; Codd, 1974) , the 
automation of the normalization was the subject of 
several papers (Ling and Goh, 1992; Maier, 1983; 
Wong et al., 1998). Most researches have shown that 
to achieve good design, relations must be normalized 
into at least third normal form (3NF) (Codd, 1974).  
Several researchers devoted their efforts on 
normalization process on the design of databases, 
some of which were reported to have resulted into 
slow computation (Diederich and Milton, 1988), 
while some other efforts (Akehurst, 2002; Connolly 
and Begg, 2002) have resulted into improved 
performance. Ling and Goh (1992) improved on 
database normalization rules in order to enhance 
database design improvement. The rules entail 
normalizing relations into 3NF, which is then 
subjected to a further normalization called the 
Inclusion Normal Form (IN-NF). Wong et al. (1998) 
however suggested that correct normalization of a 
database schema must be associated with functional 
dependencies to determine the attribute semantics 
that were mined by the database designer. This 
procedure may be difficult to follow especially when 
the designer is faced with a large number of attributes 
for which no semantic information is provided. They 
(Wong et al., 1998) propose an algorithm for mining 
dependencies in observed data. The work in 
Omiecinski (Omiecinski, 1990) is an effort to 
improve the performance of automated normalization 
by applying parallel algorithms for computing the 
minimal covers and synthesizing relations into 3NF. 
Short of performing the decomposition into normal 
forms, Touir et al. (2009) present a bottom-up 
approach using Gamma to verify the conformance of 
a given relational database design to normal forms up 
to the third normal form. They also present an 
experimental evidence of the superiority in 
performance using a Gamma virtual machine. In their 
experimental study, they (Touir et al., 2008) use a 
modest machine specification compared to current 
available machines. 

The most interesting feature of Gamma is its 
formalism which places no restrictions on how data 
elements are to be manipulated. Generally, the 
Gamma paradigm (Berry and Boudol, 1992, Wong et 
al., 1998) is based on the concept of multi-sets, 
which in practical terms, behaves like a chemical 
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solution, where its elements are seen as molecules. A 
Gamma program, which consists of a pair of 
Reaction Condition and Action, executes by 
continually and progressively replacing the multi-set 
elements that satisfy reaction condition by the 
products of the action, until a stable state is reached, 
when no more reactions can take place. Thus, 
execution of a GAMMA program, which is basically 
interactions between elements of its e multiset are 
non-deterministic, resulting in programs that are 
capable of executing naturally and implicitly in 
parallel. An example of a Gamma program is 
specified as follows:   
 
x1, x2, …, xn → (x1, x2, …, xn)  (x1, x2, …, xn) 
 
where x1, x2, …, xn is the set of elements (multiset) 
that cause the “chemical reaction”  is the reaction 
condition that must hold within the solution, and  is 
the action to be taken when  is true. Gamma has 
been applied to various domains including string 
processing problems, graph problems, mathematical 
problems, geometric problems, image processing 
applications, reactive programming and software 
architectures (Berry and Boudol, 1992; Inverardi and 
Wolf, 1995; Wong et al., 1998).  
 

As a simple example to illustrate how a Gamma 
program is defined, consider the problem of 
computing the sum of n elements. In this case, we 
specify the program that computes the sum of two 
elements of the set, and replace them by the resulting 
sum. The program can be defined as follows: 

Program name: sum 
Elements causing the chemical reaction: x, y 
The reaction condition: z = x + y 
The action: z 
Therefore, the program would be written as:  
            sum : x, y → z  (x + y). 

 
3.  A Gamma Top-Down Normalization Approach 
 

Given a set of attributes R=(x1,…,xn) and a set of 
functional dependencies F={fd1,…, fdm}, R is 
verified  against F for the highest, desired normal 
form. The highest desired normal form in our 
treatment of this approach is the BCNF (Codd, 1974; 
Connolly and Begg, 2002; Elmasri and Navathe, 
2007).  R is considered to be in BCNF if every 

determinant is a candidate key. If the BCNF is not 
attained, the third normal form (3NF) is accepted. 
The 3NF relaxes the conditions of the BCNF but 
insists that every attribute in R is dependent only 
upon the primary key. The procedure that is followed 
in our top down approach is given in the following 
steps.  
1. Take R and F as input. 
2. If R satisfies the conditions of the BCNF with 

respect to F, then stop and exit; otherwise 
proceed to step 3. 

3. Verify that R against the conditions of the 3NF 
with respect to F. If R satisfies the conditions of 
the 3NF with respect to F, then stop and exit; 
otherwise proceed to step 4. 

4. Decompose R to obtain a 3NF design that is 
lossless and which preserves the functional 
dependencies. 

 
The above procedure is succinctly specified as a 

GAMMA program as follows (referred to hereto 
after as the top down program). The notations 
adopted are given in Table 1. The procedure assumes 
that the attributes of R conforms to the atomicity 
property; i.e., R is in the first normal form (1NF). 
The Gamma program to verify and construct the first 
normal form in case the attributes are not atomic are 
given below. 

 
Table 1. Adopted notations 

x1, x2, …, xn A set of elements (multiset) which 
cause the “chemical reaction” 

 Action 
 Reaction Condition 

R A relation to be processed 
F A set of functional dependencies 
fd Defined below 

 
Definition: For the purpose of our specification, a 
functional dependency fd is envisaged in the 
following notation: 
 
     fd(InitialRelation, CreatedRelation, LHS, RHS, 
Keys, 1NF, 2NF, 3NF, BCNF), where  
InitialRelation is the relation that has fd as functional 
dependency. 
 
CreatedRelation is initially a null relation that may be 
created if needed. 
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LHS is the set that contains the name of attributes in 
the determinant of the functional dependency. 
RHS is the set of attributes that are dependent on the 
LHS determinant in the functional dependency 
Keys is the set of defined candidate keys in the 
relation. 
 
1NF, 2NF, 3NF, BCNF are Boolean variable that 
indicate whether the relation is in 1NF, 2NF, 3NF, 
BCNF or not. These fields are initially set to false. 
 

Gamma-TopDown-Approach(( 1, 1), ( 2, 2), 

( 3, 3)(fdi) 

Elements causing the reaction: fdi  

The reaction condition  1: BCNFCheck((fdi) 

and (fdi.BCNF = True) 

The action  1: {fd1, fd2, fd3, …, fdn} – {fdi}  // 

in fact it is removed automatically 

The reaction condition  2: (fdi.BCNF = False)  and 

3NFCheck(fdi) and (fdi.3NF = True) 

The action  2: {fd1, fd2, fd3, …, fdn} – {fdi} 

The reaction condition  3: 3NFDecompose 

(fdi)) and (fdi.3NF = False) 

The action  3:.modify(fdi)   //the complete 

specification is shown below 

Therefore, the Gamma program is: 

  (**)  GammaGeneralCheck :  ( fdi → {fd1, fd2, fd3, 

…, fdn} – {fdi}  3NFDecompose( 3NFCheck( 

BCNFCheck(fdi) and (fdi.3NF = True))) 

The only statement needed for the actual Gamma 
program is the statement with (**). The statements 
preceding it are given for the purpose of clarification. 
We follow the same style throughout the paper. It is 
observed that the expressiveness of GAMMA made it 
possible to specify the complete top down 
normalization process in an elegant and succinct 
fashion. The top down program is explained below. 
 

The Gamma program consists of sub-programs that 
echo the corresponding verification steps as detailed 
below. The first step is to ascertain that all attributes 
are atomic; i.e., R is in 1NF. This is necessary for the 
procedure to obtain the highest normal form from the 
top down. 
 
1NF Verification program: 

According to the definition of first normal form 
(1NF), we have to ensure that every attribute A in R 
holds atomic values. For this purpose, an attribute is 
defined as the pair (attribute name, atomic), where 
atomic is a Boolean valued variable to indicate the 
atomicity. Hence, the predicate AtomicAttribute is 
defined as follows: 
 
AtomicAttribute: checks that an attribute in R holds 
atomic values. 
 
The Gamma specification would be as follows: 

Program name: 1NFCheck 

Elements causing the chemical reaction: attribute A 

The reaction condition  R_check:  AtomicAttribute 

(A) 

The action  A_check: A.atomic =True 
  
Therefore the Gamma program is: 
  1NFCheck : A.atomic =True  AtomicAttribute(A) 

In case the attributes do not conform to the atomicity 
property, decomposition takes place to break them 
down into atomic values as follows. 
 
1NF Decomposition: 

The 1NF decomposition process has a reaction 
that triggers the action if the field atomic is false and 
does nothing if it is true. It comprises breaking down 
each composite attribute A of R into atomic ones.  
The specification program would be: 

Program name: 1NFDecompose 

Elements causing the reaction: attribute Ai 

The reaction condition: A.constituents = 

break_down( Ai),  

The action: A.constituents  

The corresponding Gamma program would be: 
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1NFDecompose: Ai  → Ai.constituents     

break_down( Ai) and replace A by A.constituents 

in fdi 

BCNF Verification program: 
 The Gamma program below verifies that the left 
hand side of each functional dependency is a key; 
otherwise the BCNF stays false.  
 
The Gamma specification would be as follows: 

Program name: BCNFCheck 

Elements causing the reaction: fdi 

The reaction condition: (λ   fdi.LHS | λ  fdi.Keys)  

The action: fdi.BCNF = True 

The corresponding Gamma program would be: 

BCNFCheck: fdi  → fdi.(BCNF = True and  

{fd1, fd2, fd3, …, fdn} – {fdi}) (((λ  fdi.LHS) | 

λ   fdi.Keys)) 

 
3NF Verification program: 

To verify the 3NF, the Gamma program checks 
that for each functional dependency the following 
holds: 

 Either the left hand side contains a candidate 
key 

 Or the right hand side is part of a candidate key. 
 

More succinctly: 

 λ   fd.LHS  | λ fdi.Keys 

 fd.RHS  λ | λ  fdi.Keys 

The Gamma specification would be: 

Program name: 3NFCheck 

Elements causing the reaction: fdi 

The reaction condition: (λ   fdi.LHS | λ  

fdi.Keys) or (fdi.RHS  λ | λ  fdi.Keys)  

The action: fdi.3NF = True 

Therefore the corresponding Gamma program would 

be: 

3NFCheck: fdi  → fdi.(3NF = True and {fd1, fd2, fd3, 

…, fdn} – {fdi}) (fdi.BCNF = false) and ( fdi.1NF = 

True) })and ((λ   fdi.LHS)   or (fdi.RHS  λ) | λ   

fdi.Keys)) 

 
In case the given set of attributes fails to meet the 

BCNF or the 3NF conditions, it is decomposed into 
smaller sets of attributes representing a set of new 
relations that satisfy the 3NF conditions, are lossless, 
and the set of functional dependencies are preserved. 
Such decomposition is performed as follows. 
 
Specification of the 3NF decomposition process: 
 The decomposition process has a reaction that 
triggers the action if the Boolean variable 3NF is 
false and does nothing if it is true. The principle of 
the decomposition comprises creating a relation for 
each fd where the key is the left hand side of the 
dependency.  
 
The Gamma specification would be: 

Program name: 3NFDecompose 

Elements causing the reaction: fdi 

The reaction condition: (fdi.3NF = False) 

The action:     

fdi.Relation = new Relation(fdi.LHS   fdi.RHS), (i) 

fdi.is _Key_in = fdi.keys  ( fdi.LHS   fdi.RHS) (ii) 

fdi.keys = fdi.LHS,  (iii) 

 fdi.3NF = true (iv) 

 {fd1, fd2, fd3, …, fdn} – {fdi} (v) 

 Referring to the reaction condition and the 
actions (i-v) in the numbered statements above, the 
reaction checks if the fdi is in 3NF and if not (i) a 
new relation is created. This latter is composed of the 
union of the left hand side and the right hand side of 
the dependency; (ii) checks whether the key of the fdi 
is in the newly created relation, (iii) the left hand side 
of the fdi becomes the key of this new relation; (iv) 
sets the Boolean variable 3NF to true, (v) fdi is 
removed from the list of original functional 
dependencies. 
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4. A Gamma Bottom-Up Normalization 
Approach 

 
Atomic(A) True if A is atomic 
Name(A) Refers to the name of the attribute 

A 
(A) Refers to the type of the attribute 

A, which is either Prime or 
NonPrime 

(A) Is a set of attributes on which the 
attribute A is dependent 

(A) Is the set of all attributes 
constituting the primary key 
(including A) if A is prime; 
Empty set if A is nonprime 

 
Using the above- definition, we define the 3NF as 
follows:  
For any three attributes (A, B, C), if  (A) = Prime  
(C) = nonprime  (A (C)  B (C)) does not 

hold. As illustrated in Figure 1, having a set of 
attributes A1, A2, A3, …, An, we first check if every 
Ai is atomic; if not make it atomic using 
1NFDecomposition program defined in Section 3. 
Then, we agglomerate the obtained set of attributes 
into a set of all possible triplets. Following that, we 
check if every triplet satisfies the 2NF condition; if 
so we proceed to the 3NF. This is summarized in the 
following steps. 

  
1- Start with the 1NFCheck program, namely: 

1NFCheck : Ai → atomic = False               
 AtomicAttribute(Ai)) 

2- If required, use the 1NF Decomposition program 
(given in Section 3) to decompose each non 
atomic attribute A into a set of attributes.  

3- Agglomeration steps: We defined a process 
CreateTriplet that creates a multiset of all 
possible triplets from the set of 1NF valid 
attributes Ai, i = 1,,.., n. The specification of 
such a process is as follows: 

Program name : CreateTriplet  
Element causing the reaction: Ai,Aj,Ak   

 The reaction condition: tripleti = new 
Triplet(Ai,Aj,Ak) 

The action: tripleti 
 

A1,A2,A3,...An

3NFCheck

Yes

No1NF
Decomposition

Generate
Triplet

yes
no

Exit with
negative
answer

no

yes

2NFCheck

1NFCheck

Exit with
positive
answer

Fig. 1. Steps of the design process in the bottom-up approach. 

 

The next step is ascertaining that every relation 
conforms to the second normal form (2NF). That is, 
every NonPrime attribute is fully functionally 
dependents on the primary key (no NonPrime 
attribute is partially dependent on the primary key). 
Therefore, the conditions for Gamma routine for the 
2NF are: 

 Having a triplet (A,B,C) 
 Triplet. (A) =Prime  and triplet. (B) = Prime  

and triplet. (C) = NonPrime  
 triplet.A.  and triplet.B  are equivalent 
 triplet.A and triplet.B  triplet. (C) 

 
The action is: tripleti.2NF = True 

The complete Gamma program for the 2NF would 
be: 

Program name: 2NFCheck 
Element causing the reaction: tripleti  
The reaction condition: tripleti.2NF = true 
The action:  (tripleti. (x) = P)  (tripleti. (y) 

=P)  (tripleti. (z) = N)  (tripleti. (x) = 
tripleti. (y))  (tripleti.x  tripleti. (z))  
(tripleti.y  tripleti. (z))  (tripleti. (z) = 
N)  (tripleti. (x)  tripleti. (y))  
(tripleti.x  tripleti. (z))  (tripleti.y  
tripleti. (z)) 

Compared to the specification given in (Touir et al., 
2008), this specification is more natural and succinct. 

Similarly, for the 3NF we need to verify that : 
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 The relation is in the second normal form 
tripleti.2NF = True 

 No NonPrime attribute is transitively dependent 
on the primary key. That is: 
 tripleti. (x) = Prime and tripleti. (z) = 

NonPrime  
  (tripleti.x  tripleti. (y) and tripleti.y  

tripleti. (z)) 

The action is: tripleti.3NF = True. 
Therefore, the Gamma program for the 3NF would 
be: 

Program name: 3NFCheck 
Element causing the reaction: tripleti  
The reaction condition: tripleti.2NF = true  
tripleti.3NF = false 
The action:  (tripleti.2NF = True)  
(tripleti. (x) = Prime)  (tripleti. (z) = 
NonPrime)  (tripleti.x  tripleti. (y))  
(tripleti.y  tripleti. (z)) 

 
The complete Gamma program of the bottom-up 

normalization approach is defined in the following 
manner. 

1NFDecompose: A1, A2, A3, …, An→ {A1, A2, A3, 
…, An}-{ Ai} 1NFDecomposition( 1NFCheck(Ai)) 

 
Gamma_Norm:  A1, A2, A3, …, An → {triplet1, 
triplet2, triplet3, …, tripletn} – {tripleti}  
3NFCheck( 2NFCheck( (CreateTriplet(A1, A2, A3, 
…, An))))  tripleti.3NF = True. 

 
 
5. The Environment of the Experimental Studies 

 
The experiment is conducted using a Gamma 

Virtual Machine (GVM) which was developed on top 
of a Java Virtual Machine (JVM). The Gamma 
concept was implemented as a Gamma Virtual 
Machine (GVM) to study the efficiency and behavior 
of a non Von Neumann machine. The GVM was 
utilized to express and experiment with the 
specifications of the database normalization process 
discussed earlier in order to measure their 
performance. Since Gamma is based on the concept 
of multiset, the GVM is a set of workers that interact 
simultaneously to process the data on the multiset to 
solve a specific problem. The architecture of GVM is 
shown in Fig. 2.  It was developed with the following 
assumptions in mind: 

 The GVM is composed of a set of workers that run 
on top of a Java Virtual Machine (JVM). 

 Each worker is launched on a thread.  
 

The design of the GVM is dependent on the use 
of workers. Workers access the multiset concurrently 
to achieve the parallel processing requirement of the 
Gamma specification. 

 
 

multiset

worker1

workern

worker3worker2

 
Fig. 2. Interaction principle between the different workers. 

 
The basic components that must be created first 

are those that are associated with the multi-set 
elements and those that are implementing the 
reaction-action pair as illustrated in Fig. 3 and 
explained below.  
 This FDMolecule class represents a molecule 

(element) in the multiset. The molecule deals with 
a single functional dependency in the relation.  

 The FDProcess class includes the two required 
methods, getMoleculeCardinality() and action(). 
It is a main component. It provides the necessary 
interfaces and communication between the 
molecule and the GVM. The GVM needs a 
method called action as an entry point to start the 
process. Fig. 4 illustrates a sample code 
implementing the action of the gamma program 
3NFDecompose given earlier.  

 The FDManager class serves as a medium 
between the user and the GVM. It accepts the list 
of functional dependencies of the relation in 
question along with the set of keys as input. It 
initializes the multiset, so that it is ready to be 
invoked by the different workers of the GVM. 

 GammaFD is used to instantiate the machine with 
the desired number of workers. It initiates the 
process and invokes the machine with a set of 
functional dependencies of a relation along with 
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the set of keys as an input in order to obtain the 
results. 

 
package services; 
import java.util.LinkedList; 
import tailor.Tailor; 
public class GammaNorm extends Tailor{ 
 public int getMoleculeCardinality() { 
 return 1; 
 } 
    public void action(LinkedList atoms, LinkedList 
activeAtoms, LinkedList passiveAtoms) { 
 FDMolecule fd; 
 fd =(( FDMolecule) atoms.poll()); 
 if (! fd.getThreeNF()) { 
  fd.setThreeNF(true); 
  fd.createRelation(fd.getLHS(), fd.getRHS()); 
  fd.setIsKeyIn(); 
  fd.setKey(fd.getLHS()); 
 } 
 passiveAtoms.add(fd); 
 } 
} 
Fig. 4. A sample code implementing the action of the gamma 

program 3NFDecompose. 
 

In the method action, there are three linked lists: 
atoms, activeAtoms, passiveAtoms. These three 
structures play the role of multilists of the FDs. Each 
time an FD is extracted from the atoms list, it is 
processed and added into the passiveAtoms list. 
Although the activelist should be present in the 
implementation of the Gamma machine 

independently of any problem, it is not used when 
processing the FDs. This is due to the fact that each 

FD is processed only once. It does not require further 
processing. Thus, there is no need to add it to the 
active list. 
 

6. Experimental Results 
 

Several database relations with different sizes 
were tested for the conformance and the 
decomposition of the specified normal forms. Table 
2 indicates the performance of GVM when using our 
Gamma specification as compared to sequential 
machines. The table highlights the result obtained for 
a database of 300 attributes. The number of workers 
was increased from 10 to 200 in an increment of 10. 
We report the performance of 10-100 and 200 
workers. It can be seen from Table 2 and Figure 5 
that the GVM outperforms the sequential 
implementation superiorly. The improvement of the 
performance is due to exploiting the parallelism 
aspects in Gamma. It is observed that there is an 
optimal number of workers at which the Gamma 
machine performs best. This is dependent on the 
number of attributes being processed. In this case, 
sixty workers gave an optimal performance for 300 
attributes. Increasing the number of workers 
degraded the performance as illustrated in Fig. 5. 
This is due to the higher communication time 

+createRelation(in attrib1 : string, in attrinb : string)

-keys:Strin[]
-LHS:String[]
-RHS:String[]
-NFStatus:boolean[]
-isKeyIn:boolean

FDMolecule
+OneNFCheck(in fdm : FDMolecule)
+ThreeNFCheck(in fdm : FDMolecule)
+BCNFCheck(in fdm : FDMolecule)
+OneNFDecompose(in fdm : FDMolecule)
+ThreeNFDecompose(in fdm : FDMolecule)

GammaFD

1

-listOfMolecules*

+FDMolManipulate()

-relation:String[]
-keys:String[]

FDManager

-origin:String[]
-dest:String[]

FD

1

-setOfFD

*

1

-setOfFDMol *

+getMoleculeCardinality()
+action()

FDProcess

-process

1

1

 
Fig. 3. The implementation framework of the data normalization on top of the GVM. 



J. King Saud University, Vol. 21, Comp. & Info. Sci, Riyadh (2009/1430H.)                                    9 
 

 

required among the workers. It should be noted that 
the testing was carried out on a machine with 2 GB 
of RAM, and a 4 GHz speed. Testing results may 
vary upon changing the hardware configurations. 
Compared to the work in (Touir et al., 2008), this is a 
more up to date specification yielding better results. 

Table 2. Results of running the 3NF decomposition on the 
Gamma Machine vs Sequential Machine 

No. of 
Workers 

Sequential 
Time 

GM 
Time 

Improvement 

10 119 26 457% 
20 119 17 700% 

30 119 14 850% 

40 119 10 1190% 

50 119 7 1700% 

60 119 6 1983% 
70 119 7 1700% 
80 119 8 1487% 
90 119 8 1487% 

100 119 11 1081% 
200 119 16 743% 

 

 
Fig. 5. The Processing of Gamma Machine vs the 

Sequential Machine. 
 

The performance of the Gamma machine was 
examined with respect to the top-down and bottom-
up approach. Relations with different number of 
attributes were given as input to the Gamma machine. 
Relations of up to 200 attributes were obtained from 
real life problems. Other relations were generated for 
the sake of testing the machine. The Gamma machine 
performed superiorly on the top-down approach as 
compared to the bottom-up approach as illustrated in 
Table 3 and Fig. 6. This is attributed to the extensive 

computation in the bottom-up approach as opposed 
to that in the top-down approach. This is also evident 
from the more elegant specification of the top-down 
approach given in Section 3 versus that of the 
bottom-up given in Section 4.  

Furthermore, the process involved in the bottom-
up approach requires more time in the 
communication among the workers of the Gamma 
machine. It is observed that when the number of 
workers increases, the computation time decreases to 
a minimal value then it starts increasing. This is due 
to the fact that the communication overhead and the 
synchronization between the different processes start 
consuming much more time than the execution of the 
intended tasks.  

 
Table 3. Performance of Top-down approach vs Bottom-
  up approach 

Number of 
Attributes in 

R 

GM Estimated Time The Top-
Down is 

consistently 
better 

Bottom-
Up 

Top-
Down 

20 12 4 66.67% 
50 27 5 68.75% 

100 46 8 65.22% 
200 61 13 64.86% 
500 79 17 56.41% 

1000 93 29 64.71% 
 

 
Fig. 6. Performance of the Top-down approach vs the Bottom-

up approach 
 

7. Conclusions 
 
In this paper, we exploited the expressiveness of 

Gamma to elegantly and succinctly specify the 
normalization aspects in relational databases and use 
its computational power to achieve greater 
performance in verifying and realizing relational 
database normal forms. We presented succinct 
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specifications of the normalization verification and 
realization in relational databases using Gamma 
through two approaches, namely, the top-down 
approach and the bottom-up approach. We report on 
the experimentation with an implementation of 
Gamma machine to demonstrate the computational 
gain of Gamma parallelism in solving useful 
problems with reasonably extensive computation. We 
believe this will facilitate the automatic database 
design that is based on sound principle. We are 
currently working on automating the complete 
process of the database design including generating 
applicable functional dependencies using Gamma. 
This requires augmenting the system with 
intelligence through the incorporation of knowledge 
bases. We are in the process of examining the 
application of Gamma in constructing and managing 
knowledge bases. 
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 تطبيع البيانات في قواعد البيانات الترابطية والتحقق من صحتها باستخدام تقنية جاما
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 )م٢/٢/٢٠٠٩؛ وقبل للنشر في م٢١/١٢/٢٠٠٨(قدم للنشر في 

 
موعات المتعددة (جاما) أسلوب حسابي وبرمجي متوازٍ يستخدم  .البحث ملخص رد العام للتعامل مع ا يعتبر النموذج ا

موعات المتعددة والتي تعرف كثنائي من الشكل (الشرط، الاستجابة). يتم التعامل مع عنا موعات المتعددة في بنية ا صر ا
سلسلة من التفاعلات الكيميائية لإنتاج عناصر جديدة حسب مجموعة من الشروط. نشرح في ورقة العمل هذه كيفية 
ا الحسابية لتوصيف  وتكوين جداول بيانات مطبعة وفقاً لنماذج  تطبيع  استخدام وتطبيق تقنية جاما و الاستفادة من  قو

.  حيث يتسم التوصيف باستخدام تقنية جاما  بالدقة و الأناقة وتفادي التفاصيل التي قد تؤثر على صحة البيانات الترابطية
التوصيف.  ونعرض في هذه الورقة طريقتين للتوصيف تستخدم في تصميم قواعد البيانات الترابطية و نناقش أداء بيئة عمل 

. كما نستعرض و نقارن أداء جاما مع طرق التنفيذ التسلسلية كما جاما في الحسابات المعقدة التي تتطلبها عمليات التطبيع
 نقارن نتائج طريقتي التوصيف في بيئة جاما و ذلك من خلال القيام بتجارب تستخدم فيها بيانات حقيقية.

 




