
J. King Saud University, Vol. 21, Comp. & Info. Sci, pp. 1-11, Riyadh (2009/1430H.)

Formalization and Verification of Relational Database Normal Forms
Using the Gamma Framework

 Hassan Mathkour
Department of Computer Science

King Saud University
Riyadh 11543, Saudi Arabia

Mathkour@ccis.ksu.edu.sa, binmathkour@yahoo.com

(Received 21/12/2008; accepted for publication 02/02/2009)

Abstract. The General Abstract Model for Multi-set mAnipulation (GAMMA) is a parallel computational and
programming paradigm. It utilizes the multi-set data structure and a program structure that is defined as a pair of
<condition, action>. The elements of the multi-sets are consumed in successive chemical reactions to produce
new elements according to a set of conditions. In this paper, we exploit the expressiveness of Gamma to elegantly
and succinctly specify the normalization aspects in relational databases and use its computational power to
achieve greater performance in verifying and realizing relational database normal forms. We present two
approaches in database designs and discuss the performance of Gamma on the extensive computation involved in
the relational database normalization process.

Keywords: Gamma, Parallel processing, Relational databases, Normalization, Data Normal forms, Top-down
approach, Bottom-up approach, Gamma Virtual Machine.

1. Introduction

The production of high performance software has
become a necessary and important aspect in reducing
the rising cost of computing arising from the
limitations of sequential execution of most software
systems. One approach to combat this rising cost is to
apply parallelism into the production (design and
implementation) of software to ensure its efficient
computation at minimal cost.

GAMMA (Banâtre et al. 2000; Berry and
Boudol, 1992) has been found to be an efficient and
simple tool with high-level abstraction best suited to
achieve high level of parallelism in the production of
computer applications. An interesting feature of
GAMMA is its very powerful capability to express
parallel specifications in a simple manner, devoid of
details required for the implementations of such
specifications.

A wide range of today’s applications incorporates
databases upon which they build their functionalities.
Hence the high performance and the integrity of a
database are indeed very crucial to any of these
applications (Elmasri And Navathe, 2007; Wong et
al., 1998). Database normalization is a procedural
technique of ensuring the elimination of
inconsistencies/redundancies that could affect the
database integrity (Diederich and Milton, 1998;
Elmasri and Navathe, 2007).

In this paper, we present not only our effort in
achieving high performance databases by applying
the GAMMA framework to the normalization
process in the database design, but also the different
technicalities involved in applying this framework to
these normalization processes. In addition, we give
from the Gamma point of view the specification of
relational database normal forms that separates the
concerns of architecture and implementation issues
from the task of developing a correct solution for the
normalization problem. Specifically, we (i) present
two approaches to verify relational database normal

1

2 Hassan Mathkour: Formalization and Verification of Relational Database……..

forms including Boyce-Codd normal form (BCNF)
(Codd, 1970; Codd, 1972; Codd, 1974) using
Gamma, (ii) show how the Gamma specification
mechanism is employed to succinctly decompose a
set of attributes, taking into consideration a set of
functional dependencies, into relational database
normal forms, (iii) empirically compare the
performance of the two approaches using a fairly
large number of attributes representing real data, and
(iv) present experimental results to show the
performance gained using the Gamma parallel
processing capability compared to that of the
sequential processing of relational database
normalization.

The first approach of the two normalization
approaches presented here is a top-down approach
where a set of attributes are verified against the
conditions of Boyce-Codd normal form (BCNF)
with respect to a set of functional dependencies. If
the BCNF cannot be attained, a verification of the
third normal form (3NF) takes places. If the 3NF
fails, decomposition into the 3NF that is lossless and
which preserves the set of functional dependencies is
obtained. The second approach is a bottom-up
approach where the first normal form (1NF), the
second normal form (2NF), and the third normal
form are verified respectively. We observe that both
approaches made it succinctly possible using
Gamma. We experiment with the specifications on a
virtual machine implementing the Gamma paradigm
to demonstrate the computational performance
gained from the natural parallelism of the Gamma
paradigm. We show a superior performance as
compared to the sequential machine. We also
highlight a comparison between the top-down
approach and the bottom-up approach in our
experimental work.

The remaining of the paper is organized as
follows: Section 2 presents related work and briefly
describes Gamma. Section 3 presents the Gamma-
based top-down approach. Section 4 presents the
Gamma-based bottom-up approach. Section 5
highlights the implementation of a Gamma virtual
machine on top of a Java machine. Section 6 reports
on the performance of the Gamma machine on
processing the normalization aspects of the relation
database. Section 7 concludes the paper.

2. Related Work

Since the introduction of the relational database
model (Codd, 1970; Codd, 1972; Codd, 1974) , the
automation of the normalization was the subject of
several papers (Ling and Goh, 1992; Maier, 1983;
Wong et al., 1998). Most researches have shown that
to achieve good design, relations must be normalized
into at least third normal form (3NF) (Codd, 1974).
Several researchers devoted their efforts on
normalization process on the design of databases,
some of which were reported to have resulted into
slow computation (Diederich and Milton, 1988),
while some other efforts (Akehurst, 2002; Connolly
and Begg, 2002) have resulted into improved
performance. Ling and Goh (1992) improved on
database normalization rules in order to enhance
database design improvement. The rules entail
normalizing relations into 3NF, which is then
subjected to a further normalization called the
Inclusion Normal Form (IN-NF). Wong et al. (1998)
however suggested that correct normalization of a
database schema must be associated with functional
dependencies to determine the attribute semantics
that were mined by the database designer. This
procedure may be difficult to follow especially when
the designer is faced with a large number of attributes
for which no semantic information is provided. They
(Wong et al., 1998) propose an algorithm for mining
dependencies in observed data. The work in
Omiecinski (Omiecinski, 1990) is an effort to
improve the performance of automated normalization
by applying parallel algorithms for computing the
minimal covers and synthesizing relations into 3NF.
Short of performing the decomposition into normal
forms, Touir et al. (2009) present a bottom-up
approach using Gamma to verify the conformance of
a given relational database design to normal forms up
to the third normal form. They also present an
experimental evidence of the superiority in
performance using a Gamma virtual machine. In their
experimental study, they (Touir et al., 2008) use a
modest machine specification compared to current
available machines.

The most interesting feature of Gamma is its
formalism which places no restrictions on how data
elements are to be manipulated. Generally, the
Gamma paradigm (Berry and Boudol, 1992, Wong et
al., 1998) is based on the concept of multi-sets,
which in practical terms, behaves like a chemical

J. King Saud University, Vol. 21, Comp. & Info. Sci, Riyadh (2009/1430H.) 3

solution, where its elements are seen as molecules. A
Gamma program, which consists of a pair of
Reaction Condition and Action, executes by
continually and progressively replacing the multi-set
elements that satisfy reaction condition by the
products of the action, until a stable state is reached,
when no more reactions can take place. Thus,
execution of a GAMMA program, which is basically
interactions between elements of its e multiset are
non-deterministic, resulting in programs that are
capable of executing naturally and implicitly in
parallel. An example of a Gamma program is
specified as follows:

x1, x2, …, xn → (x1, x2, …, xn) (x1, x2, …, xn)

where x1, x2, …, xn is the set of elements (multiset)
that cause the “chemical reaction” is the reaction
condition that must hold within the solution, and is
the action to be taken when is true. Gamma has
been applied to various domains including string
processing problems, graph problems, mathematical
problems, geometric problems, image processing
applications, reactive programming and software
architectures (Berry and Boudol, 1992; Inverardi and
Wolf, 1995; Wong et al., 1998).

As a simple example to illustrate how a Gamma
program is defined, consider the problem of
computing the sum of n elements. In this case, we
specify the program that computes the sum of two
elements of the set, and replace them by the resulting
sum. The program can be defined as follows:

Program name: sum
Elements causing the chemical reaction: x, y
The reaction condition: z = x + y
The action: z
Therefore, the program would be written as:
 sum : x, y → z (x + y).

3. A Gamma Top-Down Normalization Approach

Given a set of attributes R=(x1,…,xn) and a set of
functional dependencies F={fd1,…, fdm}, R is
verified against F for the highest, desired normal
form. The highest desired normal form in our
treatment of this approach is the BCNF (Codd, 1974;
Connolly and Begg, 2002; Elmasri and Navathe,
2007). R is considered to be in BCNF if every

determinant is a candidate key. If the BCNF is not
attained, the third normal form (3NF) is accepted.
The 3NF relaxes the conditions of the BCNF but
insists that every attribute in R is dependent only
upon the primary key. The procedure that is followed
in our top down approach is given in the following
steps.
1. Take R and F as input.
2. If R satisfies the conditions of the BCNF with

respect to F, then stop and exit; otherwise
proceed to step 3.

3. Verify that R against the conditions of the 3NF
with respect to F. If R satisfies the conditions of
the 3NF with respect to F, then stop and exit;
otherwise proceed to step 4.

4. Decompose R to obtain a 3NF design that is
lossless and which preserves the functional
dependencies.

The above procedure is succinctly specified as a

GAMMA program as follows (referred to hereto
after as the top down program). The notations
adopted are given in Table 1. The procedure assumes
that the attributes of R conforms to the atomicity
property; i.e., R is in the first normal form (1NF).
The Gamma program to verify and construct the first
normal form in case the attributes are not atomic are
given below.

Table 1. Adopted notations

x1, x2, …, xn A set of elements (multiset) which
cause the “chemical reaction”

 Action
 Reaction Condition

R A relation to be processed
F A set of functional dependencies
fd Defined below

Definition: For the purpose of our specification, a
functional dependency fd is envisaged in the
following notation:

 fd(InitialRelation, CreatedRelation, LHS, RHS,
Keys, 1NF, 2NF, 3NF, BCNF), where
InitialRelation is the relation that has fd as functional
dependency.

CreatedRelation is initially a null relation that may be
created if needed.

4 Hassan Mathkour: Formalization and Verification of Relational Database……..

LHS is the set that contains the name of attributes in
the determinant of the functional dependency.
RHS is the set of attributes that are dependent on the
LHS determinant in the functional dependency
Keys is the set of defined candidate keys in the
relation.

1NF, 2NF, 3NF, BCNF are Boolean variable that
indicate whether the relation is in 1NF, 2NF, 3NF,
BCNF or not. These fields are initially set to false.

Gamma-TopDown-Approach((1, 1), (2, 2),

(3, 3)(fdi)

Elements causing the reaction: fdi

The reaction condition 1: BCNFCheck((fdi)

and (fdi.BCNF = True)

The action 1: {fd1, fd2, fd3, …, fdn} – {fdi} //

in fact it is removed automatically

The reaction condition 2: (fdi.BCNF = False) and

3NFCheck(fdi) and (fdi.3NF = True)

The action 2: {fd1, fd2, fd3, …, fdn} – {fdi}

The reaction condition 3: 3NFDecompose

(fdi)) and (fdi.3NF = False)

The action 3:.modify(fdi) //the complete

specification is shown below

Therefore, the Gamma program is:

 (**) GammaGeneralCheck : (fdi → {fd1, fd2, fd3,

…, fdn} – {fdi} 3NFDecompose(3NFCheck(

BCNFCheck(fdi) and (fdi.3NF = True)))

The only statement needed for the actual Gamma
program is the statement with (**). The statements
preceding it are given for the purpose of clarification.
We follow the same style throughout the paper. It is
observed that the expressiveness of GAMMA made it
possible to specify the complete top down
normalization process in an elegant and succinct
fashion. The top down program is explained below.

The Gamma program consists of sub-programs that
echo the corresponding verification steps as detailed
below. The first step is to ascertain that all attributes
are atomic; i.e., R is in 1NF. This is necessary for the
procedure to obtain the highest normal form from the
top down.

1NF Verification program:

According to the definition of first normal form
(1NF), we have to ensure that every attribute A in R
holds atomic values. For this purpose, an attribute is
defined as the pair (attribute name, atomic), where
atomic is a Boolean valued variable to indicate the
atomicity. Hence, the predicate AtomicAttribute is
defined as follows:

AtomicAttribute: checks that an attribute in R holds
atomic values.

The Gamma specification would be as follows:

Program name: 1NFCheck

Elements causing the chemical reaction: attribute A

The reaction condition R_check: AtomicAttribute

(A)

The action A_check: A.atomic =True

Therefore the Gamma program is:
 1NFCheck : A.atomic =True AtomicAttribute(A)

In case the attributes do not conform to the atomicity
property, decomposition takes place to break them
down into atomic values as follows.

1NF Decomposition:

The 1NF decomposition process has a reaction
that triggers the action if the field atomic is false and
does nothing if it is true. It comprises breaking down
each composite attribute A of R into atomic ones.
The specification program would be:

Program name: 1NFDecompose

Elements causing the reaction: attribute Ai

The reaction condition: A.constituents =

break_down(Ai),

The action: A.constituents

The corresponding Gamma program would be:

J. King Saud University, Vol. 21, Comp. & Info. Sci, Riyadh (2009/1430H.) 5

1NFDecompose: Ai → Ai.constituents

break_down(Ai) and replace A by A.constituents

in fdi

BCNF Verification program:
 The Gamma program below verifies that the left
hand side of each functional dependency is a key;
otherwise the BCNF stays false.

The Gamma specification would be as follows:

Program name: BCNFCheck

Elements causing the reaction: fdi

The reaction condition: (λ fdi.LHS | λ fdi.Keys)

The action: fdi.BCNF = True

The corresponding Gamma program would be:

BCNFCheck: fdi → fdi.(BCNF = True and

{fd1, fd2, fd3, …, fdn} – {fdi}) (((λ fdi.LHS) |

λ fdi.Keys))

3NF Verification program:

To verify the 3NF, the Gamma program checks
that for each functional dependency the following
holds:

 Either the left hand side contains a candidate
key

 Or the right hand side is part of a candidate key.

More succinctly:

 λ fd.LHS | λ fdi.Keys

 fd.RHS λ | λ fdi.Keys

The Gamma specification would be:

Program name: 3NFCheck

Elements causing the reaction: fdi

The reaction condition: (λ fdi.LHS | λ

fdi.Keys) or (fdi.RHS λ | λ fdi.Keys)

The action: fdi.3NF = True

Therefore the corresponding Gamma program would

be:

3NFCheck: fdi → fdi.(3NF = True and {fd1, fd2, fd3,

…, fdn} – {fdi}) (fdi.BCNF = false) and (fdi.1NF =

True) })and ((λ fdi.LHS) or (fdi.RHS λ) | λ

fdi.Keys))

In case the given set of attributes fails to meet the

BCNF or the 3NF conditions, it is decomposed into
smaller sets of attributes representing a set of new
relations that satisfy the 3NF conditions, are lossless,
and the set of functional dependencies are preserved.
Such decomposition is performed as follows.

Specification of the 3NF decomposition process:
 The decomposition process has a reaction that
triggers the action if the Boolean variable 3NF is
false and does nothing if it is true. The principle of
the decomposition comprises creating a relation for
each fd where the key is the left hand side of the
dependency.

The Gamma specification would be:

Program name: 3NFDecompose

Elements causing the reaction: fdi

The reaction condition: (fdi.3NF = False)

The action:

fdi.Relation = new Relation(fdi.LHS fdi.RHS), (i)

fdi.is _Key_in = fdi.keys (fdi.LHS fdi.RHS) (ii)

fdi.keys = fdi.LHS, (iii)

 fdi.3NF = true (iv)

 {fd1, fd2, fd3, …, fdn} – {fdi} (v)

 Referring to the reaction condition and the
actions (i-v) in the numbered statements above, the
reaction checks if the fdi is in 3NF and if not (i) a
new relation is created. This latter is composed of the
union of the left hand side and the right hand side of
the dependency; (ii) checks whether the key of the fdi
is in the newly created relation, (iii) the left hand side
of the fdi becomes the key of this new relation; (iv)
sets the Boolean variable 3NF to true, (v) fdi is
removed from the list of original functional
dependencies.

6 Hassan Mathkour: Formalization and Verification of Relational Database……..

4. A Gamma Bottom-Up Normalization
Approach

Atomic(A) True if A is atomic
Name(A) Refers to the name of the attribute

A
(A) Refers to the type of the attribute

A, which is either Prime or
NonPrime

(A) Is a set of attributes on which the
attribute A is dependent

(A) Is the set of all attributes
constituting the primary key
(including A) if A is prime;
Empty set if A is nonprime

Using the above- definition, we define the 3NF as
follows:
For any three attributes (A, B, C), if (A) = Prime
(C) = nonprime (A (C) B (C)) does not

hold. As illustrated in Figure 1, having a set of
attributes A1, A2, A3, …, An, we first check if every
Ai is atomic; if not make it atomic using
1NFDecomposition program defined in Section 3.
Then, we agglomerate the obtained set of attributes
into a set of all possible triplets. Following that, we
check if every triplet satisfies the 2NF condition; if
so we proceed to the 3NF. This is summarized in the
following steps.

1- Start with the 1NFCheck program, namely:

1NFCheck : Ai → atomic = False
 AtomicAttribute(Ai))

2- If required, use the 1NF Decomposition program
(given in Section 3) to decompose each non
atomic attribute A into a set of attributes.

3- Agglomeration steps: We defined a process
CreateTriplet that creates a multiset of all
possible triplets from the set of 1NF valid
attributes Ai, i = 1,,.., n. The specification of
such a process is as follows:

Program name : CreateTriplet
Element causing the reaction: Ai,Aj,Ak

 The reaction condition: tripleti = new
Triplet(Ai,Aj,Ak)

The action: tripleti

A1,A2,A3,...An

3NFCheck

Yes

No1NF
Decomposition

Generate
Triplet

yes
no

Exit with
negative
answer

no

yes

2NFCheck

1NFCheck

Exit with
positive
answer

Fig. 1. Steps of the design process in the bottom-up approach.

The next step is ascertaining that every relation
conforms to the second normal form (2NF). That is,
every NonPrime attribute is fully functionally
dependents on the primary key (no NonPrime
attribute is partially dependent on the primary key).
Therefore, the conditions for Gamma routine for the
2NF are:

 Having a triplet (A,B,C)
 Triplet. (A) =Prime and triplet. (B) = Prime

and triplet. (C) = NonPrime
 triplet.A. and triplet.B are equivalent
 triplet.A and triplet.B triplet. (C)

The action is: tripleti.2NF = True

The complete Gamma program for the 2NF would
be:

Program name: 2NFCheck
Element causing the reaction: tripleti
The reaction condition: tripleti.2NF = true
The action: (tripleti. (x) = P) (tripleti. (y)

=P) (tripleti. (z) = N) (tripleti. (x) =
tripleti. (y)) (tripleti.x tripleti. (z))
(tripleti.y tripleti. (z)) (tripleti. (z) =
N) (tripleti. (x) tripleti. (y))
(tripleti.x tripleti. (z)) (tripleti.y
tripleti. (z))

Compared to the specification given in (Touir et al.,
2008), this specification is more natural and succinct.

Similarly, for the 3NF we need to verify that :

J. King Saud University, Vol. 21, Comp. & Info. Sci, Riyadh (2009/1430H.) 7

 The relation is in the second normal form
tripleti.2NF = True

 No NonPrime attribute is transitively dependent
on the primary key. That is:
 tripleti. (x) = Prime and tripleti. (z) =

NonPrime
 (tripleti.x tripleti. (y) and tripleti.y

tripleti. (z))

The action is: tripleti.3NF = True.
Therefore, the Gamma program for the 3NF would
be:

Program name: 3NFCheck
Element causing the reaction: tripleti
The reaction condition: tripleti.2NF = true
tripleti.3NF = false
The action: (tripleti.2NF = True)
(tripleti. (x) = Prime) (tripleti. (z) =
NonPrime) (tripleti.x tripleti. (y))
(tripleti.y tripleti. (z))

The complete Gamma program of the bottom-up

normalization approach is defined in the following
manner.

1NFDecompose: A1, A2, A3, …, An→ {A1, A2, A3,
…, An}-{ Ai} 1NFDecomposition(1NFCheck(Ai))

Gamma_Norm: A1, A2, A3, …, An → {triplet1,
triplet2, triplet3, …, tripletn} – {tripleti}
3NFCheck(2NFCheck((CreateTriplet(A1, A2, A3,
…, An)))) tripleti.3NF = True.

5. The Environment of the Experimental Studies

The experiment is conducted using a Gamma

Virtual Machine (GVM) which was developed on top
of a Java Virtual Machine (JVM). The Gamma
concept was implemented as a Gamma Virtual
Machine (GVM) to study the efficiency and behavior
of a non Von Neumann machine. The GVM was
utilized to express and experiment with the
specifications of the database normalization process
discussed earlier in order to measure their
performance. Since Gamma is based on the concept
of multiset, the GVM is a set of workers that interact
simultaneously to process the data on the multiset to
solve a specific problem. The architecture of GVM is
shown in Fig. 2. It was developed with the following
assumptions in mind:

 The GVM is composed of a set of workers that run
on top of a Java Virtual Machine (JVM).

 Each worker is launched on a thread.

The design of the GVM is dependent on the use
of workers. Workers access the multiset concurrently
to achieve the parallel processing requirement of the
Gamma specification.

multiset

worker1

workern

worker3worker2

Fig. 2. Interaction principle between the different workers.

The basic components that must be created first

are those that are associated with the multi-set
elements and those that are implementing the
reaction-action pair as illustrated in Fig. 3 and
explained below.
 This FDMolecule class represents a molecule

(element) in the multiset. The molecule deals with
a single functional dependency in the relation.

 The FDProcess class includes the two required
methods, getMoleculeCardinality() and action().
It is a main component. It provides the necessary
interfaces and communication between the
molecule and the GVM. The GVM needs a
method called action as an entry point to start the
process. Fig. 4 illustrates a sample code
implementing the action of the gamma program
3NFDecompose given earlier.

 The FDManager class serves as a medium
between the user and the GVM. It accepts the list
of functional dependencies of the relation in
question along with the set of keys as input. It
initializes the multiset, so that it is ready to be
invoked by the different workers of the GVM.

 GammaFD is used to instantiate the machine with
the desired number of workers. It initiates the
process and invokes the machine with a set of
functional dependencies of a relation along with

8 Hassan Mathkour: Formalization and Verification of Relational Database……..

the set of keys as an input in order to obtain the
results.

package services;
import java.util.LinkedList;
import tailor.Tailor;
public class GammaNorm extends Tailor{
 public int getMoleculeCardinality() {
 return 1;
 }
 public void action(LinkedList atoms, LinkedList
activeAtoms, LinkedList passiveAtoms) {
 FDMolecule fd;
 fd =((FDMolecule) atoms.poll());
 if (! fd.getThreeNF()) {
 fd.setThreeNF(true);
 fd.createRelation(fd.getLHS(), fd.getRHS());
 fd.setIsKeyIn();
 fd.setKey(fd.getLHS());
 }
 passiveAtoms.add(fd);
 }
}
Fig. 4. A sample code implementing the action of the gamma

program 3NFDecompose.

In the method action, there are three linked lists:
atoms, activeAtoms, passiveAtoms. These three
structures play the role of multilists of the FDs. Each
time an FD is extracted from the atoms list, it is
processed and added into the passiveAtoms list.
Although the activelist should be present in the
implementation of the Gamma machine

independently of any problem, it is not used when
processing the FDs. This is due to the fact that each

FD is processed only once. It does not require further
processing. Thus, there is no need to add it to the
active list.

6. Experimental Results

Several database relations with different sizes
were tested for the conformance and the
decomposition of the specified normal forms. Table
2 indicates the performance of GVM when using our
Gamma specification as compared to sequential
machines. The table highlights the result obtained for
a database of 300 attributes. The number of workers
was increased from 10 to 200 in an increment of 10.
We report the performance of 10-100 and 200
workers. It can be seen from Table 2 and Figure 5
that the GVM outperforms the sequential
implementation superiorly. The improvement of the
performance is due to exploiting the parallelism
aspects in Gamma. It is observed that there is an
optimal number of workers at which the Gamma
machine performs best. This is dependent on the
number of attributes being processed. In this case,
sixty workers gave an optimal performance for 300
attributes. Increasing the number of workers
degraded the performance as illustrated in Fig. 5.
This is due to the higher communication time

+createRelation(in attrib1 : string, in attrinb : string)

-keys:Strin[]
-LHS:String[]
-RHS:String[]
-NFStatus:boolean[]
-isKeyIn:boolean

FDMolecule
+OneNFCheck(in fdm : FDMolecule)
+ThreeNFCheck(in fdm : FDMolecule)
+BCNFCheck(in fdm : FDMolecule)
+OneNFDecompose(in fdm : FDMolecule)
+ThreeNFDecompose(in fdm : FDMolecule)

GammaFD

1

-listOfMolecules*

+FDMolManipulate()

-relation:String[]
-keys:String[]

FDManager

-origin:String[]
-dest:String[]

FD

1

-setOfFD

*

1

-setOfFDMol *

+getMoleculeCardinality()
+action()

FDProcess

-process

1

1

Fig. 3. The implementation framework of the data normalization on top of the GVM.

J. King Saud University, Vol. 21, Comp. & Info. Sci, Riyadh (2009/1430H.) 9

required among the workers. It should be noted that
the testing was carried out on a machine with 2 GB
of RAM, and a 4 GHz speed. Testing results may
vary upon changing the hardware configurations.
Compared to the work in (Touir et al., 2008), this is a
more up to date specification yielding better results.

Table 2. Results of running the 3NF decomposition on the
Gamma Machine vs Sequential Machine

No. of
Workers

Sequential
Time

GM
Time

Improvement

10 119 26 457%
20 119 17 700%

30 119 14 850%

40 119 10 1190%

50 119 7 1700%

60 119 6 1983%
70 119 7 1700%
80 119 8 1487%
90 119 8 1487%

100 119 11 1081%
200 119 16 743%

Fig. 5. The Processing of Gamma Machine vs the

Sequential Machine.

The performance of the Gamma machine was
examined with respect to the top-down and bottom-
up approach. Relations with different number of
attributes were given as input to the Gamma machine.
Relations of up to 200 attributes were obtained from
real life problems. Other relations were generated for
the sake of testing the machine. The Gamma machine
performed superiorly on the top-down approach as
compared to the bottom-up approach as illustrated in
Table 3 and Fig. 6. This is attributed to the extensive

computation in the bottom-up approach as opposed
to that in the top-down approach. This is also evident
from the more elegant specification of the top-down
approach given in Section 3 versus that of the
bottom-up given in Section 4.

Furthermore, the process involved in the bottom-
up approach requires more time in the
communication among the workers of the Gamma
machine. It is observed that when the number of
workers increases, the computation time decreases to
a minimal value then it starts increasing. This is due
to the fact that the communication overhead and the
synchronization between the different processes start
consuming much more time than the execution of the
intended tasks.

Table 3. Performance of Top-down approach vs Bottom-
 up approach

Number of
Attributes in

R

GM Estimated Time The Top-
Down is

consistently
better

Bottom-
Up

Top-
Down

20 12 4 66.67%
50 27 5 68.75%

100 46 8 65.22%
200 61 13 64.86%
500 79 17 56.41%

1000 93 29 64.71%

Fig. 6. Performance of the Top-down approach vs the Bottom-

up approach

7. Conclusions

In this paper, we exploited the expressiveness of

Gamma to elegantly and succinctly specify the
normalization aspects in relational databases and use
its computational power to achieve greater
performance in verifying and realizing relational
database normal forms. We presented succinct

10 Hassan Mathkour: Formalization and Verification of Relational Database……..

specifications of the normalization verification and
realization in relational databases using Gamma
through two approaches, namely, the top-down
approach and the bottom-up approach. We report on
the experimentation with an implementation of
Gamma machine to demonstrate the computational
gain of Gamma parallelism in solving useful
problems with reasonably extensive computation. We
believe this will facilitate the automatic database
design that is based on sound principle. We are
currently working on automating the complete
process of the database design including generating
applicable functional dependencies using Gamma.
This requires augmenting the system with
intelligence through the incorporation of knowledge
bases. We are in the process of examining the
application of Gamma in constructing and managing
knowledge bases.

ACKNOWLEDGEMENT: This work is partially
supported by the research center of the college of
computer and information sciences in King Saud
University.

References

Akehurst, H.;, Bordbar, D.; Rodgers, B. and Dalgliesh, N. T.

“Automatic Normalization via Metamodeling”, In Proc. of
ASE 2002 Workshop on Declarative Meta Programming to
Support Software Development. (2002).

Banâtre, J.-P.; Fradet, P. and Le Métayer, D. “Gamma and the
Chemical Reaction Model: Fifteen Years After”, WMP,
(2000), 17-44.

Berry, G. and Boudol, G. “The Chemical Abstract Machine”,
Journal of Theoretical Computer Science, 96, (1992), 217-
248.

Codd, E.F. "A Relational Model of Data for Large Shared Data
Banks", Comm. ACM 13(6), (1970), 377-387.

Codd, E.F. "Further Normalization of the Data Base Relational
Model", R. Rustin (ed.), Data Base Systems, Courant
Computer Science Symposia, Prentice-Hall, 6, (1972).

Codd, E.F. "Recent Investigations into Relational Data Base
Systems." IBM Research Report RJ1385 (April 23rd, 1974).
Republished in Proc. 1974 Congress (Stockholm, Sweden),
(1974).

Connolly, T. and Begg, C. “Database Systems: A Practical
Approach to Design, Implementation, and Management”,
3rd Edition, Addison-Wesley, Reading, MA, (2002).

Diederich, J. and Milton, J. “New Methods and Fast Algorithms
for Database Normalization”, ACM TODS, 13(3), (1988),
339-365.

Elmasri, R. and Navathe, S. B. “Fundamentals of Database
Systems”, 5th Edition, Addison-Wesley, Reading, MA,
(2007).

Inverardi, P. and Wolf. A. “Formal Specification and Analysis
of Software Architectures Using the Chemical Abstract
Machine Model”, IEEE Transactions on Software
Engineering, 21(4), (1995), 373-386.

Ling, T.; and Goh, C. “Logical Database Design with Inclusion
Dependencies”, In Proc. of the 8th Int. Conf. on Data
Engineering, (1992), 642-649.

Maier, D. The Theory of Relational Databases, Rockville, MD,
Computer Science Press, (1983).

Mentre, D.; Le Metayer, D. and Priol, T. “Formalization and
verification of coherence protocols with the gamma
framework”, IEEE Software Engineering for Parallel and
Distributed Systems, (2000), 105 -113.

Omiecinski, E. “A Parallel Algorithm for Relational Database
Normalization”, IEEE Transactions on Parallel and
Distributed Systems, 1(4), (1990), 415-423.

Touir, A.; Mathkour, H. and Al-Athel, D., “An application of
Gamma formalism in database design”, Proceeding of the
International Conference on Computer and Communication
Engineering ICCCE 2008. (2008), 974 – 977.

Wong, S. K. M.; Butz, C. J. and Xiang, Y. “Automated
Database Schema Design using Mined Data Dependencies”,
Journal of the American Society for Information Science,
49(5), (1998), 455-470.

J. King Saud University, Vol. 21, Comp. & Info. Sci, Riyadh (2009/1430H.) 11

 تطبيع البيانات في قواعد البيانات الترابطية والتحقق من صحتها باستخدام تقنية جاما

 حسن إسماعيل مذكور
 ، كلية علوم الحاسب و المعلومات، قسم علوم الحاسب
 المملكة العربية السعودية،الرياض، جامعة الملك سعود

samathkour@ksu.edu.

)م٢/٢/٢٠٠٩؛ وقبل للنشر في م٢١/١٢/٢٠٠٨(قدم للنشر في

موعات المتعددة (جاما) أسلوب حسابي وبرمجي متوازٍ يستخدم .البحث ملخص رد العام للتعامل مع ا يعتبر النموذج ا

موعات المتعددة والتي تعرف كثنائي من الشكل (الشرط، الاستجابة). يتم التعامل مع عنا موعات المتعددة في بنية ا صر ا
سلسلة من التفاعلات الكيميائية لإنتاج عناصر جديدة حسب مجموعة من الشروط. نشرح في ورقة العمل هذه كيفية
ا الحسابية لتوصيف وتكوين جداول بيانات مطبعة وفقاً لنماذج تطبيع استخدام وتطبيق تقنية جاما و الاستفادة من قو

. حيث يتسم التوصيف باستخدام تقنية جاما بالدقة و الأناقة وتفادي التفاصيل التي قد تؤثر على صحة البيانات الترابطية
التوصيف. ونعرض في هذه الورقة طريقتين للتوصيف تستخدم في تصميم قواعد البيانات الترابطية و نناقش أداء بيئة عمل

. كما نستعرض و نقارن أداء جاما مع طرق التنفيذ التسلسلية كما جاما في الحسابات المعقدة التي تتطلبها عمليات التطبيع
 نقارن نتائج طريقتي التوصيف في بيئة جاما و ذلك من خلال القيام بتجارب تستخدم فيها بيانات حقيقية.

