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Abstract. In this paper, we present a theoretical and empirical evaluation of the performance of the Multi Layer 
Quadtree (MLQ), a spatial join structure used for indexing spatial data. The Multi Layer Quadtree is based on the 
PM1-Quadtree. It permits the representation of multi-layers in a single structure rather than a structure for each 
layer. The theoretical evaluation of the MLQ is intended to compute the storage required by the structure in a 
worst case scenario to show that the structure would be accommodated in a reasonable memory without degrading 
the system performance. The empirical evaluation is based on real data as well as synthetic data to show the 
flexibility of the structure and the response attained by adopting such a structure. The application of the selection, 
insertion, and deletion operations using the MLQ is also presented. We consider point and range queries over two-
dimensional data such as lines, poly-lines and regions data. 
 
Keywords: Quadtrees, spatial join, multiway join, spatial access method, spatial query. 

 
 

1. Introduction 
 
Nowadays, the demand for Geographical Information 
Systems has increased which has brought about a 
variety of techniques for managing such systems.  
Among these worth noting techniques are spatial 
access methods. Spatial access methods are used to 
store, access and manage spatial data, such as points, 
lines, poly-lines, polygons, and surfaces. The data 
stored in spatial databases are considered as spatial 
objects. Querying spatial databases is complex and 
expensive. Queries include point-query, range-query 
and spatial join based query. Point queries involve the 
processing of a single dataset allowing the selection 
of a specific object. Range queries provide a set of 
objects that verify specific location-constraints. 
Examples of range queries are windowing and 
clipping. Range queries may be single-layered or 
multi-layered. Very frequently, in real life 
applications, we resort to use multi-layered queries in 
order to answer useful and frequent inquiries such as 
locating focal points (hotels, hospitals, etc.) with 
respect to other focal points. Such queries, referred to 
as spatial join queries, involve the joining of the 
implied layers. Other types of queries, such as 

topological queries including the nearest, neighbour 
of, or between may be based on single or multiple 
layers (Papadias et al., 2003). An example illustrating 
the implication of several layers is to request all 
schools located between two parks. The implied 
layers are the one containing the schools and the 
other one containing the parks.   

When more than one layer is involved, the spatial 
join based query is triggered. It is a complex 
operation where several datasets are involved 
increasing thereby the complexity of the query. 

Spatial join queries are commonly processed in 
several steps according to its spatial index structure. 
Among these spatial indexes, we note the R-tree and 
its variants R+-tree and R*-tree (Brinkhoff et al., 
1993). R-trees use the minimum bounding rectangles 
(MBR) of the spatial objects to approximate them as 
a first filtering. A second filtering which requires a 
further processing is used on the geometry of the 
objects themselves. Another category of spatial 
indexes is the quadtree and its variants such as the PR 
quadtree and the PM quadtree (Samet and Webber, 
1985). In contrast to the R-tree, Quadtrees operate on 
the geometry of the object itself and not on its 
approximation.  
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Further discussion of the spatial join operation is 
presented in section 2. Section 3 provides an 
overview of the Multi-Layer-Quadtree that were 
introduced in (Touir, 2004). Section 4 addresses the 
manipulation of such a Multi-Layer-Quadtree.  
Experimental results are presented in section 5. 
Section 6 concludes the paper. 
 

2. Background and related work 
A major problem in spatial join is dealing with the 
intermediary results in an optimized way. Several 
solutions were proposed. Patel et al. (1997) perform a 
pairwise spatial join algorithm using a multiprocessor 
environment to execute cascading joins. Jacox and 
Samet (2003) introduce the Iterative Spatial Join 
which is based on the sort-merge join. Their approach 
is best suited to cases where the intermediary results 
are already sorted. Papadopoulos et al. (1999) apply a 
two-join case study to evaluate the performance of 
four spatial join algorithms. Mamoulis and Papadias 
(1999) suggest a pairwise join method that combines 
pairwise join algorithm in processing trees. The 
leaves of the tree represent the relations indexed by 
R-trees and the intermediate nodes are join operators. 
Papadias et al. (1999) introduce another method of 
executing multilayer spatial join which consists of 
traversing synchronically all the spatial indices 
excluding combinations of intermediate nodes that do 
not satisfy the join condition. Mamoulis et al. (2004) 
study the complexity of the spatial queries that 
involve combinations of selections and joins. They 
focus on presenting a cost model that estimates the 
complexity of such queries; whereas in (Mamoulis 
and Papadias, 2002) the authors emphasize on the 
complexity of the joins that involve several layers. 
Park et al. (1999) highlights the different steps 
needed for such types of queries. 
 

It is very common that the involved datasets are 
very large and so are the intermediary results. These 
results are not indexed in advance. Therefore, either a 
dynamic index is created (Papadopoulos et al., 1999) 
or no index. When no index is created, different ways 
take place to speed up the process.  Patel et al. (1997) 
spatially sort the non-indexed objects by setting up 
leaves and match them to those of the existing tree 
that intersect it. Arge et al. (1998) propose a 
combination of plane sweep and space partitioning to 
join the datasets. Park et al. (2000) propose an 
improvement of the two-step processing in which the 
filter is separated from the refinement steps in the 

query optimization phase instead of the query 
execution phase. 

 
A common issue faced while performing a 

multilayer spatial join is the utilization of as many 
datasets as the number of the involved layers. Each of 
these datasets is associated with a single tree used as 
a spatial. The organisation of spatial data objects 
requires the ability to cluster the objects according to 
their spatial location (Patel et al., 1997). Xiao et al. 
(2001) show how to cluster objects of different types 
to reduce the complexity of the operation. Touir 
(2004) introduces a novel approach of processing 
multilayer spatial join. It is based on the idea of using 
a single spatial index structure to perform the 
aforementioned queries. It is shown that the proposed 
index structure is capable of absorbing different 
datasets allowing for several types of queries to be 
performed. In this paper, we present a theoretical and 
empirical evaluation of the performance of the 
structure introduced in (Touir, 2004).  
 

3. An Overview of the Multi Layer           
Quadtree (MLQ) 

The MLQ is based on the concept of PM1-
Quadtree (a variant of PM-Quadtree) (Samet and 
Webber, 1985). The MLQ is constructed successively 
from the PM1-quadtrees (t1, …,tn) that represent 
different layers (l1, …, ln) . For example, the MLQ in 
Fig. 2.a represents the dataset of layer l1 and the MLQ 
in Figure 2.b is built upon the MLQ in Figure 2.a by 
inserting the dataset of layer l2. Suppose that we have 
already inserted a layer (say l1), and we would like to 
insert a new one (say l2). The result of this second 
insertion will generate a virtual layer (say L) L=l1 l2. 
L is the superimposition of l1 and l2 as depicted in 
Fig. 1. The components of L are allocated to several 
levels. Figures 1, 2.a and 2.b show the construction of 
MLQ obtained by inserting two layers. Fig. 3 shows 
the resulting MLQ after the deletion of the object 
“line BC” of Fig. 1. More details are in (Touir, 2004). 
 

The other aspect of the MLQ is its flexibility in 
handling queries. One of the important types of 
queries in this respects is the geometric selection 
(Rigaux et al., 2001; Sun et al., 2002) which can be 
point-based or window-based. These types of queries 
can target a single layer or several layers in which 
case the queries are considered as spatial join queries. 
Generally, the complexity of a query varies with the 
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number of the involved layers. However, in our case, 
all layers are in the same structure i.e. the MLQ. 
 

Therefore, this complexity will not vary greatly 
when processing a single layer or multiple layers. All 
layers are implicitly involved in one structure. In 
region/window-based queries, the user may indicate 
the region where the search is going to be performed. 
Any object from any layer that intersects or is 
included in the specified region is considered as 
candidate object. The remaining conditions defined as 
predicates of the select criteria will then filter the 
desired objects among those candidate objects. 
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Fig. 1.  Superimposition of two layers. 
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a. a. The resulting MLQ after inserting a first layer according to 

the example shown in Fig. 1. 
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b. The resulting MLQ after inserting a second layer according 
to the example shown in Fig. 1. 

Fig.2. MLQ insert principle. 
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Fig. 3. The resulting MLQ after the deletion of an object (line BC of Fig. 1). 
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4. MLQ Storage Evaluation 
 

Let us suppose that the processed layers are of 
size 2Nx2N. N is the maximum number of 
subdivisions (levels) of any quadtree-like structure. 
When N= 10, layers are of size 1024x1024. 
Manipulating these layers (insertion, deletion, 
displaying, etc.) requires dealing with two structures: 
a front structure (MLQ) and a Rear structure (RS). 
Each node of the MLQ indexes a segment S of RS. If 
a segment S is full, a secondary segment is created 
and linked to S and so on. 
Since the maximum number of nodes of a level i of a 
quaternary tree is 4i, the maximum number of nodes 

of an MLQ of height N is 
3

144
1

0

NN

i

i . 

This implies that the RS has 
3

14 1N

 primary 

segments.  
Contrary to the quadtree, where only three out of four 
sibling leaf nodes can contain data, the four sibling 
leaf nodes of a PM1Quadtree may contain data. Thus, 
the maximum number of leaf nodes of a 
PM1Quadtree is 4N.  
Let us consider that the maximum number of layers 
in the MLQ is Lmax. Then, in the worst case, each of 
following the same reasoning as in (Vassilakopoulos 
and Manolopoulos, 1995), the number of segments 
needed to cover these components is:  

cap

N
N

Max

S

L
NbSeg

3
144

1

.  

We conclude that the total number of segments is 
bounded by:   
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Therefore, )1log(TotNbSeg  bits are 
sufficient to identify each segment. According to 
(1),  

)log()1log( TotNbSegTotNbSeg  
 

)3log()43log(2)log( CapcapMax SSLNTotNbSeg
 (2) 
For N=10, Lmax =1024, and Scap=16,  
the number of bits needed by the front structure to 
address a component will be about 26 bits. 
the LMax layers is composed of 4N components. This 
yields a Max

N L4 components.   
Let us associate one of these components to each of 

the MLQ nodes. In this case 
3

144
1N

Max
N L   

components are left with no segments.  
To obtain the size of the segments’ identifiers 
(pointers), we define Scap as being the maximum 
number of components that can fit in a segment S of 
the rear structure RS. 

Given that the total number of nodes is 
3

14 1N

,  

the MLQ size will be about 5MB which can fit easily 
into the main memory.  
 

5.  Experimental Results 
 

In this section, we analyze the performance of the 
MLQ structure with a large set of real data and 
another set of synthetic (randomly generated) data. 
Data in this respect are considered as layers. Layers 
of different sizes were used to experiment and to 
study the behaviour of the structure. Fig. 6.a and 
Figure 6.c are respectively samples of real data, and 
synthetic data. The real data address five layers: 
Counties, states, rivers, drainage, and roads layers. 
They are taken from (esri).  
 The Synthetic data have been generated 
randomly by computing number of objects (polylines) 
that constitute a given layer along with their points. 
For each object, given the coordinates of an initial 
point P0, Pi is randomly determined so that the 
distance between Pi and Pi-1 is less than a given 
distance in each direction (axis). The following 
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algorithms were used to generate the synthetic data. 
 

void ComputeSyntheticData() 
    Begin  
   NbObjects = random(MaxObjects); 
   i=0; 
   while (i< NbObject) do 
         NbPoints = random(MaxPoints); 
         j = 0 ; 
      Objecti.Pj = ComputeInitialPoint(); 
           while (j< NbPoints) do 
     j= j+1;  
                    Objecti.Pj= 

ComputeCoordinatesRandomly(Objecti.Pj-1); 
           endwhile; 
         i= i+1; 
  endwhile; 

   end 
 

Point ComputeCoordinatesRandomly(input Point 
P) 

  begin 
      P1.x = random(P.x+ ) ;            
      while (abs(P1.x-P.x)>  ) 
           P1.x = random(P.x+ ) ; 
      P1.y = random(P.y+ ) ; 
       while (abs(P1.y-P.y)>  )   
                P1.y = random(P.y+ ) ; 
       return P1; 
end; 

 
For our experiment, one of the concerns is to study 
the growth of the MLQ after the insertion of each 
layer. For this purpose, we used several parameters as 
shown in table 1. 
 
Table 1. Notations used in the experimental results 

TotNbLines The total number of lines that compose each 
inserted layer 

NodePMQ The number of nodes that composes each 
PM1Q generated from the inserted layer 

SizePMQ The size of each PM1Q in bytes 

NodeMLQ The total number of nodes  of the MLQ, after 
the insertion of a new layer. 

SizeMLQ The size of the MLQ in bytes, after the 
insertion of each layer.  

PMQ 

The number of non-empty PMQ leaves 
obtained from the inserted layer. This will 
illustrate the number of records in the rear 
structures that have to be updated with respect 

to each inserted layer 

MLQ The increasing ratio of the MLQ after the 
insertion of each layer. 

 The increasing ratio is defined as follows: 

iPMQ

iMLQiMLQ

Size
SizeSizeMLQ 1 ,  

 
where SizeMLQi is the state (size) of the MLQ after 
inserting i layers, SizePMQi is the size of the PMQ of 
the ith layer.  
The fact that the number of the MLQ nodes is 
bounded implies that this ratio will ultimately be null 
after certain insertions. This will happen when MLQ 
reaches its maximum number of nodes:  

SizeMLQi = 3
14 1N . 

 Table 2 is divided into two parts. The first part 
highlights the behaviour of the MLQ structure with 
respect to the real data that were inserted. The second 
part highlights the behaviour of the MLQ structure 
with respect to the inserted synthetic layer. 

 The insertion of the first layer (counties) gives an 
increasing ration of 1(100%). This is due to the fact 
that the MLQ was empty and each inserted value 
generates a new node. The insertion of the second 
layer (states) gives an increasing ration of about 
0.0013 (almost null), This means that only very few 
new nodes were generated, the other were only 
updated. This means that data of the second layer is 
almost distributed in the same location as the data of 
the first layer. The insertion of the fourth layer 
(rivers) generates an increasing ratio of about 
0.2.This indicates that 20% of the inserted layer has 
generated new nodes in the MLQ, while 80% were 
stored in already existing nodes. This behavior is 
clearly observed with the synthetic data. Fig. 4.b and 
4.d illustrated this observation. Also Fig. 4.a and 4.c 
show that the growth of the MLQ will ultimately 
reach an asymptotic limit regardless of the number of 
inserted layers. 

Querying process: 
 As shown above,  the MLQ size is bounded, 
whereas building an index for each layer generates as 
many indices as the number of layers. Fig. 4 
illustrates the cumuli of the created PMQ. Generally, 
the number of nodes that composes a given index 
structure, influences the complexity of the queries. 
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Table 2 shows example of the experimental result that 
we obtained from the layers that we dealt with in the 
MLQ. Two types of queries are performed and 
analyzed:  
i. Point-based queries such as retrieve all objects of 

layer1 and layer3 that contain point (x,y): For this 
type of queries, several tests were randomly 
performed.  

ii. Window-based queries such as retrieve all objects 
of all layers that intersect a given area. To analyze 
such type of queries, we performed the same 
window-queries using the MLQ generated from 
the test layers as shown in table 3. We compared 
the complexity of both structures (MLQ and 
PMQ) in term of I/O.  

 Table 3 shows the number of disk accesses 
generated according to the size of the window 
specified in the query.  Even though the MLQ 
aggregates layers into a single structure, we notice 

that its I/O performance is much more better than 
the PMQ when queries deal with multi-layers.  

iii. Figure 5 is obtained by performing the same 
window-query on some PMQs and on MLQ. It 
illustrates the number of disk accesses needed to 
retrieve the requested data. 

 
 
Table 3. I/O Performance of the MLQ and the use of   
 independent PMQs 

Length Width I/O(MLQ) I/O(PMQs) 
338 36 19671 28711 
139 116 15083 22810 
82 223 14966 22288 

292 75 21158 31659 
313 100 29764 50148 
 184 201 29688 46218 
343 115 36915 55335 
187 269 35571 48043 

 
 

Table 2. Experimental Results using real and synthetic data 
 Experimental Result using Real Data (North America map) 

LayerName TotNbLines SizeMLQ SizePMQ NodeMLQ NodePMQ PMQ MLQ 
Counties 87151 2499312 1666208 52069 52069 39052 1 

States 13851 2500656 647200 52097 20225 15169 0.001384 
Roads 12654 2619696 683552 54577 21361 16021 0.116099 
Rivers 6759 2794992 549664 58229 17177 12883 0.21261 

Drainage 5415 2795376 431488 58237 13484 10113 0.000593 
 Experimental Result using synthetic data 

LayerName TotNbLines SizeMLQ SizePMQ NodeMLQ NodePMQ PMQ MLQ 
Rand18 102327 5004150 5337760 166805 166805 122096 0.9375 
Rand17 1456 5031390 142240 167681 4445 2077 0.191507 
Rand16 98755 6522030 5300768 217401 165649 121928 0.281212 
Rand15 2581 6596910 379456 219897 11858 5980 0.197335 
Rand14 1848 6628230 221600 220941 6925 3293 0.141336 
Rand13 16479 6697830 957568 223261 29924 17826 0.072684 
Rand12 2292 6739350 256768 224645 8024 3758 0.161702 
Rand11 20740 6909870 1695104 230329 52972 34017 0.100596 
Rand10 2164 6936990 314240 231233 9820 4395 0.086303 
Rand9 17236 7002990 985344 233433 30792 18575 0.066982 
Rand8 3020 7052790 360192 235093 11256 5236 0.13826 
Rand7 16867 7052790 961532 235093 31924 18015 0 
Rand6 1471 7064670 155520 235489 4860 2207 0.076389 
Rand5 76203 7379910 2957984 245997 92436 62799 0.106573 
Rand4 3567 7431630 394272 247721 12320 5869 0.131178 
Rand3 16762 7476030 989344 249201 30916 18380 0.044878 
Rand2 800 7478310 119968 249277 3748 1737 0.019005 
Rand1 22810 7478310 1128576 249277 35268 21432 0 
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(a,c) Evolution of the MLQ in term of the number of nodes (b,d) Behaviour of the Increasing ratio with respect to the inserted 

layers 
Fig. 4.  analysis of the evolution of the mlq with respect to the inserted layers shown in table 2 –  c, d represent the experimental 

 results using synthetic data. 
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(a) Sample of the inserted layers (States, 

Counties, and Rivers) 
 

 
(b) Illustration of Figure 6.a with the 

subdivision of the inserted layers 
 

 
(c) Sample of synthetic layers 

 

 
(d) Illustration of their subdivisions 

Fig. 6. Some of sample layers on which the experimental    
results were conducted. 

 
6. Conclusion 

 
The paper presented a theoretical and empirical 

evaluation of the performance of the MLQ structure 
an overview of the multi-layer quadtree (MLQ) 
structure intended to facilitate spatial data operations. 
We highlighted the selection, insertion, and deletion 
operations for spatial data in view of the MLQ 
structure. We argue that the required main memory, 
that is required to accommodate the structure that 
indexes the data sets of several layers, is bound with 
the maximum number of nodes and the maximum 
number of layers. Considering that   the maximum 
number of subdivisions (N) is10 and the maximum 
number of layers is 1024, we have shown that the 
required main memory is approximately 5MB.  Such 
a memory requirement is reasonable in today's 
computing environment. Moreover, having a single 
indexing structure reduces the time needed to access 
data by reducing the traffic between the CPU and the 
disk storage. 

We experimented with MLQ using real data and 
synthetic data. The empirical data confirmed a 
superior performance of the single indexing structure 
(the MLQ) compared to several indexing structures of 
the PMQ.  

Currently, we are investigating the parallel 
processing of the MLQ. We intend to further analyze 
the behaviour of the MLQ in such a computing 
environment. We also intend to investigate its 
potential application in multi-version maps and/or 
map-history contents. 
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 )م١٨/٣/٢٠٠٩؛ وقبل للنشر في م٢٠/١٠/٢٠٠٩شر في (قدم للن
 

داء إحـدى تراكيـب البيانـات الفضـائية والـتي تسـمى في هذه الورقة، نقدم تقييم نظري وتقييم عملـي تجـريبي لأ. ملخص البحث
  والمكانيــة. لفهرســة الخــرائط و البيانــات الفضــائيةهــذه الشــجرة الرباعيــة تســتخدم   .)(MLQبالشــجرة الرباعيــة متعــددة الطبقــات 

ميــزة معينــة وهــي أĔــا تســتطيع فهرســة  )MLQ(لــدى شــجرة  . )PM1Q(علــى شــجرة معروفــة باســم  (MLQ)ترتكــز شــجرة كمــا 
و الــتي تعتمــد علــى تمثيــل و ربــط شــجرة المعروفــة في شــجرة واحــدة علــى عكــس بقيــة التراكيــب الفضــائية   مجموعــة مــن الخــرائط

و ذلـك بتطبيقهـا  و الأداء في الـذاكرة الشجرة مـن الناحيـة الحجـم والسـعة المطلوبـة واحدة بكل خريطة. لقد تم دراسة أداء هذه
و الافتراضية. كذلك تمت دراسة أدائها من ناحية تحديث البيانات (إضافة، حذف، تغيير) و   الحقيقيةرائط الخعلى العديد من 

كـان ذلـك باسـتخدام البحـث بالإطـار أو كذلك من ناحية الاستعلامات وذلـك مـن خـلال البحـث علـى أمـاكن معينـة سـواء أ
 بنقطة معينة.




