
J. King Saud University, Vol. 20, Comp. & Info. Sci., pp. 1-11,Riyadh (1428H./2008)

RWELS: A Remote Web Event Logging System

I. Shah, L. Al Toaimy1, M. Jawed
Department of Computer Science,

College of Computer & Information Sciences,
King Saud University, Riyadh, Saudi Arabia

(Received 09/09/2006; accepted for publication 02/07/2007)

Abstract. Event logs are an important data source for identifying usability problems in websites. We present a
web-based client-server application, Remote Web Event Logging System (RWELS), for logging user-interface
events generated in the Microsoft Internet Explorer during a user’s interaction with the pages of a website.
RWELS logs events without interfering with the user’s interaction – no additional interaction is required on part of
a user to enable logging. RWELS is configurable and allows user-centric event logging. A usability analyst can
choose the set of events to be captured and the pages of the website to be logged for a particular user. The event
logs are dispatched through HTTP to the server where they are stored as text files. Users are identified uniquely
and the event logs are associated with the user sessions.

1. Introduction

Web event logs are an important data source for
usability evaluation. Web event logs can be analyzed
using various techniques to identify usability
problems in websites. Event-logging tools capture
events on the server-side, in the proxy or client-side.
This paper describes Remote Web Event Logging
System (RWELS), a client-server application that
logs events generated in the Microsoft Internet
Explorer as a result of users’ interaction with the
pages of a website and dispatches the log to the
server.

RWELS can capture user-interaction events such
as mouse clicks, page scrolls, mouse moves and key-
presses. It abstracts out important event information
and filters out unnecessary low-level detail from the
raw event data. For example, for the mouse move
events it records the start and end positions of the
mouse movement only, and for scrolling events it
computes the distance scrolled in pixels. This
preprocessing reduces the amount of data captured
and reduces the bandwidth requirements for
transferring data to the server.

There are a few issues with regard to existing web

event logging systems that RWELS attempts to

address. One of these issues concerns obtrusiveness
of the logging technique. When event data is to be
captured for usability evaluation of a website, the
logging process should not interfere with a user’s
interaction with the web page, otherwise evaluation
results obtained can be biased. Generally, existing
web event logging systems do not satisfy this
requirement. They are obtrusive and require users to
perform additional interaction to enable logging.
RWELS uses JavaScript event-handler functions to
silently capture and log events while a user browses a
website. The event log is automatically dispatched to
the server, where the logs are stored as text files. A
user does not have to intervene anywhere in this
process.

Configurability is another important issue in event
logging systems. When event data is to be captured
on a large scale from the users of a website, the
logging tool must be configurable. It should be
possible to capture the event data on ‘as needed’ basis
from only the users a usability analyst is interested in.
RWELS satisfies this requirement. It maintains on the
server a database of users and for each user a profile
is maintained that indicates the set of events to be
logged for the user. Whenever a page request arrives
the users’ profile is retrieved from the database and in
accordance with the profile JavaScript event

1 1- The author is with SAMBA, Riyadh

I. Shah et al, : RWELS: A Remote Web Event Logging System

2

capturing code is enabled dynamically and inserted in
the requested page.

Section 2 presents the background information
and relates web event logging to usability evaluation.
A classification of web event logging techniques is
given. Various issues related to web event logging
techniques and how they are dealt with in RWELS, is
also discussed. Section 3 describes RWELS
architecture, event capturing mechanism and RWELS
testing and future development. Section 4 describes
some client-sided event logging tools related to
RWELS. Section 5 concludes the paper.

2. Web Event Logging Techniques

Usability evaluation is about measuring the user

friendliness of a system’s user interface and
identifying usability problems in it [4]. During
usability evaluation following activities are carried
out: Capture – data concerning the user interface is
captured, Analysis – the captured data is analyzed,
and Critique – usability problems are identified in the
interface. Event logging is a data capturing technique
used in some usability evaluation techniques. Events
are generated as a result of users performing physical
actions with various input devices during interaction
with event-driven applications. Event logs record the
user-interface events, their time and order of
occurrence and the interface objects manipulated in
each action and thus provide a more or less complete
record of the actions that a user performs at the

interface. Event logs can be recorded automatically
and processed to obtain usability information such as
the task completion times, task errors, etc. [22, 16].

An example of an event log captured with
RWELS appears in Fig. 2. This is a log of a user
browsing a news page. The scrolling events indicate
the user scrolling down the page steadily and
probably reading the text. In contrast to this, an event
log containing many quick up/down scrolls would
have indicated the user searching for information,
possibly due to a usability problem. Analysis of the
scroll events can be visualized as scroll-time plots
shown in Fig. 3.

The rest of this section presents a classification of
the web event logging techniques and various issues
related to web event logging.

2.1Classification

The event logging techniques have been classified
into various categories based on whether a technique
is manual or automatic and the point where event data
is accessed for logging [27]. Manual logging involves
observing a user’s interaction with the application’s
user interface directly in a laboratory or through a
video recording, and noting down the actions
performed by the user [1]. Automatic logging records
user interaction events through instrumentation code
embedded within the application code or through a
software component independent of the application
and running in the background, e.g. [2, 6, 7, 13, 14].
Automatic logging can take place in a laboratory

Fig. 1. The overall architecture of RWELS.

J. King Saud University, Vol. 20, Com. &Info. Sci., pp. 1-11,Riyadh (1428H./2008)

3

setting where test subjects operate instrumented
computers and/or application code in a controlled
environment, or remotely, with users working in their
natural work setting. Remote logging is suited to web
applications but can be used with other applications
as well. Remote web event logging can take place on
the client-side as the client-side logging, e.g. [7, 8, 9,
10, 11, 17, 20, 23, 25, 26, 28], in the proxy as proxy-

based logging [18] or on the server side as server-
side logging, e.g. [5, 12, 15, 21, 24, 29, 30, 31]. On
the client-side, logging can take place through custom
developed software installed and running as a
separate component in the background, e.g. [2, 3, 17],
through custom build instrumented browsers, e.g. [8,
10, 25] or through scripting code/applets embedded
within the web pages, e.g. [7, 9, 20, 23, 26, 28].

EVENT NAME TIME (msec) READ TIME (s)

Fig. 2. An event log showing ‘Steady Scroll Down’ pattern indicating that the user is reading the contents of the page.
The second number after ‘SCROLL DOWN’ is amount scrolled in pixels while as the number after READ END
is time spend on the page before the next scroll.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

% Time

0

20

40

60

80

100

120

0 20 40 60 80 100 120

% Time

%
 S

cr
ol

l

%
 S

cr
ol

l

Steady Scrolling Quick Up/Down Scrolls

Fig. 3. Typical scroll-time plots for ‘Steady Scroll Down’ and ‘Quick Up/Down Scroll’ patterns.

I. Shah et al, : RWELS: A Remote Web Event Logging System

4

RWELS belongs to this category of client-side
remote event logging techniques.

2.2 Issues and goals

With regard to web event logging systems in
general and client-side web event logging techniques
in particular there are some issues that arise and
existing logging systems address in different ways.
These issues are:

Events Captured. A web-event logging technique
should be able to capture any event generated to get
complete information about the actions users perform
at the interface to achieve task goals. This is essential
for a comprehensive and successful usability
evaluation. Most web-event logging techniques are
not able to capture all the generated events mainly
due security restrictions of client systems.

Browser events can be classified as: the document
events, resulting from users’ mouse-clicks, mouse
movements, scrolling events and key-press events in
the browser document window; the application
events, resulting from, for example, when the browser
starts or completes downloading a document; the
interface events, resulting from users’ browser menu
selections, clicks on the browser toolbar, for example,
the backward/forward button clicks. Document and
interface events together are usually called the user
interaction (UI) events. Client-side logging
techniques that use custom developed software [2,
17], or custom built instrumented browsers [8, 10, 25]
can capture almost all the above types of events but
the techniques employing scripting code can capture
only the document events [7, 9, 20, 23, 26, 28].
Browser’s security settings do not allow scripting
code to capture browser interface events or the
application events.

With regard to the ability to capture events, the
goal for RWELS has been to be able to capture as
many events as possible. However, use of scripting
code to capture events inherently restricted RWELS’s
ability to capture events to only document events.

Unobtrusive Capture. A web event logging
technique should be unobtrusive. User’s interaction
with an application should proceed naturally during
event logging and ideally the user should be unaware
of it. Some web event logging techniques are highly
obtrusive. They require users’ to install logging
software, respond to questions originating from the
logging code or report ‘critical incidents’, e.g. [2, 10,

17]. The additional interaction interferes with the
users’ interaction with the application and may bias
the evaluation results. Client-side web-event logging
techniques that use custom software and custom
browsers are obtrusive, as they require users to install
new software on their systems to enable logging.
Client-side web-event logging techniques that use
scripting code are mostly unobtrusive since the
logging code is embedded within the web pages.

RWELS captures events unobtrusively by using
JavaScript event handlers embedded in the pages of
the website. Users simply access the website and start
browsing pages of the website. Event-handlers
automatically log the events generated and dispatch
the logs to the server without user intervention at any
stage.

Configurability. A web event logging system should
be configurable, enabling the usability analyst to
capture only the events that s/he is interested in, on
‘as needed’ basis and for only the users s/he is
interested in, e.g. [17]. Capturing all the events
generated for all the users can result in a deluge of
data and in most situations it is not required. For
example, if the usability analyst is interested in
studying scrolling behaviour of users on certain web
pages, as in the above example, capturing events
other than the scroll events is unnecessary.

RWELS can be configured to capture any of the
available document events. There is a default set of
events that RWELS captures for the users who are
chosen for logging but the usability analyst can
modify the default set for a user by modifying his/her
profile in a server database.

Storage and Retrieval. A client-side web event
logging system should be able to retrieve event logs
with minimum bandwidth requirements. The amount
of event data generated through client-side logging
can be huge. Systems that monitor and display user
interaction in real time, send each individual event to
the machine where the interaction is being monitored
[9]. Over the internet this can generate huge network
traffic and consume significant amount of bandwidth.
Client-side event logging systems usually store
captured data temporarily in the client and then send
it to a collection point at suitable intervals [17, 19].
Two mechanisms are in common use: one based on
cookies [7] and the other on applets [23]. Mechanism
based on cookies uses HTTP requests to transfer data
but cookies have a storage limitation – a cookie

J. King Saud University, Vol. 20, Com. &Info. Sci., pp. 1-11,Riyadh (1428H./2008)

5

cannot store more than 2Kb of data. Applets based
schemes use applet-servlet communication to transfer
data but the ports used in this communication can be
blocked. Email is also used to transfer the logged data
[17].

RWELS uses a JavaScript dynamic array to
temporarily store event data. The dynamic array is
initialized afresh for each page downloaded into the
browser. When a user moves to another page or exits
the browser, the contents of the array are passed to an
applet that uses an HTTP post request to transfer the
log to the server. Ports used by HTTP are usually not
firewall blocked.

3. RWELS System Architecture

RWELS consists of server-side and client-side

applications. Server-side application is responsible
for acquiring event data from the clients and storing
it. Client-side application is responsible for capturing
browser events and dispatching them to the server.
Usability analyst interested in collecting event data
for a website, interacts with RWELS server-side
application. Usability analyst sets up RWELS for the
website, creates profiles for users and manages
administrator accounts. On the client-side it is the

user who indirectly interacts with RWELS client-side
application. A user simply accesses the website and
starts interacting with the web pages. The events
resulting from the interaction get captured
automatically and the event log is dispatched to the
server where it is stored. The complete RWELS
process is described in the activity diagram in Fig. 6.

3.1 Server-side components

RWELS server-side application is essentially an
event data acquisition server consisting of a Java
module and an MS SQL database server. The Java
module consists of multiple Java Server Pages (JSPs)
and Java Servlets. The MS SQL database stores
users’ profiles, storing information about the pages
and events on each page to be logged for a user. The
Java module is responsible for the following:

 When a page request from a user’s browser is
received, the user’s profile from the database
is retrieved and JavaScript event handlers in
the requested webpage are enabled in
accordance with the retrieved profile. A new
user is assigned a new id and registered in the
database. The new user’s profile is set to its
default value.

RWELS Physical Architecture

RWELS Client
Browser

 Data Acquisition
Server

HTTP

RWELS Client
Browser

.

.

.

Structured File
System

Java Web
Application

RWELS Admin
Browser

M
S SQ

L
Database

Fig. 4. The physical architecture of RWELS.

I. Shah et al, : RWELS: A Remote Web Event Logging System

6

 A servlet class in the module deals with
receiving the event logs from clients and
storing them as text file in a file system.

 Servlet classes in the module manage
administrator accounts and allow
authenticated login to the system. Existing
administrators can register a new
administrator or un-register an existing
administrator. This interaction takes place
through a web interface.

 Through other servlet classes in the module,
an administrator is able to browse a registered
user’s profile and modify it. These servlet
classes also enable an administrator to edit,
delete, rename or download saved logs. This
interaction also takes place through a web
interface.

The database consists mainly of three tables:
WLAdmin, WLClient and WLPage. The WLAdmin
holds existing system administrator’s usernames and
passwords. The WLClient stores existing registered
users’ event profiles, i.e. their unique ids and the
events to be logged for each user. The WLPage stores
existing registered users’ page profiles, i.e. their
unique ids along with the pages of the website for
which their events are to be logged.

3.2 Client-side components
RWELS client-side application consists of a Java

Applet and a JavaScript library of event-handling
functions. These get downloaded with the web pages
and run in the client browser, capturing and recording
events occurring in the browser. The events are stored
temporarily in a dynamic array. When a user exits a
page, i.e. unload event occurs, the recorded events are
passed on to the Java Applet that transfers the event
log to the server-side for storage.

Java Applet is a non-GUI applet embedded in the
web pages to be event logged. The applet’s only
function is to transfer event logs from the clients to
the server. The transfer is initiated by JavaScript call
to the applet through JavaScript liveconnect facility.
The applet encapsulates event data into Java
Serialized Objects and transmits it using HTTP post.
Using HTTP has the advantage that HTTP ports are
usually not blocked by firewalls.

The events JavaScript library functions capture,
depend on a user’s event profile. This information is
read from the server-side database table WLClient
and the event-handlers corresponding to the events
specified in the event profile are enabled. Presently
there are event-handlers for capturing and recording
mouse clicks, mouse movements – recording starting
and ending locations in pixel co-ordinates, scrolling,
key-press events and chord key-press events. An
example event log is shown in Fig. 2.

Client Tier

Browser

Java Applet

Server Tier

Application Server
Structured File

System

Log 1

Log 2

Log 3

JavaScript

MS SQL Database Server

J2EE Module
(JSPs/Servlets)

RWELS Components

Fig. 5. The client and server side components in RWELS.

J. King Saud University, Vol. 20, Com. &Info. Sci., pp. 1-11,Riyadh (1428H./2008)

7

Fig. 6. The RWELS process.

RWELS Pro cess

j ~ .n

I
User R equ ests I Ente r Syste m

iJ ~ W eb Page

~ C heck User

IlJ ~ T T N "8 User? , :>

j IASS;gn Use, a un;que use'l
I

R e tri eve User' s event

I
10 & def ault event logg ing

logg in g config urati o n
configurati o n

@ ~ 1 1
~ Jl I Enab le event h a n d ling fun cti o n s by I

runnin g JSP s

I
T

Capture cl ie nt event I Co llect Events
11

~ ~ N10

~ Y ES~ , event?

.m I P ass events t o app let I
0

i

I
Open HTTP

I 1;; communi cati o n

~ Tra nsmit Events i
~

I
Tra n smit log t o

I ,
Servlet

I
~

Rece ive Events I R eceive log object I
IlJ ~ I
N "8

~ , :>

Save Eve nts r Save fil e to fo lder I
j I

Update Database

@ ~ NO ~':;~->l 1 cl ient?

~ Jl
[Add cl ient 10 t o da tabase &

set default END . Y E S
event configurati o n

I. Shah et al, : RWELS: A Remote Web Event Logging System

8

For each event that occurs in the browser, event’s
name, time of occurrence and some additional
information is recorded. For the page load events
URL of the page is recorded. For mouse move events
the start and end point co-ordinates of the movement
in pixels are recorded. When scrolling events occur
the scrolling event handler determines whether it was
a scroll up or down event and records the event along
with the scrolling distance in pixels. Whether a user
has scrolled up or down is determined by comparing
the document object’s current property
value with its value before scrolling. The scrolling
distance is determined by computing the difference
between the current and previous values.
Whether a user used mousewheel in scrolling is
determined through the event handler for
onmousewheel event.

An important piece of data that can be used in
drawing conclusions about a user’s browsing
behaviour and a user’s interest in a page or section of
a page is the time the user spends on the page or
section of the page. It is assumed here that this time
interval, i.e. the ‘read time’ starts immediately after a
page is downloaded and ends when a user scrolls up
or down. A timer is used to keep track of the read
time. The timer is set using the browser window’s

 method. The timer starts
when a page downloads completely and stops when
the user starts scrolling. When the scrolling ends, the
timer is re-started to register read time of a new
reading interval. Each time scrolling starts, a READ
END is logged and the elapsed time is printed out in
seconds. Each time scrolling ends a READ START is
logged

Internet Explorer fires a train of closely spaced
(~10ms) events whenever a user scrolls or moves the
mouse. Recording all the events in the train can lead
to large amount of unnecessary low-level data being
captured. Most of the time a usability analyst is
interested in the instant of time scrolling begins, i.e.
the first scroll event. The recording method used here
captures the first scrolling event and ignores all other
scroll events that immediately follow it. Similarly, for
the mouse move events only the starting mouse move
event and ending mouse move event record the start
and end points of the mouse movement. In both cases
timers are used that prevent any event capturing in
the time interval that starts after the firing of the first
event and ends 500ms after the firing of the last
event.

3.3 Testing and future development
RWELS was tested in a local area network

environment. It successfully captured event data from
users’ browsers (Internet Explorer) while the users
browsed a web site hosted on a local machine running
Apache. The captured event logs of several
megabytes in size were successfully dispatched to the
server and saved as text files. The time delay was of
the order of 500ms for event logs of this size.
RWELS is yet to be tested on an Internet scale data
collection task. Work is in progress to test RWELS
for a large website over the Internet.

At present RWELS is set up manually for a
website. This involves modifying the pages of a
website manually to insert references to files
containing various JavaScript functions and applets.
It must be ensured that the event-handlers do not
interfere with normal page functionality. For a
website with a large number of pages this is a
difficult process. An application that sets up RWELS
automatically is therefore needed. Such an
application would automatically insert references to
JavaScript code and applets into the pages of the
website.

4. Related Work

There are client-side event logging systems that
use embedded JavaScript code and applets to log
events and are closely related to RWELS. This
section briefly describes four such existing web-event
logging systems.

4.1 WET

Web Event-logging Tool (WET) [7] is an event
logging system with the aim of studying usability of
the website. WET can record mouse clicks, change,
mouseover and page load events in Internet Explorer
and Netscape browsers. The usability analysts
configure WET manually by specifying the events to
be captured and the event handling functions in a
JavaScript file called WET.js and inserting a call to
the file in the pages of the website. User-centric event
logging, (i.e. logging is turned on/off for certain users
in certain situations) is implemented by encapsulating
the call to WET.js within a ColdFusionML tag that
checks the users ‘login name’ before writing the call
to the WET.js file into the page. Unlike RWELS,
WET logs fixed set of events for all users – and so is
not configurable. The logged events are temporarily
stored in cookies (with storage limitation of 2KB) and

J. King Saud University, Vol. 20, Com. &Info. Sci., pp. 1-11,Riyadh (1428H./2008)

9

retrieved by sending the cookies to the server when
they are full. A start/stop button is provided on all
pages to allow a user to turn logging on or off. This
feature makes logging intrusive.

4.2 WebRemUSINE

WebRemUSINE [23] is a tool for the usability
evaluation of web interfaces. Event data is collected
through JavaScript code embedded into the web
pages. The script code redefines event handlers to
capture the user and browser events, such as: abort
and error on images; change on form elements; click
and double-click on links, images and form elements;
load and unload of pages, submit and reset of forms;
resize and scroll of browser windows. From the
information provided in [23], it appears that the tool
is not configurable and logs the same set of events for
all users. The logging is obtrusive because user must
indicate the task s/he intends to perform during a site
visit and must explicitly indicate the end of a session.
When a user enters a website an applet is launched
that remains active for the rest of the session. Event
handlers communicate the event data to the applet
that temporarily stores the event data and finally
dispatches it to the server, where a Servlet inserts
time, date and user identification into the log and
saves it.

4.3 WIDAM

WIDAM [9] is a client-server application, that
offers many services including service for monitoring
user interaction with web pages in real time and/or
recording it. WIDAM captures mouse movements,
mouse clicks, key presses, document unload and
various window events through JavaScript. Unlike
RWELS the set of events logged is fixed and not
configurable for a user. When a user downloads a
page an applet is launched that creates a socket
connection for communicating with the server in real
time. Whenever an event occurs, the event is sent to
the server through the socket. There is no temporary
storage of the event data in the client. Whenever the
server receives an event from the client it stores it in a
database and/or passes it to other users observing the
interaction with a web page in real time. Because of
this bandwidth requirements are quite high as
compared to RWELS. Furthermore, RWELS uses

HTTP instead of a dedicated socket connection. In
WIDAM since the user has to go through a specific
web page to select a service, this makes the user
aware of the logging.

 4.4 WUM

Web Usage Mining (WUM) [28] uses a Java
applet to capture user navigation. An applet,
embedded in the pages of a website, starts when a
page is downloaded into a client browser. The code
referencing the applet is inserted automatically in all
pages of a website through a simple application.
When a user enters a website the applet is allocated a
unique id generated on the server-side. The
information applet is able to capture is meager
compared to RWELS and includes just the pages
accessed, the time and date a page was loaded into a
browser and unloaded, and users’ IP address. No
other user interaction events are logged. The applet
communicates with a data acquisition server. Each
time a page is unloaded the logged data is sent to the
data acquisition server using TCP. The data
acquisition server stores the data in a database.
Logging is not user-centric. Logs are recorded as
sessions and each session is identified uniquely.

Conclusion

RWELS is a client-side web event-logging tool

that was designed with the goals of unobtrusive
capture of events and configurability in mind. Both
these goals have been achieved in the prototype
implementation. RWELS is able to capture user-
interaction events in the Internet Explorer that include
mouse clicks, scrolls, mouse moves and key-presses.
It dispatches the event-logs to the server where they
are stored as text files. A user does not have to
intervene in this process and in this way RWELS is
unobtrusive. It avoids capturing unnecessary low-
level event data and abstracts out important
information. This reduces the amount of data to be
transferred to the server over the network. To ensure
configurability, RWELS maintains a user profile on
the server-side. By modifying a user’s profile a
usability analyst can choose the events to be captured
for a user.

I. Shah et al, : RWELS: A Remote Web Event Logging System

10

References

[1] Byrne, M. D., John, B. E., Wehrle, N. E., Crow, D. C. , The Tangled Web We Wove: A Taxonomy of WWW Use. In Proceeding of

CHI’ 99, Pittsburgh, PA, May 1999, ACM Press 544-551, 1999.
 [2] Choo, C. W., Deltor, B., Turnbull, D., A Behavioral Model of Information Seeking on the Web: Preliminary Results of a Study of How

Managers and IT Specialists Use the Web, Proc. Of 61st ASIS Annual Meeting, Pittsburg, PA, ed. Cecilia M. Preston, Vol 35: 290-302,
Information Today Inc.

 [3] Choo, C. W., Deltor, B., Turnbull, D., Information Seeking on the Web – An Integrated Model of Browsing and Searching, 1999 ASIS
Annual Meeting, Washington, DC.

 [4] Dix, A., Finlay, J., Abowd, G., Beale, R., Human Computer Interaction, Prentice-Hall, 2004.
 [5] Drott, C. L., Using Web Server Logs to Improve Site Design, Proc. Of ACM SIGDOC 98, ACM, 1998.
 [6] Ellis, R. D., Jankowski, T. B., Jasper, J. E., Tharuvai, B. S., Listener: A Tool for Client-side Investigation of Hypermedia Navigation

Behaviour, Behaviour Research Methods, Instruments and Computers, 1998, 30(6), 573-582.
 [7] Etgen, M., Cantor, J., What does getting WET (Web Event-logging Tool) mean for web usability?, Proc. Of the 5th Conf. on Human

Factors and the Web, Gaithersburg, Maryland, June 1999.
 [8] Fenstermacher, K., Ginsburg, M., Client-side monitoring for Web mining, JASIST 54(7), 2003, 625-637.
 [9] Gamboa, H., Ferreira, V., Widam - Web Interaction Display and Monitoring, ICEIS (4) 2003, pp. 21-27.
 [10] Goecks, J., Shavlik, J., Learning Users’ Interests by Unobtrusively Observing Their Normal Behavior, Proc. of 5th International Conf.

On Intelligent User Interfaces, 2000: 129-132.
 [11] Gonzalez Rodriguez, M. ANTS: An Automatic Navigability Testing Tool for Hypermedia. Proceeding of the Eurographics

Multimedia’ 99 Workshop, Milan, Italy. Multimedia’99, Springer-Verlag, Vienna, Austria ISBN 3-211-83437-0, 2000.
 [12] Gil, Juan Miguel, Development of a tool for the Design and Analysis of Experiments in the Web, Interaction-04, Mayo, Spain, 2004.
 [13] Hammontree, M. L., Hendrickson, J. J., Hensley, B. W., Integrated Data Capture and Analysis Tools for Research and Testing on

Graphical User Interfaces, CHI’92, May 2-7, 1992.
 [14] Hartson, Rex H., Castillo, J. C., Kelso, J., Neale, W. C., Remote Evaluation: The Network as an Extension of the Usability Laboratory,

Proc. of CHI 96, April 13-18, ACM Press, 1996.
 [15] Helms, J., Neale, D.C., Isenhour, P.L. and Carroll, J.M. Data Logging: Higher-Level Capturing and Multi-Level Abstracting of User

Activities. In Proceedings of the 40th annual meeting of the Human Factors and Ergonomics Society, 2000.
 [16] Hilbert, David M., Redmiles, David F., Extracting Usability Information from User Interface Events, ACM Computing Surveys, Vol.

32, No. 4, December 2000, pp. 384-421.
[17] Hilbert, David M., Redmiles, David F., Agents for Collecting Application Usage Data Over the Internet, Proc. Of Autonomous Agents’

98, 1998.
 [18] Hong, Jason I., Landay, James A., WebQuilt: A Framework for Capturing and Visualizing the Web Experience, In Proceedings of The

Tenth International World Wide Web Conference (WWW10), Hong Kong, May 2001, pp. 717-724.
 [19] Kangas, S., Chiu, A., Learning from Event Logging, White Paper at NetConversions Inc., June 2001. http://www.netconversions.com/
 [20] Laus, F. O., Tracing User Interactions on World Wide Web Pages, Manuscript 2001, Available at: http://wwwpsy.uni-

muenster.de/inst3/AEKeil/laus/.
 [21] Marques E., Garcia, A. C., Ferraz, I., RED: A Model to Analysis Web Navigation Patterns, Proc. Of the Workshop on Behaviour-based

User Interface Customization, IUI/CADUI Conference. January, 2004.
 [22] Nielson, J. Usability Engineering, Academic Press, 1993.
 [23] Paganelli, L., Paterno, F., Intelligent Analysis of User Interactions with Web Applications, Proc. Of 7th Intl. Conf. on Intelligent User

Interfaces, January 2002, New York, pp111-118, ACM Press.
 [24] Perkowitz, M., Etzioni, O., Towards Adaptive Websites: Conceptual Framework and Case Study, Artificial Intelligence, 118 (2000),

245-275.
 [25] Reeder, R. W., Pirolli, P., Card, S. K., WebLogger: A Data Collection Tool for Web-Use Studies, Xerox PARC, Technical Report

UIR–2000–06, 2000.
 [26] Scholtz, J., Laskowski, S., Downey, L., Developing Usability Tools and Techniques for Designing and Testing Web Sites. Proc. of the

4th Conference on Human Factors and the Web, 1998. See: http://www.research.att.com/conf/hfweb/index.html
 [27] Shah, I., Jawed, M., Web Event Logging: A Survey. Research Report No.: 3, 2006 Research Center College of Computer &

Information Sciences, King Saud University, Riyadh.
 [28] Shahabi, C., Banaei-Kashani, F., A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking,

WEBKDD-2001, Mining Web Log Data Across all Customer Touch Points, Springer-Verlag, Ney York, 2002, ISBN 3-5404-3969-2.
 [29] Spiliopoulou, M., Pohle, C., Data mining for measuring and improving the success of Web sites. Data Mining and Knowledge

Discovery, Special Issue on Electronic Commerce, 2000.
 [30] Spiliopoulou, M., Web Usage Mining for Website Evaluation, Communications of the ACM, Vol. 43, No. 8 (2000), Pages 127-134.
 [31] Tiedtke, T., Martin, C., Norbert, G., AWUSA – A Tool for Automated Website Usability Analysis, 9th Intl. Workshop on Design,

Specification and Verification of Interactive Systems, Rostock, Germany, June 2002.

J. King Saud University, Vol. 20, Com. &Info. Sci., pp. 1-11,Riyadh (1428H./2008)

11

RWELS :نظام تسجيل أحداث الويب عن بعُد

 عناية االله شاه، ل. التعيمي و محمد جاويد
 قسم علوم الحاسب، كلية علوم الحاسب والمعلومات
 جامعة الملك سعود، الرياض، المملكة العربية السعودية

 م)٢/٧/٢٠٠٨م؛ وقبل للنشر في ٩/٩/٢٠٠٧(قدم للنشر في

صدرا هاما للتعرف على مشاكل الاستخدام في مواقع الويب. نقدم في هذا البحث يمثل "سِجِل الأحداث" م. ملخص البحث
لتسجيل أحداث واجهة برنامج ادمالخ -نظام تسجيل أحداث الويب عن بعُد والذي يعمل بتقنية الويب ويستخدم نموذج الزبون

سجل الأحداث بطريقة تلقائية وبدون التصفح "مايكروسوفت اكسبلورر" أثناء تفاعل المستخدم مع صفحات الويب. النظام يُ
مضايقة المستخدم. النظام يتمتع بمرونة عالية ويوفر إمكانية تسجيل الأحداث ذات العلاقة بالمستخدم. محلل النظم يمكنه تحديد

عن صفحات الويب التي يرغب في تسجيل أحداثها واختيار نوعية هذه الأحداث لكل مستخدم. الأحداث المسجلة يتم إرسالها
طريق الويب إلى الجهاز الخادم بحيث تخُزن هناك على شكل ملفات نصية، بحيث يكون كل ملف نصي مرتبطا بفترة استخدام

 معينة.

