
J. King Saud University, Vol. 21, Comp. & Info. Sci., pp. 45-54,Riyadh (2009/1430H.)

A Theoretical and Empirical Evaluation of a Novel Spatial Data Indexing Structure

Ameur Touir

Department of Computer Sciences
College of Computer and Information Sciences

King Saud University
touir@ksu.edu.sa

(Received 20/01/2009; accepted for publication 18/03/2009)

Abstract. In this paper, we present a theoretical and empirical evaluation of the performance of the Multi Layer
Quadtree (MLQ), a spatial join structure used for indexing spatial data. The Multi Layer Quadtree is based on the
PM1-Quadtree. It permits the representation of multi-layers in a single structure rather than a structure for each
layer. The theoretical evaluation of the MLQ is intended to compute the storage required by the structure in a
worst case scenario to show that the structure would be accommodated in a reasonable memory without degrading
the system performance. The empirical evaluation is based on real data as well as synthetic data to show the
flexibility of the structure and the response attained by adopting such a structure. The application of the selection,
insertion, and deletion operations using the MLQ is also presented. We consider point and range queries over two-
dimensional data such as lines, poly-lines and regions data.

Keywords: Quadtrees, spatial join, multiway join, spatial access method, spatial query.

1. Introduction

Nowadays, the demand for Geographical Information
Systems has increased which has brought about a
variety of techniques for managing such systems.
Among these worth noting techniques are spatial
access methods. Spatial access methods are used to
store, access and manage spatial data, such as points,
lines, poly-lines, polygons, and surfaces. The data
stored in spatial databases are considered as spatial
objects. Querying spatial databases is complex and
expensive. Queries include point-query, range-query
and spatial join based query. Point queries involve the
processing of a single dataset allowing the selection
of a specific object. Range queries provide a set of
objects that verify specific location-constraints.
Examples of range queries are windowing and
clipping. Range queries may be single-layered or
multi-layered. Very frequently, in real life
applications, we resort to use multi-layered queries in
order to answer useful and frequent inquiries such as
locating focal points (hotels, hospitals, etc.) with
respect to other focal points. Such queries, referred to
as spatial join queries, involve the joining of the
implied layers. Other types of queries, such as

topological queries including the nearest, neighbour
of, or between may be based on single or multiple
layers (Papadias et al., 2003). An example illustrating
the implication of several layers is to request all
schools located between two parks. The implied
layers are the one containing the schools and the
other one containing the parks.

When more than one layer is involved, the spatial
join based query is triggered. It is a complex
operation where several datasets are involved
increasing thereby the complexity of the query.

Spatial join queries are commonly processed in
several steps according to its spatial index structure.
Among these spatial indexes, we note the R-tree and
its variants R+-tree and R*-tree (Brinkhoff et al.,
1993). R-trees use the minimum bounding rectangles
(MBR) of the spatial objects to approximate them as
a first filtering. A second filtering which requires a
further processing is used on the geometry of the
objects themselves. Another category of spatial
indexes is the quadtree and its variants such as the PR
quadtree and the PM quadtree (Samet and Webber,
1985). In contrast to the R-tree, Quadtrees operate on
the geometry of the object itself and not on its
approximation.

45

Ameur Touir : A Theoretical and Empirical Evaluation of a Novel…

46

Further discussion of the spatial join operation is
presented in section 2. Section 3 provides an
overview of the Multi-Layer-Quadtree that were
introduced in (Touir, 2004). Section 4 addresses the
manipulation of such a Multi-Layer-Quadtree.
Experimental results are presented in section 5.
Section 6 concludes the paper.

2. Background and related work
A major problem in spatial join is dealing with the
intermediary results in an optimized way. Several
solutions were proposed. Patel et al. (1997) perform a
pairwise spatial join algorithm using a multiprocessor
environment to execute cascading joins. Jacox and
Samet (2003) introduce the Iterative Spatial Join
which is based on the sort-merge join. Their approach
is best suited to cases where the intermediary results
are already sorted. Papadopoulos et al. (1999) apply a
two-join case study to evaluate the performance of
four spatial join algorithms. Mamoulis and Papadias
(1999) suggest a pairwise join method that combines
pairwise join algorithm in processing trees. The
leaves of the tree represent the relations indexed by
R-trees and the intermediate nodes are join operators.
Papadias et al. (1999) introduce another method of
executing multilayer spatial join which consists of
traversing synchronically all the spatial indices
excluding combinations of intermediate nodes that do
not satisfy the join condition. Mamoulis et al. (2004)
study the complexity of the spatial queries that
involve combinations of selections and joins. They
focus on presenting a cost model that estimates the
complexity of such queries; whereas in (Mamoulis
and Papadias, 2002) the authors emphasize on the
complexity of the joins that involve several layers.
Park et al. (1999) highlights the different steps
needed for such types of queries.

It is very common that the involved datasets are
very large and so are the intermediary results. These
results are not indexed in advance. Therefore, either a
dynamic index is created (Papadopoulos et al., 1999)
or no index. When no index is created, different ways
take place to speed up the process. Patel et al. (1997)
spatially sort the non-indexed objects by setting up
leaves and match them to those of the existing tree
that intersect it. Arge et al. (1998) propose a
combination of plane sweep and space partitioning to
join the datasets. Park et al. (2000) propose an
improvement of the two-step processing in which the
filter is separated from the refinement steps in the

query optimization phase instead of the query
execution phase.

A common issue faced while performing a

multilayer spatial join is the utilization of as many
datasets as the number of the involved layers. Each of
these datasets is associated with a single tree used as
a spatial. The organisation of spatial data objects
requires the ability to cluster the objects according to
their spatial location (Patel et al., 1997). Xiao et al.
(2001) show how to cluster objects of different types
to reduce the complexity of the operation. Touir
(2004) introduces a novel approach of processing
multilayer spatial join. It is based on the idea of using
a single spatial index structure to perform the
aforementioned queries. It is shown that the proposed
index structure is capable of absorbing different
datasets allowing for several types of queries to be
performed. In this paper, we present a theoretical and
empirical evaluation of the performance of the
structure introduced in (Touir, 2004).

3. An Overview of the Multi Layer
Quadtree (MLQ)

The MLQ is based on the concept of PM1-
Quadtree (a variant of PM-Quadtree) (Samet and
Webber, 1985). The MLQ is constructed successively
from the PM1-quadtrees (t1, …,tn) that represent
different layers (l1, …, ln) . For example, the MLQ in
Fig. 2.a represents the dataset of layer l1 and the MLQ
in Figure 2.b is built upon the MLQ in Figure 2.a by
inserting the dataset of layer l2. Suppose that we have
already inserted a layer (say l1), and we would like to
insert a new one (say l2). The result of this second
insertion will generate a virtual layer (say L) L=l1 l2.
L is the superimposition of l1 and l2 as depicted in
Fig. 1. The components of L are allocated to several
levels. Figures 1, 2.a and 2.b show the construction of
MLQ obtained by inserting two layers. Fig. 3 shows
the resulting MLQ after the deletion of the object
“line BC” of Fig. 1. More details are in (Touir, 2004).

The other aspect of the MLQ is its flexibility in
handling queries. One of the important types of
queries in this respects is the geometric selection
(Rigaux et al., 2001; Sun et al., 2002) which can be
point-based or window-based. These types of queries
can target a single layer or several layers in which
case the queries are considered as spatial join queries.
Generally, the complexity of a query varies with the

J. King Saud University, Vol. 21, Com. &Info. Sci., Riyadh (2009/1430H.)

47

number of the involved layers. However, in our case,
all layers are in the same structure i.e. the MLQ.

Therefore, this complexity will not vary greatly
when processing a single layer or multiple layers. All
layers are implicitly involved in one structure. In
region/window-based queries, the user may indicate
the region where the search is going to be performed.
Any object from any layer that intersects or is
included in the specified region is considered as
candidate object. The remaining conditions defined as
predicates of the select criteria will then filter the
desired objects among those candidate objects.

B

A C

D

E

F

W
Y

ZX

B

A C

D F

W
Y

ZX
E

Fig. 1. Superimposition of two layers.

(1
,1

,B
)

(1
,1

,B
C

)

(1
,1

,B
C

)

(1
,2

,D
E

)

(1
,1

,B
C

)

(1
,1

,A
B

)

(1
,1

,B
C

)

(1
,1

,A
B

)

(1
,2

,D
)

(1
,2

,E
F

)

(1
,2

,E
)

(1
,2

,F
)

(1
,1

,B
C

)

(1
,1

,A
)

(1
,1

,C
)

a. a. The resulting MLQ after inserting a first layer according to

the example shown in Fig. 1.

(1
,1

,B
)

(1
,1

,B
C

)

(1
,1

,B
C

)

(1
,2

,D
E

)

(1
,1

,B
C

)

(1
,1

,A
B

)

(1
,1

,B
C

)

(1
,1

,A
B

)

(1
,2

,D
)

(1
,2

,E
F

)

(1
,2

,E
)

(1
,2

,F
)

(1
,1

,B
C

)

(1
,1

,A
)

(1
,1

,C
),(2

,
1
,
y
)

(2
,1

,W
)

(2
,1

,X
)

(2
,1

,Z
)

(2
,1

,W
)

b. The resulting MLQ after inserting a second layer according
to the example shown in Fig. 1.

Fig.2. MLQ insert principle.

(1,1,B)

(2,1,W
)

(1,1,AB)

(1,2,D
)

(1,2,EF)

(1,2,E)

(1,2,F)

(1,1,C
),(2,1,y)

(1,1,A),(2,1,W
)

(2,1,X)

(2,1,Z)

(1,2,D
E)

B

A

D

E

F

X

Y

Z

W

Fig. 3. The resulting MLQ after the deletion of an object (line BC of Fig. 1).

Ameur Touir : A Theoretical and Empirical Evaluation of a Novel…

48

4. MLQ Storage Evaluation

Let us suppose that the processed layers are of
size 2Nx2N. N is the maximum number of
subdivisions (levels) of any quadtree-like structure.
When N= 10, layers are of size 1024x1024.
Manipulating these layers (insertion, deletion,
displaying, etc.) requires dealing with two structures:
a front structure (MLQ) and a Rear structure (RS).
Each node of the MLQ indexes a segment S of RS. If
a segment S is full, a secondary segment is created
and linked to S and so on.
Since the maximum number of nodes of a level i of a
quaternary tree is 4i, the maximum number of nodes

of an MLQ of height N is
3

144
1

0

NN

i

i .

This implies that the RS has
3

14 1N

 primary

segments.
Contrary to the quadtree, where only three out of four
sibling leaf nodes can contain data, the four sibling
leaf nodes of a PM1Quadtree may contain data. Thus,
the maximum number of leaf nodes of a
PM1Quadtree is 4N.
Let us consider that the maximum number of layers
in the MLQ is Lmax. Then, in the worst case, each of
following the same reasoning as in (Vassilakopoulos
and Manolopoulos, 1995), the number of segments
needed to cover these components is:

cap

N
N

Max

S

L
NbSeg

3
144

1

.

We conclude that the total number of segments is
bounded by:

NbSegTotNbSeg
N

3
14 1

 (1)

cap

cap
NNN

Max

S
SL

TotNbSeg
3

4443 11

443
3
4

capMax
cap

N

SL
S

TotNbSeg

capMax
cap

N

SL
S

TotNbSeg 43
3
4

Therefore,)1log(TotNbSeg bits are
sufficient to identify each segment. According to
(1),

)log()1log(TotNbSegTotNbSeg

)3log()43log(2)log(CapcapMax SSLNTotNbSeg
 (2)
For N=10, Lmax =1024, and Scap=16,
the number of bits needed by the front structure to
address a component will be about 26 bits.
the LMax layers is composed of 4N components. This
yields a Max

N L4 components.
Let us associate one of these components to each of

the MLQ nodes. In this case
3

144
1N

Max
N L

components are left with no segments.
To obtain the size of the segments’ identifiers
(pointers), we define Scap as being the maximum
number of components that can fit in a segment S of
the rear structure RS.

Given that the total number of nodes is
3

14 1N

,

the MLQ size will be about 5MB which can fit easily
into the main memory.

5. Experimental Results

In this section, we analyze the performance of the
MLQ structure with a large set of real data and
another set of synthetic (randomly generated) data.
Data in this respect are considered as layers. Layers
of different sizes were used to experiment and to
study the behaviour of the structure. Fig. 6.a and
Figure 6.c are respectively samples of real data, and
synthetic data. The real data address five layers:
Counties, states, rivers, drainage, and roads layers.
They are taken from (esri).
 The Synthetic data have been generated
randomly by computing number of objects (polylines)
that constitute a given layer along with their points.
For each object, given the coordinates of an initial
point P0, Pi is randomly determined so that the
distance between Pi and Pi-1 is less than a given
distance in each direction (axis). The following

J. King Saud University, Vol. 21, Com. &Info. Sci., Riyadh (2009/1430H.)

49

algorithms were used to generate the synthetic data.

void ComputeSyntheticData()
 Begin
 NbObjects = random(MaxObjects);
 i=0;
 while (i< NbObject) do
 NbPoints = random(MaxPoints);
 j = 0 ;
 Objecti.Pj = ComputeInitialPoint();
 while (j< NbPoints) do
 j= j+1;
 Objecti.Pj=

ComputeCoordinatesRandomly(Objecti.Pj-1);
 endwhile;
 i= i+1;
 endwhile;

 end

Point ComputeCoordinatesRandomly(input Point
P)

 begin
 P1.x = random(P.x+) ;
 while (abs(P1.x-P.x)>)
 P1.x = random(P.x+) ;
 P1.y = random(P.y+) ;
 while (abs(P1.y-P.y)>)
 P1.y = random(P.y+) ;
 return P1;
end;

For our experiment, one of the concerns is to study
the growth of the MLQ after the insertion of each
layer. For this purpose, we used several parameters as
shown in table 1.

Table 1. Notations used in the experimental results

TotNbLines The total number of lines that compose each
inserted layer

NodePMQ The number of nodes that composes each
PM1Q generated from the inserted layer

SizePMQ The size of each PM1Q in bytes

NodeMLQ The total number of nodes of the MLQ, after
the insertion of a new layer.

SizeMLQ The size of the MLQ in bytes, after the
insertion of each layer.

PMQ

The number of non-empty PMQ leaves
obtained from the inserted layer. This will
illustrate the number of records in the rear
structures that have to be updated with respect

to each inserted layer

MLQ The increasing ratio of the MLQ after the
insertion of each layer.

 The increasing ratio is defined as follows:

iPMQ

iMLQiMLQ

Size
SizeSizeMLQ 1 ,

where SizeMLQi is the state (size) of the MLQ after
inserting i layers, SizePMQi is the size of the PMQ of
the ith layer.
The fact that the number of the MLQ nodes is
bounded implies that this ratio will ultimately be null
after certain insertions. This will happen when MLQ
reaches its maximum number of nodes:

SizeMLQi = 3
14 1N .

 Table 2 is divided into two parts. The first part
highlights the behaviour of the MLQ structure with
respect to the real data that were inserted. The second
part highlights the behaviour of the MLQ structure
with respect to the inserted synthetic layer.

 The insertion of the first layer (counties) gives an
increasing ration of 1(100%). This is due to the fact
that the MLQ was empty and each inserted value
generates a new node. The insertion of the second
layer (states) gives an increasing ration of about
0.0013 (almost null), This means that only very few
new nodes were generated, the other were only
updated. This means that data of the second layer is
almost distributed in the same location as the data of
the first layer. The insertion of the fourth layer
(rivers) generates an increasing ratio of about
0.2.This indicates that 20% of the inserted layer has
generated new nodes in the MLQ, while 80% were
stored in already existing nodes. This behavior is
clearly observed with the synthetic data. Fig. 4.b and
4.d illustrated this observation. Also Fig. 4.a and 4.c
show that the growth of the MLQ will ultimately
reach an asymptotic limit regardless of the number of
inserted layers.

Querying process:
 As shown above, the MLQ size is bounded,
whereas building an index for each layer generates as
many indices as the number of layers. Fig. 4
illustrates the cumuli of the created PMQ. Generally,
the number of nodes that composes a given index
structure, influences the complexity of the queries.

Ameur Touir : A Theoretical and Empirical Evaluation of a Novel…

50

Table 2 shows example of the experimental result that
we obtained from the layers that we dealt with in the
MLQ. Two types of queries are performed and
analyzed:
i. Point-based queries such as retrieve all objects of

layer1 and layer3 that contain point (x,y): For this
type of queries, several tests were randomly
performed.

ii. Window-based queries such as retrieve all objects
of all layers that intersect a given area. To analyze
such type of queries, we performed the same
window-queries using the MLQ generated from
the test layers as shown in table 3. We compared
the complexity of both structures (MLQ and
PMQ) in term of I/O.

 Table 3 shows the number of disk accesses
generated according to the size of the window
specified in the query. Even though the MLQ
aggregates layers into a single structure, we notice

that its I/O performance is much more better than
the PMQ when queries deal with multi-layers.

iii. Figure 5 is obtained by performing the same
window-query on some PMQs and on MLQ. It
illustrates the number of disk accesses needed to
retrieve the requested data.

Table 3. I/O Performance of the MLQ and the use of
 independent PMQs

Length Width I/O(MLQ) I/O(PMQs)
338 36 19671 28711
139 116 15083 22810
82 223 14966 22288

292 75 21158 31659
313 100 29764 50148
 184 201 29688 46218
343 115 36915 55335
187 269 35571 48043

Table 2. Experimental Results using real and synthetic data
 Experimental Result using Real Data (North America map)

LayerName TotNbLines SizeMLQ SizePMQ NodeMLQ NodePMQ PMQ MLQ
Counties 87151 2499312 1666208 52069 52069 39052 1

States 13851 2500656 647200 52097 20225 15169 0.001384
Roads 12654 2619696 683552 54577 21361 16021 0.116099
Rivers 6759 2794992 549664 58229 17177 12883 0.21261

Drainage 5415 2795376 431488 58237 13484 10113 0.000593
 Experimental Result using synthetic data

LayerName TotNbLines SizeMLQ SizePMQ NodeMLQ NodePMQ PMQ MLQ
Rand18 102327 5004150 5337760 166805 166805 122096 0.9375
Rand17 1456 5031390 142240 167681 4445 2077 0.191507
Rand16 98755 6522030 5300768 217401 165649 121928 0.281212
Rand15 2581 6596910 379456 219897 11858 5980 0.197335
Rand14 1848 6628230 221600 220941 6925 3293 0.141336
Rand13 16479 6697830 957568 223261 29924 17826 0.072684
Rand12 2292 6739350 256768 224645 8024 3758 0.161702
Rand11 20740 6909870 1695104 230329 52972 34017 0.100596
Rand10 2164 6936990 314240 231233 9820 4395 0.086303
Rand9 17236 7002990 985344 233433 30792 18575 0.066982
Rand8 3020 7052790 360192 235093 11256 5236 0.13826
Rand7 16867 7052790 961532 235093 31924 18015 0
Rand6 1471 7064670 155520 235489 4860 2207 0.076389
Rand5 76203 7379910 2957984 245997 92436 62799 0.106573
Rand4 3567 7431630 394272 247721 12320 5869 0.131178
Rand3 16762 7476030 989344 249201 30916 18380 0.044878
Rand2 800 7478310 119968 249277 3748 1737 0.019005
Rand1 22810 7478310 1128576 249277 35268 21432 0

J. King Saud University, Vol. 21, Com. &Info. Sci., Riyadh (2009/1430H.)

51

0
30000
60000

90000
120000
150000

1 2 3 4 5

Layer #

N
b

 o
f

N
od

e
s

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5

Layer #

M
L

Q
 In

c
re

a
s

in
g

 R
a

ti
o

 (a) (b)

0.0E+00
1.0E+05
2.0E+05
3.0E+05
4.0E+05
5.0E+05
6.0E+05
7.0E+05
8.0E+05

1 3 5 7 9 11 13 15 17

Layer #

N
b

of
 N

od
es

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17

Layer #

M
LQ

 In
cr

ea
si

ng
 R

at
io

 (c) (d)
(a,c) Evolution of the MLQ in term of the number of nodes (b,d) Behaviour of the Increasing ratio with respect to the inserted

layers
Fig. 4. analysis of the evolution of the mlq with respect to the inserted layers shown in table 2 – c, d represent the experimental

 results using synthetic data.

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8

Window Queries

D
is

k
A

cc
es

se
s

 Fig. 5. Query Performance comparison of the MLQ

PMQi

MLQ PMQ
Cumuli

PMQj

NodePMQ

PMQ
Cumuli

NodeMLQ

Ameur Touir : A Theoretical and Empirical Evaluation of a Novel…

52

(a) Sample of the inserted layers (States,

Counties, and Rivers)

(b) Illustration of Figure 6.a with the

subdivision of the inserted layers

(c) Sample of synthetic layers

(d) Illustration of their subdivisions

Fig. 6. Some of sample layers on which the experimental
results were conducted.

6. Conclusion

The paper presented a theoretical and empirical

evaluation of the performance of the MLQ structure
an overview of the multi-layer quadtree (MLQ)
structure intended to facilitate spatial data operations.
We highlighted the selection, insertion, and deletion
operations for spatial data in view of the MLQ
structure. We argue that the required main memory,
that is required to accommodate the structure that
indexes the data sets of several layers, is bound with
the maximum number of nodes and the maximum
number of layers. Considering that the maximum
number of subdivisions (N) is10 and the maximum
number of layers is 1024, we have shown that the
required main memory is approximately 5MB. Such
a memory requirement is reasonable in today's
computing environment. Moreover, having a single
indexing structure reduces the time needed to access
data by reducing the traffic between the CPU and the
disk storage.

We experimented with MLQ using real data and
synthetic data. The empirical data confirmed a
superior performance of the single indexing structure
(the MLQ) compared to several indexing structures of
the PMQ.

Currently, we are investigating the parallel
processing of the MLQ. We intend to further analyze
the behaviour of the MLQ in such a computing
environment. We also intend to investigate its
potential application in multi-version maps and/or
map-history contents.

J. King Saud University, Vol. 21, Com. &Info. Sci., Riyadh (2009/1430H.)

53

References

Arge, L.; Procopiuc, O.; Ramaswamy, S.; Suel, T. and Vitter,

J.S. “Scalable Sweeping-Based Spatial Join.” Proc. VLDB
International Conference on Very Large Data Bases. New
York City, USA, (1998), 570-581.

Brinkhoff, T.; Kriegel, H.P. and Seeger B. “Efficient Processing
of Spatial Joins Using R-trees”. ACM SIGMOD 22(2),
(1993), 237-248.

Jacox, E. H. and Samet, H. “Iterative spatial join”. ACM
Transactions on Database Systems, 28(3), (2003), 230-256.

Mamoulis, N. and Papadias, D. “Integration of Spatial Join
Algorithms for Processing Multiple Inputs”. ACM SIGMOD
28(2), (1999), 1-12.

Mamoulis, N. and Papadias, D. “Multiway Spatial Joins”. ACM
Transactions on Database Systems, 26(4), (2002), 424-475.

Mamoulis, N.; Papadias, D. and Arkoumanis D. “Complex
Spatial Query Processing”. GeoInformatica 8(4), (2004),
311-346.

Park, H.; Lee, C-G.; Lee, Y-J. and Chung, C. “Early Separation
of Filter and Refinement Steps in Spatial Query
Optimization”. Proc. International Conference on Database
Systems for Advanced Applications. Kyoto, Japan, (1999),
161-168.

Park, H.; Lee, C-G.; Chung, C.W. and Lee Y-J. “Spatial Query
Optimization Utilizing Early Separated Filter and
Refinement Strategy”. Information Sciences 25(1), (2000),
1-22.

Papadias, D.; Mamoulis, N. and Theodoridis, Y. “Processing
and Optimization of Multiway Spatial Joins Using R-trees.”
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, Philadelphia, Pennsylvania,
USA, (1999), 44-55.

Papadias, D.; Zhang, J.; Mamoulis, N. and Tao, Y. “Query
Processing in Spatial Network Database.” Proc VLDB
International Conference on Very Large Data Bases. Berlin,
Germany, Morgan Kaufmann Publishers Inc., (2003), 802-
813.

Papadopoulos, A.N.; Rigaux P. and Scholl, M. “A Performance

Evaluation of Spatial Join Processing Strategies.” Proc.
International Symposium on Advances in Spatial Databases,
Hong Kong, China, (1999), 286-307.

Patel, J.; Yu, J.; Kabra, N.; Tufte, K.; Nag, B.; Burger, J.; Hall,
N.; Ramasamy, K.; Lueder, R.; Ellmann, C.; Kupsch,
J.; Guo, S.; Larson, J.; DeWitt, D. and Naughton J.
“Building a Scalable Geo-Spatial DBMS: Technology,
Implementation, and Evaluation.” Proc ACM SIGMOD
Conference on Management of Data, Tucson, Arizona,
USA, (1997), 336-347.

Rigaux, P.; Scholl, M. and Voisard, A. (ed.) “Spatial Databases
with Applications to GIS”, San Francisco, CA, USA Morgan
Kaufmann, (2001).

Sun, C.; Agrawal, D. and El-Abbadi, A. “Selectivity Estimation
for Spatial with Geometric Selection.” Proc. EDBT,
International Conference on Extended Database Technology,
Prague, Czech Republic, (2002), 359-360.

Samet, H. and Webber, R.E. “Storing a collection of polygons
using quadtrees.” ACM Transactions on Graphics 4(3),
(1985), 182-222.

Touir, A. “ML-Quadtree: The Design of an Efficient Access
Method for Spatial Database Systems.” King Saud Journal
17(10), (2004), 43-60.

Vassilakopoulos, M. and Manolopoulos, Y. “Dynamic Inverted
Quadtree: A Structure for Pictorial Databases.”
Information Systems, 20(6), (1995), 483-500.

Xiao, J.; Zhang, Y. and Jia, X. “Clustering Non-uniform-sized
Spatial Objects to Reduce I/O Cost for Spatial-join
Processing.” The Computer Journal 44(5), (2001), 384-397.

 www.esri.com

Ameur Touir : A Theoretical and Empirical Evaluation of a Novel…

54

 متعددة الطبقاتالفضائية الالشجرة الرباعية دراسة تقييمية و تجريبية لأداء

 عامر عبداالله طوير

 قسم علوم الحاسب، كلية علوم الحاسب و المعلومات،
 جامعة الملك سعود، الرياض،المملكة العربية السعودية

touir@ksu.edu.sa

)م١٨/٣/٢٠٠٩؛ وقبل للنشر في م٢٠/١٠/٢٠٠٩شر في (قدم للن

داء إحـدى تراكيـب البيانـات الفضـائية والـتي تسـمى في هذه الورقة، نقدم تقييم نظري وتقييم عملـي تجـريبي لأ. ملخص البحث
 والمكانيــة. لفهرســة الخــرائط و البيانــات الفضــائيةهــذه الشــجرة الرباعيــة تســتخدم .)(MLQبالشــجرة الرباعيــة متعــددة الطبقــات

ــا تســتطيع فهرســة)MLQ(لــدى شــجرة .)PM1Q(علــى شــجرة معروفــة باســم (MLQ)ترتكــز شــجرة كمــا ميــزة معينــة وهــي أ
و الــتي تعتمــد علــى تمثيــل و ربــط شــجرة المعروفــة في شــجرة واحــدة علــى عكــس بقيــة التراكيــب الفضــائية مجموعــة مــن الخــرائط

و ذلـك بتطبيقهـا و الأداء في الـذاكرة الشجرة مـن الناحيـة الحجـم والسـعة المطلوبـة واحدة بكل خريطة. لقد تم دراسة أداء هذه
و الافتراضية. كذلك تمت دراسة أدائها من ناحية تحديث البيانات (إضافة، حذف، تغيير) و الحقيقيةرائط الخعلى العديد من

كـان ذلـك باسـتخدام البحـث بالإطـار أو كذلك من ناحية الاستعلامات وذلـك مـن خـلال البحـث علـى أمـاكن معينـة سـواء أ
 بنقطة معينة.

