
J. King Saud Univ., Vol. 18, Comp. & Info. Sci., pp. 47-67 (A.H. 1426/2006)

47

Efficient Computing of Iceberg Queries Using Quantiling

Khaled AlSabti
Computer Science Department, College of Computer and Information Sciences,

King Saud University, Riyadh, Saudi Arabia
 alsabti@ccis.ksu.edu.sa

(Received 28 October 2003; accepted for publication 11 December 2004)

Abstract. Iceberg queries have been recently identified as important queries for many applications. These
queries can be characterized by their huge input-small output. The iceberg refers to the input, and the tip of it
refers to the output. We present an efficient algorithm for computing an important class of iceberg queries.
This algorithm uses a focusing technique for the query result using quantiling. The new algorithm almost
always requires two or less scans over the input data, which outperforms other algorithms by a factor of two or
more. It has several nice properties; it scales nicely with the data size; it is robust against the data distribution.
Its memory and computational requirements are small. Further, it is easy to manage. We evaluate its
performance using real and synthetic datasets. We believe that the presented algorithm is the algorithm of
choice for computing the queries considered in this work.

Keywords: Iceberg queries, Data mining, Large itemsets, Quantiles, Databases.

1. Introduction

With the rapid increase of the databases and data repositories sizes, new types of queries
have been emerged where the output is significantly small compared to the input.
Iceberg queries have been recently identified as important queries for many applications
belonging to this category. These applications can be found in data mining [3, 20, 26],
information retrieval [15, 18, 24, 25], decision support and data warehouse [7], web
mining [9] and top k queries [10, 11]. The iceberg queries are formally introduced by
Fang et al. [12]. Detailed application examples have been also presented in [12]. These
queries have been extended to data cubes in [7]. Moreover, they are covered in database
textbooks; e.g. [23]. These queries can be characterized by their huge input-small output.
The iceberg refers to the input, and the tip of it refers to the output. Typical applications

Khaled AlSabti

48

of the iceberg queries can have very large databases; e.g. several gigabytes or more [13].
Below, we give a formal definition of the iceberg queries that we consider in this work.

Problem statement: Iceberg queries are characterized as queries with a huge input and
small output. In this paper, we consider an important class of these queries, which
returns frequently occurring values from a set of attributes. Below, we present a formal
definition of these queries. Given a relation R that consists of n tuples each with m
attributes and a set of attributes ai1, ai2,..., aik, find the values of the tuples (i.e. the tip of
the iceberg) which have attributes ai1, ai2,..., aik, that are replicated more than a pre-
specified threshold f. The assumptions are (1) relation R cannot fit into the main memory
and (2) f is a relatively large percentage so that the output of the query is very small
compared to the input. The type of the specified attribute(s) affects the computation
requirement of the problem. For categorical attributes with a relatively small number of
values, the problem is very simple and it can be solved in one scan over the data. In this
paper, we assume the specified attribute(s) has a numerical type and no prior knowledge
about its distribution is available. For the rest of the paper, we will refer to this query as
the iceberg query.

The above problem can be found in computing frequent itemsets and association
rules in data mining where the counts of the candidate itemsets are computed, followed
by pruning candidates based on their counts. The survived itemsets are the tip of the
iceberg [3]. Also, it can be found in web mining where documents are decomposed into
chunks to find similarities among these documents [9, 12]. Further, it can used to
compute the frequently occurring words in documents to improve the performance of the
information retrieval systems [15, 18, 24, 25]. Furthermore, this problem can be
considered as an important primitive of knowledge discovery and data mining tasks
where it can be used in early stages of the discovery process. A typical application of the
above problem in databases is the count operator in SQL such as:

SELECT R.ai1, R.ai2, , R.aik , count (rest)
FROM R
GROUPBY ai1, ai2,..., aik,
HAVING count (rest) >=n x f

Desired properties: The choice of an algorithm for solving the iceberg query depends
on its properties. The desired properties of the iceberg query algorithms are:

1. Number of passes: The number of passes required over the data.
2. Determinism: The running time of the algorithm can be deterministic or

randomized.
3. Accuracy: This represents the error of the output of the algorithm. Some

algorithms produce exact result (i.e. zero error) and some algorithms produce
approximate result with bounded or unbounded error.

Efficient Computing of Iceberg Queries Using Quantiling

49

4. Sensitivity to the data order: Some algorithms are sensitive to the order of the
data and that may produce very inaccurate result for some orders.

5. Memory requirement: The required memory by an algorithm. Small
requirements are preferable. Also we can derive a tight upper bound on this
requirement for some algorithms.

6. Management: Ease of management for tuning the algorithm. Some algorithms
are very hard to manage due to having a large number of parameters and
tradeoffs.

7. Disk space: The extra space required by an algorithm.
8. Materialization: Some algorithms must work on materialized relations; which

may incur additional disk space and increase the overall cost of the algorithm.
9. Data distribution: Some algorithms are designed for certain distributions, and

they may fail for other distributions.
10. Parallelization property: Some algorithms are inherently highly parallelizable.

In contrast, other algorithms are hard to parallelize.

Contributions: In this paper we propose an efficient algorithm for solving an important
class of iceberg queries. The proposed algorithm focuses the search for the tip of the
iceberg by quantiling the data based on the pre-specified threshold, followed by deriving
the desired result. It has several properties; which make it the algorithm of choice for
solving the iceberg query. These properties are: (1) it scales very well with the relation
size, (2) it almost always requires at most two scans over the input relation, (3) it is a
deterministic algorithm, (4) it generates exact result, (5) it is not sensitive to the order of
the data, (6) its memory and computational requirements are very small, (7) it does not
require any additional disk space, (8) it can work on non materialize relations, (9) it does
not require any priori knowledge about the data distribution, (10) it is easy to manage,
and (11) it is inherently highly parallelizable. We compare the new algorithm to the
state-of-the-art algorithms. We conduct, also, an extensive performance evaluation of the
algorithm using real and synthetic datasets and examine its behavior under different
scenarios.

Paper organization: In the rest of the paper we present the related work in Section 2.
We present our algorithm in Section 3. In this section, we present detailed description of
the algorithm and compare it to the state-of-the-art algorithms. The performance
evaluation of the new algorithm is presented in Section 4. Our conclusion is presented in
Section 5.

2. Related Work

Solutions to the iceberg query can be categorized as exact or approximate
solutions. In the approximate solutions, the produced result may be inaccurate. The

Khaled AlSabti

50

accuracy of these approximate solutions can be bounded or unbounded. A simple
approximate technique is a random sampling approach. In this approach a small random
sample is drawn from the database [22], followed by solving the problem for the small
sample in-memory (e.g. using in-core sorting). This approach requires at most one pass
of the data and it has a small computational requirement. It does not, however, generate
exact result. Further, it can only provide probabilistic bounds on the accuracy.

Exact solutions of the iceberg query have different requirements. A simple and

fast solution is based on direct addressing. In this approach an array for relation R is
created and kept in memory. One scan of the data is performed to compute the frequency
of each distinct value of relation R. This approach works well for a small number of
distinct values of relation R. Its performance is expected, however, to significantly
decrease for a large number of distinct values where we cannot keep the array in
memory. Its memory requirement can be proportional to the size of relation R.

Solving the iceberg query can be done by sorting relation R, followed by scanning
the sorted data to generate the result. This approach requires one pass of the sorted data
plus the number of passes required by the sorting algorithm. Sorting a large relation
requires external sorting; which is an expensive operation. It requires many read and
write passes over the data as well as additional disk space. For example, a merge-based
algorithm requires n/m passes, where n is the number of tuples of relation R and m is the
number of tuples that can fit in the main memory. Each pass will generate a sorted run.

These sorted runs will be merged in
m
n

mlog passes. For large relations and a relatively

small main memory, the external merge sort can be very expensive. One major drawback
of the sorting-based approach is that it cannot directly work on non-materialized data. As
pointed out by Fang et al., materializing relation R may be infeasible [12]. In this paper,
they gave an example of the market basket application where materializing relation R
can have quadratic increase in size over the initial size.

Computing association rules can be done using iceberg queries. Typically, mining

association rules is decomposed into two subproblems: (1) generating all large itemsets;
i.e. itemsets that have support (frequency) above a user-defined threshold, and (2)
generating all rules from the large itemsets [2, 3, 20, 26]. The large itemsets can be
found using an iceberg query. These large itemsets are computed in accordance to the
lattice property of the large itemsets [3]. Large itemsets of smaller sizes are generated
before longer ones using a candidates set. This set is computed using smaller large
itemsets. A scan over the data is performed to compute the frequencies of the candidate
itemsets. This technique requires one scan over the data plus the cost of generating the
candidates set. For large candidates set, this technique may require multiple scans over
the data.

Efficient Computing of Iceberg Queries Using Quantiling

51

Fang et al. proposed a number of approaches for solving the iceberg query [12].
These approaches, the state-of the-art approaches, employ multiple hashing and
sampling techniques to generate a candidates set of the exact result (i.e. the tip of the
iceberg). This candidates set is not defined explicitly; its member must satisfy some
criteria. Some of the proposed approaches generate candidates set that is a super set of
the exact result; which may contain false positives, i.e. an item that is not part of the
result. These false positives are pruned out by a post processing phase that counts the
exact frequencies of these items. The cost of the post processing phase is a function of
the candidates set size; it may require multiple scans of the data. Other proposed
approaches may generate candidates set that is not a super set of the exact result; which
may lead to false positives and false negatives errors. The false negatives are items that
are part of the result, but are not contained in the candidates set. Detecting and finding
false negatives are hard problem; it is basically the initial problem; i.e. solving the
iceberg query. The proposed algorithms can work directly on non-materialized relations.
Further, they can solve iceberg queries with different types of aggregates; e.g. count and
sum. However, these approaches can be sensitive to the data skew. Setting reasonable
values to the many parameters of the algorithms (e.g. sample size, number of hash
functions, hash functions and memory management parameters) can be a non-trivial
task. Further, the proposed algorithms require at least few passes over the data to
compute the iceberg query. The most efficient algorithms (e.g. DEFER-COUNT,
MULTI-STAGE, MULTISCAN-SHARED2) require at least four scans. Finding an
appropriate algorithm for a given input can be a difficult task as it is shown in the "rule
of thumb" section [12].

Quantiling: The -quantile of an ordered sequence of data values is the element with
rank x n, where n is the total number of values. The median of a set of data is the 0.5
quantile. Quantiles are important order statistics. Their accurate estimates are required
for the solution of many practical applications. The problem of finding a -quantile of a
set of elements of size n which reside in the main memory can be solved in O(n) time by
using the deterministic algorithm of [8] or in O(n) expected time by using the
randomized algorithm of [14]. Large applications require an effective quantiling
algorithm that reduces I/O requirements as much as possible without significantly
sacrificing the accuracy. In many cases the exact value of the quantile is not needed and
a good estimate of the true value is sufficient. Several approaches have been proposed in
the literature; e.g. [4, 5, 16, 17, 19, 21].

3. Our Approach: Quantile-based Approach

In this section we present an efficient new algorithm for computing an important

class of the iceberg queries. The new algorithm has many desirable characteristics that make

Khaled AlSabti

52

it the algorithm of choice for solving the iceberg query considered in this paper. We
decompose the query computation task into two phases:

 Phase 1: Generate a super set of the tip of the iceberg; i.e. the candidates set.
 Phase II: Filter out the false positives by scanning the data.

Similar decomposition was employed in [12]. There are, however, major

differences between our approach and the approaches presented in [12]. Clearly the cost
of the above approach depends on the cost of generating the candidates set and its size.
Ideally, we would like to generate a small candidates set as much as possible in one pass
over relation R. The smallest candidates set is the exact answer of the iceberg query
itself; which do not have any false positives. Moreover, we would like to filter out the
false positives in at most one additional pass. Thus computing the iceberg query can be
done in two (or less) passes over R. The above scheme does not generate false negatives.
This is a desirable property since handling those items is difficult task as shown in [12].
Without loss of generality, we assume that the number of attributes k (cf. the
Introduction) that defines the iceberg query is one. The algorithms presented in this
section can be easily extended for more than one attribute. For the sake of explanation,
let us consider the following example. Given relation R (shown in Table 2) and threshold
f of 20%, one can solve the iceberg query of this relation by sorting R, then computing
the frequency of each distinct value. Fig. 1 shows relation R sorted. Clearly, the iceberg
query result consists of 45 only. Alternatively, one can find the iceberg query result of
this example using the above decomposition by first generating a candidates set of the
query result as the set consisting of qi elements shown in the figure. These elements are
called quantiles. Thus, the candidates set consists of q0.2, q0.4, q0.6 and q0.8. Then the exact
frequencies of these quantiles are computed to filter out the false positives. The
following lemma presents the general case of the candidates set generation scheme.

Lemma 1 Given relation R, the result of the iceberg query of R for threshold f
(lceberg(R)f) satisfy the following.

 Iceberg (R)f {qf, q2f, . . . ,q1})

Proof: We proof this result by contradiction. Let us assume that there exists an element
x
such that (1) x lceberg (R)f and (2) (x {qf, q2f, . . . ,q1})
 Then x ≠ qif i
 Then qif < x < q(i+1)f) for some i
 Then |{y|y R and qif < y < q(i+1)f }| fn, where n is the total number of tuples.

Therefore the number of tuples with values x is less than fn. Thus x is not part of the
result of the iceberg query, and that is a contradiction.

Efficient Computing of Iceberg Queries Using Quantiling

53

Table 1. Notation used throughout the paper

Term Description
R the input relation; it does not have to be materialized
n |R|
m number of elements that can fit into the main memory
f the iceberg query threshold
qf the f-quantile

Lqf a lower bound of qf
Uqf an upper bound of qf

OPAQ the quanitle algorithm [5]
s a parameter of OPAQ

Table 2. Example of relation R

Tuple ID 1 2 3 4 5 6 7 8 9 10
Value 238 45 9 45 67 45 45 77 144 233

The candidates set can be directly generated using the above lemma. Formally, the
candidates set = {qf, q2f, . . ., q1}. The false positives among these quantiles are filtered
out by scanning R. Finding the exact quantiles for large data that cannot fit into the main
memory may require at least two passes [5]. However accurate estimates of quantiles
can be computed in one pass over the data [5]. For each quantile, lower L and upper U
bounds of the true value are generated (Fig. 2). Further, the number of distinct values in
the interval defined by these bounds can be bounded [5]. Using these bounds, one can
generate a candidates set as follows:

]},[and|{setcandidates qifqif
i

ULxRxx (1)

Fig. 1. Example: elation R sorted.

It is easy to proof that this candidates set is a super set of the result of the iceberg query.
This is an immediate result from Lemma 1 and the definitions of the lower and upper
bounds.

Khaled AlSabti

54

Overview We solve the iceberg query using the above decomposition. In Phase 1, we
generate a candidates set using equation (1). The quantile estimates can be generated
using an efficient quantile algorithm for large dataset. There are a few such algorithms
in the literature. We choose to use the OPAQ algorithm for this purpose [5]. This
algorithm requires one pass over the data to produce the estimates. Also, it generates a
relatively small candidates set. This is a desirable property because it ensures efficient
implementation of the next phase. In Phase II, we determine the result of the iceberg
query by filtering out false positives, if any. This phase can be done in zero or one pass
over the data for candidates' sets that can fit into the main memory. Otherwise it can be
staged.

Detailed Description For a given threshold f we compute accurate estimates of qf, q2f, ..
., q1 using a quantile algorithm. The quantile algorithm must satisfy the following
criteria:

1. produce lower and upper bounds of the true quantile,
2. guarantee a bounded (small) number of distinct values between the lower and

upper bounds of the true values,
3. its overall cost is small and it is scalable to large databases.

The OPAQ algorithm meets all the above criteria. It requires only one pass over

the data to compute the quantiles. Its computational and memory requirements are linear
and sub linear in |R|, respectively. OPAQ generates lower and upper bounds of each
quantile; i.e. Lq and Uq. Further, it bounds the number of distinct values in the intervals
defined by the lower and upper bounds by 2n/s, where s is a parameter of the OPAQ
algorithm. Fig. 2 shows the output of the OPAQ algorithm. Now, we need to determine
the query result from the candidates set; i.e. Phase II. There are two main steps that need
to be considered. In the first step, we prune the candidates set. The frequencies of the
remaining elements, if any, are computed in the second step.

Fig. 2. True, lower and upper bounds on quantiles and some of their relationships.

Efficient Computing of Iceberg Queries Using Quantiling

55

Khaled AlSabti

56

 Step 1 In this step we prune intervals based on the intervals' boundaries. These
pruned intervals are not considered for further processing. For some intervals, we
can prove there relationship with the query result; i.e. part or not part of the result.
There are a number of cases that can considered for performing pruning. Below we
discuss four such cases.

1. Case 1: For adjacent intervals with Lqif = Uq(i+1)f (Fig. 2), we can

determine an element of the query result from the intervals'
boundaries. It can easily be shown that an element x that is equal to
Lqif and Uq(i+1)f for some i is part of the query result. Further, the
intervals [Lqif , Uqif] and [Lq(i+1)f , Uq(i+1)f] consist of only one element
(i.e.x) and they can be pruned out from the remaining processing.

2. Case 2: For adjacent intervals with Uqif = Lq(i+2)f (Fig 2), interval

[Lq(i+1)f , Uq(i+1)f] is part of the query result and it can be pruned out.

3. Case 3: An interval [Lqif , Uqif] is not part of the query result if Uq(i-

0.5)f Lqif and Lq(i-0.5)f Uqif . This interval can be pruned out.
Note that Uq(i-0.5)f and Lq(i-0.5)f are computed on the fly using OPAQ
without any additional I/O.

4. Case 4: An interval [Lqif , Uqif] is part of the query result if Lq(i-0.5)f =

Uq(i-0.5)f . Also, Lq(i-0.5)f and Uq(i-0.5)f are computed on the fly using
OPAQ without any additional I/O.

 Step 2: For other intervals (i.e. alive intervals), we need to compute the exact

frequency of all their elements to filter out the false positives. Note that in case
there is no alive intervals, Phase II is completed without any additional
scanning of R and computing the iceberg query took one scan of R. The size of
the alive intervals (i.e. the number of distinct values) can affect the cost of
Phase II. In case that all the alive intervals can fit into the main memory,
finding the query result can be done by scanning R and computing the elements
frequency in memory as follows. An element, first, is pruned out if it is part of
the iceberg query result (Step 1) or it does not belong to any alive interval.
Otherwise, it is assigned to the first alive interval such that it belongs to. Note
that an element can belong to two alive intervals. Each alive interval is sorted
incrementally.1 Each element of the sorted interval consists of a value and its
current frequency. In case the alive intervals cannot fit into the main memory,
we need to process them in stages. We expect, however, this almost always will
not be the case (see, below, the memory requirement of the alive intervals).
Note that the actual counts of the output can be computed in the second phase,

1 One can use other techniques for counting, e.g. hashing.

Efficient Computing of Iceberg Queries Using Quantiling

57

if needed. In what follows, we derive an upper bound of the size of the alive
intervals.

The size of the alive intervals The maximum size of an alive interval is 2n/s (this result
was derived elsewhere [5]). The maximum number of the alive intervals is 1/f. Thus an

upper bound of the requirement of processing the alive intervals is proportional to
fs
n2 .

We can set s to be a function of n, e.g. s = 1%n. Thus the memory requirement is 200/f.
For f = 20%, this bound is less than 1K and it is less than 20M for f = 0.001%. In the best
case, there are no alive intervals. The best case for the alive intervals is one element for
each interval; the memory requirement is 1/f. Clearly, the memory requirement of Phase
II, in the worst-case, is small and it can be almost always met.

Analysis The new algorithm is very attractive. Its memory, disk, I/O and computational
requirements are very small. The overall memory requirement is the maximum of the
memory requirements of Phases I and II. Phase I requirement is exactly the requirement
of the quantile algorithm. With OPAQ, this is)(nsO for a given n and s. For s =
0.1%n, this requirement is proportional to 1%n. One of the features of OPAQ is that we
can control the value of s; thus for very large relations we can use a small value of s to
meet the memory limitations. The memory requirement of Phase II is proportional to

fs
n2 . For large relations, the memory requirement of the new algorithm is the memory

requirement of the quantile algorithm; it is)(nsO with OPAQ. The new algorithm
does not require an additional disk space, even for non-materialized relations (cf.
Characteristics below).

The I/O requirement of the new algorithm is the sum of the I/O requirements of
Phase I and Phase II. For Phase I, OPAQ makes one scan over the relation. In Phase II,
one extra scan (or less) is required in almost always all the cases. Thus we can compute
the result of a query in two or less scans over relation R. The computational requirement
of the new algorithm is, again, the sum of the requirements of Phase I (the quantile
algorithm) and Phase II. With OPAQ, Phase I can be done in O(n log s) time [5]. Phase
II requires, assuming fixed f and s is a small fraction of n, O (n lg A) (where A is the
number of alive intervals) and O(1) in the worst-case and best-case, respectively. Thus
the overall computational requirement of the new algorithm is O(n log s). Table 3
summarizes the different requirements of the new algorithm.

Khaled AlSabti

58

Table 3. Resources' requirements of the new algorithm
Resource Cost
Memory)(nsO

Disk __
I/O Almost always two or less scans of R

Computational O(n log s)

Limit on Threshold f Clearly, the value of f can affect the cost of solving the iceberg
queries since the size of the result of an iceberg query is inversely proportional to the
value of f. From the definition of the iceberg query problem (cf. the Introduction), the
value of the threshold f is a percentage of n. For example with f = 1%n, the upper bound
of the query result size is 100. In contrast, it is 10,000 for f=0.01%n. The value of f that
can be handled by our algorithm is constrained by the quantile algorithm limitations as
well as those of Phase II. With OPAQ, we have the following constraints [5]:

)(1 2

n
mO

f
 (2)

 fs 10 (3)

Phase II, in the worst-case, has the following constraint.

 m
fs
n2 (4)

The above constraint is required so that the entire phase can be guaranteed to be
completed in one scan over R. In case that it is not satisfied, this phase must be staged.

This corresponds to m
f

200 , assuming that s = 0.1%n. Thus, the new algorithm is very

scalable with respect to the value of the threshold.

Characteristics The new algorithm has several characteristics that make it the
algorithm of choice. The new algorithm requires (at most) two passes over the data for
almost always all the cases independent of the data distribution. The memory
requirement of the new algorithm is very small. For s = 0.1%n, it is proportional to
3%n. The new algorithm does not require any extra disk space. This feature is important
for large applications. Another feature of the algorithm is that it does not require
materialized relation to produce the result. It can work directly on non-materialized
relations. Again, this is important feature for large applications. Its running time is
deterministic as shown in Table 3. It is very accurate; it produces exact result. It is not
sensitive to the data order, i.e. its running time and result does not depend on the order of

Efficient Computing of Iceberg Queries Using Quantiling

59

the data. Moreover, it does not require any prior knowledge about the data distribution.
The new algorithm can be efficiently parallelized. For Phase I, the OPAQ algorithm is
highly parallelizable [5]. The main operations of Phase II are I/O and counting.
Parallelizing I/O is straightforward, and it is optimal or near-optimal. For the counting
operation, it can be performed in two stages. In the first stage, we perform a local count,
which is optimal or near optimal. The second stage (i.e. the overhead) can be done

efficiently using a global combine primitive [27] of size (at most)
sf
n2 . The cost of this

operation (the overhead) is very small compared to the overall cost. We expect the
parallel version of our algorithm to exhibit good scale-up, size-up and speedup
characteristics.

Our Approach vs. Previous Approaches We compare our approach to the random
sample approach and to those of Fang et al. [12]. The random sampling approach is
simple and has small requirements compared to other approaches. For applications that
require exact results or bounded non-probabilistic errors, this approach is a poor choice
(cf. Section 2). The approaches of Fang et al. exhibit nice properties (cf. Section 2).
However, the "best" approaches of these approaches (e.g. DEFFER-COUNT, MULTI-
STAGE, MULTISCAN-SHARED2 and UNISCAN) suffer from at least one of the
following:

1. The I/O requirements are large compared to our algorithm. Their requirements
can be higher than those of the new algorithm by a factor of two (or more)
since they require at least four I/O scans.

2. The computational requirements are linear in n. However, they use multiple
hashing techniques; which can be a relatively expensive.

3. The memory management required for achieving a good performance can be a
difficult task.

4. They have a relatively large number of parameters. Setting these parameters
for achieving good performance can be a hard task.

5. Sensitivity to the data skew. Some of the proposed algorithms in [12] are
sensitive to the data distribution.

We can conclude from the characteristics of the new algorithm and the above

discussion that the new algorithm is a better option for computing the iceberg queries
that we consider in this paper. This is due to (1) its small memory, computation and I/O
requirements, (2) ease of management, (3) a small number of parameters, (4) its
robustness to the data distribution and others (cf. Characteristics section, above).

4. Performance Evaluation

Khaled AlSabti

60

In this section we evaluate the performance of our algorithm. We have
implemented the new algorithm in C and ran it on Linux Red Hat version 6.0. The
machine used has the following configuration: Intel Pentium III, 512 KB cache and 128
MB RAM. The parameters of the new algorithm are n, f, data distribution and the
available memory m. Below, we describe the data distributions that we used.

Datasets We want to study the behavior of the new algorithm under different known
distribution. For this, we have used Uniform and Zipf [28] distributions. We also use a
large real world dataset. Brief descriptions of these datasets are giving below:

1. Uniform: For a given size n, we generate a data where the elements are drawn
randomly from [0..n/1000).

2. Zipf: The Zipf distribution models many real life phenomena [28]. It has a
parameter that determines the skew degree. This parameter p ranges between
zero and one where the degree of skew is inversely proportional to its value. A
value of 1 results in Uniform distribution, where a value of zero results in very
skewed distribution. We generated Zip0.8, Zip0.6, Zip0.4, Zip0.2 and Zip0.0
datasets using 0.8, 0.6, 0.4, 0.2 and 0.0 as values of this parameter;
respectively. For a given size n and a given p, we generate a data where the
elements are drawn from [0..n/1000) using Zipf distribution with p.

3. Real: We use a network connections dataset, which was used in the 1999 KDD
intrusion detection contest (KDD-Cup99) [1]. This data has a number of
attributes (continues and discrete). This dataset can be accessed in [6]. The task
of the KDD-Cup99 is to build a predictive model to detect illegitimate
connections called attacks. This dataset has training and testing versions. In
this work, we use the first 4.5M values of the 5th and 6th attributes of the
training dataset. We call these datasets Att5 and Att6. The data distributions of
these columns are not known.

We performed four main experiments. For each experiment, we mainly report the

total execution time, the percentage of the processed data in Phase II, the memory
requirement of Phase II and number of I/O scans performed. For all these experiments
we set s to 10/f.

Sensitivity to the data size In this experiment, we set the available memory to 10
Million elements, data distribution to Zip0.2 and vary n (20 M, 40 M, 60 M, 80 M and
100 M elements) and the threshold f (0.01%, 0.05%, 0.1%, 0.5%, 1%, 5% and 10%).
Fig. 3 shows the total execution time in seconds for a number of settings. We observe the
following from this experiment. The algorithm made at most two I/O scans over the data.
For some cases, it required one scan only; e.g. for a relatively large threshold f. This
explains the sudden drop in the execution time; e.g. 100M & 1%, and 40 & 5%. Note
that this depends on the effectiveness of the pruning in Phase II. Using the current

Efficient Computing of Iceberg Queries Using Quantiling

61

pruning technique, it is expected to get a lot of pruning for a large threshold and/or a
small degree of skew in the data distribution. The second observation is the robustness of
the algorithm against the threshold values for the same requirements of the I/O scans.
Put other way, the overall cost of Phase II is not very sensitive to the threshold given that
a second I/O scan is performed. This is because the I/O cost and a significant portion of
the computation cost are independent of the threshold. The third observation is that the
algorithm scales very well with the relation size; its scalability is a sub-linear. Fig. 4
shows the number of elements of the alive intervals in Phase II. For all the cases, the
total size of the alive intervals is very small; it varies between 16% and 0%. As expected
the total size decreases with the increase of the threshold. Note that the total size of the
alive intervals is the upper bound of the memory requirement of Phase II. The exact
memory requirement is the number of distinct values of the alive intervals, and it was
less than 1% for all the cases.

Fig. 3. Dataset size vs. threshold: Total time in seconds.

Sensitivity to the data distribution We set the data size n to 60 Million and the
available memory to 10 Million elements. We vary the data distribution (Uniform,
Zip0.8, Zip0.6, Zip0.4, Zip0.2 and Zip0.0) and the threshold. Fig. 5 shows the total
execution time of a number of settings. We observe the following. First the total
execution can be sensitive to the data distribution (equivalently the threshold). The
overall cost of the algorithm can decrease by a factor of two for the same data size but
different distribution (or threshold). This is because the I/O scans and the associated
computation requirement can decrease by a factor of two. This explains the sudden drop
of the execution time for some cases. For the Uniform case, there was no sudden drop

Khaled AlSabti

62

since its I/O requirement was one scan for all the tested threshold values. It is interesting
to notice the time of the sudden drop of the execution time. It was 0.05%, 0.5%, 1%, 5%
and 10%) for Zip0.8, Zip0.6, Zip0.4, Zip0.2 and Zip0.0; respectively. One can estimate

Fig. 4. Dataset size vs. threshold: Percentage of data falls in the alive intervals.

the skew degree of a dataset or compare a number of datasets by trying different
threshold values. The overall cost of the algorithm for different data distributions is
comparable in case it requires the same number of I/O scans. This is attributed to the fact
that a little of the performed work is dependent of f; e.g. generating the sample points
and pruning the intervals. Fig. 6 shows the total number of elements of the alive
intervals in Phase II. It varies between 11% and 0% of the data size. Further, it decreases
with the increase of the threshold. The curve of the Uniform case is not shown since it is
always zero. Again, the exact memory requirement is the number of distinct values of
the alive intervals, and it was less than 1% for all the cases.

Sensitivity to the available in memory We set the data size to 60 million elements
and the data distribution to Zip0.2, and vary the available memory (1 million, 5 million
and 10 million) and the threshold. Fig. 7 shows the total execution time of the algorithm.
Due to the small memory requirements of the new algorithm, the total execution time
was virtually independent of the available memory. For all the cases, the sample points
fit into the available memory and the memory requirement of Phase II was very small;
i.e. less than 0.1%. It is interesting to notice that using 1 million of memory results in
marginally better performance. We attribute this phenomenon to the cache effects since

Efficient Computing of Iceberg Queries Using Quantiling

63

we are not optimizing the memory accesses to effectively use the memory hierarchy of
the machine. The total number of the alive intervals is virtually the same for the different
memory sizes Fig. 8. Note the sample points can be different for different memory sizes
due to behavior of the quantiling algorithm that we use.

Fig. 5. Data distribution vs. threshold: Total time in seconds.

Khaled AlSabti

64

Fig. 6. Dataset distribution vs. threshold: Percentage of data processed in the second phase.

Fig. 7. Memory size vs. threshold: Total time in seconds.

Efficient Computing of Iceberg Queries Using Quantiling

65

Fig. 8. Memory size vs. threshold: Percentage of data processed in the second phase.

Khaled AlSabti

66

Real dataset We ran the new algorithm on the 1999 KDD cup dataset (Att5 and Att6).
Fig. 9 shows the total time for different threshold values. The behavior of the algorithm
on real datasets comforts the general findings of the previous experiments. The total
running time slowly decreases with the increase with the threshold values till a
significant drop happen when the number of required I/O reaches to one scan.

Fig. 9. Attributes number 5 and 6 of the real datasets: Total time in seconds.

We conclude from the analysis of Section 3 and the above experiments that the
new algorithm is scalable with respect to the value of the threshold f; it can efficiently
handle relatively small values. For all the above experiments, we measured the I/O and
computation times. The I/O generally consumes between 45% and 70% of the overall
time. This fact offers an opportunity to further reduce the overall cost of the algorithm by
overlapping the I/O with the computation.

Conclusion

We have presented an efficient algorithm for computing an important class of the
iceberg queries which returns frequently occurring values from a set of attributes. It uses
a set of estimates of quantiles of the input relation to focus the search of the query result.
The new algorithm almost always requires two (or less) scans. It can compute the
iceberg queries using one scan for some input. The new algorithm has nice properties
that make it the algorithm of choice for solving the iceberg queries considered in this

Efficient Computing of Iceberg Queries Using Quantiling

67

work. It scales very well with respect to the relation size as well as the threshold. It is
robust against the data distribution. Its memory and computational requirements are
small.

As a future work, the I/O with the computation can be overlapped to further
reduce the overall running time. Also, optimizing the memory accesses to better utilize
the memory hierarchy may reduce the running time. One can use more quantiles to
devise more aggressive pruning techniques. There is, however, a tradeoff between the
pruning cost and the cost of Step 2 of Phase II which needs to be investigated further. It
would be interesting to extend the new algorithm where the data elements have different
weights.

References

[1] The Third International Knowledge Discovery and Data Mining Tools Competition. Fifth ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, 1999.
[2] R. Agrawal, T. Imielinski, and A. Swami. Mining Associations Between Sets of Items in

Massive Databases. Proceedings of the ACM SIGMOD Int'l Conference on Management of Data, pages
207-216, May 1993.

[3] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. Proceedings of the 20th Int'l
Conference on Very Large Databases (VLDB '94), September 1994.

[4] R. Agrawal and A. Swami. A One-Pass Space-Efficient Algorithm for Finding Quantiles. Proceedings
of the 7th Int'l Conference Management of Data (COMAD-95), December 1995.

[5] K. AISabti, S. Ranka, and V. Singh. A One-Pass Algorithm for Accurately Estimating Quantiles for
Disk-Resident Data. Proceedings of the Int'l Conference on Very Large Databases (VLDB '97), pages
346-355, August 1997.

[6] S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. University of California, Department of
Information and Computer Science, 1999.

[7] K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs. In the
Proceedings of 1999 ACM SIGMOD Int'l. Conference on Management of Data, pages 359-370,1999.

[8] M. Blum et al. Time Bounds for Selection. Journal of Computers and Systems, 7:4:448-461, 1972.
[9] A. Broder, S. Classman, M. Manasse, and G. Zweig. Syntactic Clustering of the Web. In Proceedings

of the 6th Int'l World Wide Web Conference, April 1997.
[10] S. Chaudhuri and L. Gravano. Evaluating Top-A: Selection Queries . Proceedings of the 25th Int'l

Conference on Very Large Databases (VLDB '99), pages 399-410, 1999.
[11] D. Donjerkovic and R. Ramakrishnan. Probabilistic Optimization of Top n Queries. Proceedings of the

25th Int'l Conference on Very Large Databases (VLDB'99), pages 411-422, 1999.
[12] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Computing Ice-

berg Queries Efficiently. Proceedings of the 24th Int'l Conference on Very Large Databases (VLDB
'98), 1998.

[13] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusam editors. Advances in Knowledge
Discovery and Data Mining. The AAAI Press/The MIT Press, 1996.

[14] R. W. Floyd and R. 1. Rivest. Expected Time Bounds for Selection. Communications of the ACM,
18(3):165-172,1975.

[15] C. Fox. Lexical Analysis and Stoplist in Information Retrieval Data Structures and Algorithms. Prentice
Hill, edited by W. Frakes and R. BaezaYates, 1992.

Khaled AlSabti

68

[16] A. P. Gurajada and J. Srivastava. Equidepth Partitioning of a Data Set Based on Finding its Medians.
Technical Report TR-90-24, Computer Science Dept., Univ. of Minnesota, 1990.

[17] R. Jain and 1. Chlamtac. The P2 Algorithm for Dynamic Calculation for Quantiles and Histograms
Without Storing Observations. CACM, Vol. 28, No. 10:1076-1085, October 1985.

[18] Y. Li and A. Jain. Classification of Text Documents. The Computer Journal, 41(8):537-546, 1998.
[19] G. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate Medians and other Quantiles in One Pass

and with Limited Memory. In the Proceedings of 1998 ACM SIGMOD Int'l. Conference on
Management of Data, pages 426-435, 1998.

[20] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Efficient Algorithms for Discovering Association
Rules. KDD-94: AAAI Workshop on Knowledge Discovery in Databases, Seattle, Washington, pages
181-192, July 1994.

[21] J. 1. Munro and M. S. Paterson. Selection and Sorting with Limited Storage. Theoretical Computer
Science, 12:315-323,1980.

[22] F. Olken. Random Sampling from Databases. Ph.D. Thesis, University of California at Berkeley,
1993.

[23] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 2nd edition, 2000.
[24] G. Salton. The SMART Retrieval System- Experiments in Automatic Documents Processing. Prentice

Hall, 1971.
[25] G. Salton. A Theory of Indexing. Society for Industrial and Applied Mathematics, 1975.
[26] S. Thomas, S. Bodagala, K. AISabti, and S. Ranka. An Efficient Algorithm for the Incremental

Updation on Association Rules in Large Databases. In Proceedings of the 2nd Int'l Conference on
Knowledge Discovery and Data Mining, 1997.

[27] A. Grama V. Kumar, G. Karypis and A. Gupta. Introduction to Parallel Computing: Design and
Analysis of Algorithms. The Benjamin/Cummings Publishing Company, Inc, 1994.

[28] G.K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading, MA, 1949.

Efficient Computing of Iceberg Queries Using Quantiling

69

 الشبكة المشقبة التي تدور عكسيا: هيكل جديد للشبكات الحلقية في المناطق المدنية

 خالد السبتي
 ، كلية علوم الحاسب والمعلوماتقسم علوم الحاسب

 الملك سعود، الرياض امعة ج

 م)١١/١٢/٢٠٠٤م؛ وقبل للنشر في ٢٨/١٠/٢٠٠٣(قدّم للنشر

 لا يوجد ملخص ملخص البحث.

