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Abstract. Iceberg queries have been recently identified as important queries for many applications. These 
queries can be characterized by their huge input-small output. The iceberg refers to the input, and the tip of it 
refers to the output.  We present an efficient algorithm for computing an important class of iceberg queries. 
This algorithm uses a focusing technique for the query result using quantiling. The new algorithm almost 
always requires two or less scans over the input data, which outperforms other algorithms by a factor of two or 
more. It has several nice properties; it scales nicely with the data size; it is robust against the data distribution. 
Its memory and computational requirements are small. Further, it is easy to manage. We evaluate its 
performance using real and synthetic datasets. We believe that the presented algorithm is the algorithm of 
choice for computing the queries considered in this work. 
 
Keywords:  Iceberg queries, Data mining, Large itemsets, Quantiles, Databases. 
 
 

1.  Introduction 
 

With the rapid increase of the databases and data repositories sizes, new types of queries 
have been emerged where the output is significantly small compared to the input. 
Iceberg queries have been recently identified as important queries for many applications 
belonging to this category. These applications can be found in data mining [3, 20, 26], 
information retrieval [15, 18, 24, 25], decision support and data warehouse [7], web 
mining [9] and top k queries [10, 11]. The iceberg queries are formally introduced by 
Fang et al. [12]. Detailed application examples have been also presented in [12]. These 
queries have been extended to data cubes in [7]. Moreover, they are covered in database 
textbooks; e.g. [23]. These queries can be characterized by their huge input-small output.  
The iceberg refers to the input,  and the tip of it refers to the output.  Typical applications  



Khaled AlSabti 

 

48 

 

of the iceberg queries can have very large databases; e.g. several gigabytes or more [13]. 
Below, we give a formal definition of the iceberg queries that we consider in this work. 
 
Problem statement: Iceberg queries are characterized as queries with a huge input and 
small output. In this paper, we consider an important class of these queries, which 
returns frequently occurring values from a set of attributes. Below, we present a formal 
definition of these queries. Given a relation R that consists of n tuples each with m 
attributes and a set of attributes ai1, ai2,..., aik, find the values of the tuples (i.e.  the tip of 
the iceberg) which have attributes ai1, ai2,..., aik, that are replicated more than a pre-
specified threshold f. The assumptions are (1) relation R cannot fit into the main memory 
and (2) f is a relatively large percentage so that the output of the query is very small 
compared to the input. The type of the specified attribute(s) affects the computation 
requirement of the problem. For categorical attributes with a relatively small number of 
values, the problem is very simple and it can be solved in one scan over the data. In this 
paper, we assume the specified attribute(s) has a numerical type and no prior knowledge 
about its distribution is available. For the rest of the paper, we will refer to this query as 
the iceberg query. 
 

The above problem can be found in computing frequent itemsets and association 
rules in data mining where the counts of the candidate itemsets are computed, followed 
by pruning candidates based on their counts. The survived itemsets are the tip of the 
iceberg [3]. Also, it can be found in web mining where documents are decomposed into 
chunks to find similarities among these documents [9, 12]. Further, it can used to 
compute the frequently occurring words in documents to improve the performance of the 
information retrieval systems [15, 18, 24, 25]. Furthermore, this problem can be 
considered as an important primitive of knowledge discovery and data mining tasks 
where it can be used in early stages of the discovery process. A typical application of the 
above problem in databases is the count operator in SQL such as: 

 
SELECT R.ai1, R.ai2, . . . . , R.aik , count (rest) 
FROM R 
GROUPBY ai1, ai2,..., aik, 
HAVING count (rest) >=n x f 

 
Desired properties: The choice of an algorithm for solving the iceberg query depends 
on its properties. The desired properties of the iceberg query algorithms are: 

1. Number of passes: The number of passes required over the data. 
2. Determinism: The running time of the algorithm can be deterministic or 

randomized. 
3. Accuracy: This represents the error of the output of the algorithm. Some 

algorithms produce exact result (i.e. zero error) and some algorithms produce 
approximate result with bounded or unbounded error.  
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4. Sensitivity to the data order: Some algorithms are sensitive to the order of the 
data and that may produce very inaccurate result for some orders. 

5. Memory requirement:  The required memory by an algorithm.   Small 
requirements are preferable. Also we can derive a tight upper bound on this 
requirement for some algorithms. 

6. Management: Ease of management for tuning the algorithm.  Some algorithms 
are very hard to manage due to having a large number of parameters and 
tradeoffs. 

7. Disk space: The extra space required by an algorithm. 
8. Materialization:  Some algorithms must work on materialized relations; which 

may incur additional disk space and increase the overall cost of the algorithm. 
9. Data distribution:  Some algorithms are designed for certain distributions, and 

they may fail for other distributions. 
10. Parallelization property: Some algorithms are inherently highly parallelizable. 

In contrast, other algorithms are hard to parallelize.  
 
Contributions: In this paper we propose an efficient algorithm for solving an important 
class of iceberg queries. The proposed algorithm focuses the search for the tip of the 
iceberg by quantiling the data based on the pre-specified threshold, followed by deriving 
the desired result. It has several properties; which make it the algorithm of choice for 
solving the iceberg query. These properties are: (1) it scales very well with the relation 
size, (2) it almost always requires at most two scans over the input relation, (3) it is a 
deterministic algorithm, (4) it generates exact result, (5) it is not sensitive to the order of 
the data, (6) its memory and computational requirements are very small, (7) it does not 
require any additional disk space, (8) it can work on non materialize relations, (9) it does 
not require any priori knowledge about the data distribution, (10) it is easy to manage, 
and (11) it is inherently highly parallelizable. We compare the new algorithm to the 
state-of-the-art algorithms. We conduct, also, an extensive performance evaluation of the 
algorithm using real and synthetic datasets and examine its behavior under different 
scenarios. 
 
Paper organization: In the rest of the paper we present the related work in Section 2. 
We present our algorithm in Section 3. In this section, we present detailed description of 
the algorithm and compare it to the state-of-the-art algorithms. The performance 
evaluation of the new algorithm is presented in Section 4. Our conclusion is presented in 
Section 5. 
 
 

2.  Related Work 
 

Solutions to the iceberg query can be categorized as exact or approximate 
solutions. In the approximate solutions, the produced result may be inaccurate. The 
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accuracy of these approximate solutions can be bounded or unbounded. A simple 
approximate technique is a random sampling approach. In this approach a small random 
sample is drawn from the database [22], followed by solving the problem for the small 
sample in-memory (e.g. using in-core sorting). This approach requires at most one pass 
of the data and it has a small computational requirement. It does not, however, generate 
exact result.  Further, it can only provide probabilistic bounds on the accuracy.  

 
Exact solutions of the iceberg query have different requirements. A simple and 

fast solution is based on direct addressing.  In this approach an array for relation R is 
created and kept in memory. One scan of the data is performed to compute the frequency 
of each distinct value of relation R. This approach works well for a small number of 
distinct values of relation R. Its performance is expected, however, to significantly 
decrease for a large number of distinct values where we cannot keep the array in 
memory. Its memory requirement can be proportional to the size of relation R. 
 

Solving the iceberg query can be done by sorting relation R, followed by scanning 
the sorted data to generate the result. This approach requires one pass of the sorted data 
plus the number of passes required by the sorting algorithm. Sorting a large relation 
requires external sorting; which is an expensive operation. It requires many read and 
write passes over the data as well as additional disk space. For example, a merge-based 
algorithm requires n/m passes, where n is the number of tuples of relation R and m is the 
number of tuples that can fit in the main memory. Each pass will generate a sorted run. 

These sorted runs will be merged in 
m
n

mlog  passes. For large relations and a relatively 

small main memory, the external merge sort can be very expensive. One major drawback 
of the sorting-based approach is that it cannot directly work on non-materialized data. As 
pointed out by Fang et al., materializing relation R may be infeasible [12]. In this paper, 
they gave an example of the market basket application where materializing relation R 
can have quadratic increase in size over the initial size.  

 
Computing association rules can be done using iceberg queries. Typically, mining 

association rules is decomposed into two subproblems: (1) generating all large itemsets; 
i.e. itemsets that have support (frequency) above a user-defined threshold, and (2) 
generating all rules from the large itemsets [2, 3, 20, 26].  The large itemsets can be 
found using an iceberg query. These large itemsets are computed in accordance to the 
lattice property of the large itemsets [3]. Large itemsets of smaller sizes are generated 
before longer ones using a candidates set.  This set is computed using smaller large 
itemsets.  A scan over the data is performed to compute the frequencies of the candidate 
itemsets. This technique requires one scan over the data plus the cost of generating the 
candidates set.  For large candidates set, this technique may require multiple scans over 
the data.  
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Fang et al. proposed a number of approaches for solving the iceberg query [12]. 
These approaches, the state-of the-art approaches, employ multiple hashing and 
sampling techniques to generate a candidates set of the exact result (i.e. the tip of the 
iceberg). This candidates set is not defined explicitly; its member must satisfy some 
criteria. Some of the proposed approaches generate candidates set that is a super set of 
the exact result; which may contain false positives, i.e. an item that is not part of the 
result.   These false positives are pruned out by a post processing phase that counts the 
exact frequencies of these items. The cost of the post processing phase is a function of 
the candidates set size; it may require multiple scans of the data. Other proposed 
approaches may generate candidates set that is not a super set of the exact result; which 
may lead to false positives and false negatives errors. The false negatives are items that 
are part of the result, but are not contained in the candidates set. Detecting and finding 
false negatives are hard problem; it is basically the initial problem; i.e. solving the 
iceberg query. The proposed algorithms can work directly on non-materialized relations. 
Further, they can solve iceberg queries with different types of aggregates; e.g. count and 
sum.  However, these approaches can be sensitive to the data skew. Setting reasonable 
values to the many parameters of the algorithms (e.g. sample size, number of hash 
functions, hash functions and memory management parameters) can be a non-trivial 
task. Further, the proposed algorithms require at least few passes over the data to 
compute the iceberg query. The most efficient algorithms (e.g. DEFER-COUNT, 
MULTI-STAGE, MULTISCAN-SHARED2) require at least four scans. Finding an 
appropriate algorithm for a given input can be a difficult task as it is shown in the "rule 
of thumb" section [12]. 
 
Quantiling: The -quantile of an ordered sequence of data values is the element with 
rank  x n, where n is the total number of values.  The median of a set of data is the 0.5 
quantile. Quantiles are important order statistics. Their accurate estimates are required 
for the solution of many practical applications.  The problem of finding a -quantile of a 
set of elements of size n which reside in the main memory can be solved in O(n) time by 
using the deterministic algorithm of [8] or in O(n) expected time by using the 
randomized algorithm of [14]. Large applications require an effective quantiling 
algorithm that reduces I/O requirements as much as possible without significantly 
sacrificing the accuracy. In many cases the exact value of the quantile is not needed and 
a good estimate of the true value is sufficient. Several approaches have been proposed in 
the literature; e.g.  [4, 5, 16, 17, 19, 21]. 
 

 
3.  Our Approach: Quantile-based Approach 

 
In this section we present an efficient new algorithm for computing an important 

class of the iceberg queries. The new algorithm has many desirable characteristics that make 
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it the algorithm of choice for solving the iceberg query considered in this paper. We 
decompose the query computation task into two phases: 

 Phase 1: Generate a super set of the tip of the iceberg; i.e. the candidates set. 
 Phase II: Filter out the false positives by scanning the data. 

 
Similar decomposition was employed in [12]. There are, however, major 

differences between our approach and the approaches presented in [12]. Clearly the cost 
of the above approach depends on the cost of generating the candidates set and its size. 
Ideally, we would like to generate a small candidates set as much as possible in one pass 
over relation R. The smallest candidates set is the exact answer of the iceberg query 
itself; which do not have any false positives. Moreover, we would like to filter out the 
false positives in at most one additional pass. Thus computing the iceberg query can be 
done in two (or less) passes over R. The above scheme does not generate false negatives. 
This is a desirable property since handling those items is difficult task as shown in [12]. 
Without loss of generality, we assume that the number of attributes k (cf. the 
Introduction) that defines the iceberg query is one. The algorithms presented in this 
section can be easily extended for more than one attribute. For the sake of explanation, 
let us consider the following example. Given relation R (shown in Table 2) and threshold 
f of 20%, one can solve the iceberg query of this relation by sorting R, then computing 
the frequency of each distinct value. Fig. 1 shows relation R sorted. Clearly, the iceberg 
query result consists of 45 only. Alternatively, one can find the iceberg query result of 
this example using the above decomposition by first generating a candidates set of the 
query result as the set consisting of qi elements shown in the figure. These elements are 
called quantiles. Thus, the candidates set consists of q0.2, q0.4, q0.6 and q0.8. Then the exact 
frequencies of these quantiles are computed to filter out the false positives. The 
following lemma presents the general case of the candidates set generation scheme. 
 
Lemma 1 Given relation R, the result of the iceberg query of R for threshold f 
(lceberg(R)f) satisfy the following. 
 
   Iceberg (R)f   {qf, q2f, . . . ,q1}) 
 
Proof:  We proof this result by contradiction. Let us assume that there exists an element 
x 
such that (1) x  lceberg (R)f and (2) (x  {qf, q2f, . . . ,q1}) 
 Then     x ≠ qif  i 
 Then     qif < x < q(i+1)f )  for some i 
 Then     |{y|y  R and qif < y < q(i+1)f }|  fn, where n is the total number of tuples. 
 
Therefore the number of tuples with values x is less than fn. Thus x is not part of the 
result of the iceberg query, and that is a contradiction.                   
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Table 1. Notation used throughout the paper 

Term Description 
R the input relation; it does not have to be materialized 
n |R| 
m number of elements that can fit into the main memory 
f the iceberg query threshold 
qf the f-quantile 

Lqf a lower bound of qf 
Uqf an upper bound of qf 

OPAQ the quanitle algorithm [5] 
s a parameter of OPAQ 

 
 
Table 2. Example of relation R 

Tuple ID 1 2 3 4 5 6 7 8 9 10 
Value 238 45 9 45 67 45 45 77 144 233 

 
The candidates set can be directly generated using the above lemma. Formally, the 
candidates set = {qf, q2f, . . ., q1}. The false positives among these quantiles are filtered 
out by scanning R. Finding the exact quantiles for large data that cannot fit into the main 
memory may require at least two passes [5]. However accurate estimates of quantiles 
can be computed in one pass over the data [5]. For each quantile, lower L and upper U 
bounds of the true value are generated (Fig. 2). Further, the number of distinct values in 
the interval defined by these bounds can be bounded [5]. Using these bounds, one can 
generate a candidates set as follows:  
 

]},[and|{setcandidates qifqif
i

ULxRxx          (1) 

 

 
Fig. 1. Example: elation R sorted. 

 
It is easy to proof that this candidates set is a super set of the result of the iceberg query. 
This is an immediate result from Lemma 1 and the definitions of the lower and upper 
bounds.  
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Overview  We solve the iceberg query using the above decomposition. In Phase 1, we 
generate a candidates set using equation (1). The quantile estimates can be generated 
using an efficient quantile algorithm for large dataset.  There are a few such algorithms 
in the literature. We choose to use the OPAQ algorithm for this purpose [5]. This 
algorithm requires one pass over the data to produce the estimates. Also, it generates a 
relatively small candidates set. This is a desirable property because it ensures efficient 
implementation of the next phase. In Phase II, we determine the result of the iceberg 
query by filtering out false positives, if any. This phase can be done in zero or one pass 
over the data for candidates' sets that can fit into the main memory. Otherwise it can be 
staged. 
 
Detailed Description  For a given threshold f we compute accurate estimates of qf, q2f, .. 
., q1 using a quantile algorithm. The quantile algorithm must satisfy the following 
criteria: 

1. produce lower and upper bounds of the true quantile, 
2. guarantee a bounded (small) number of distinct values between the lower and 

upper bounds of the true values, 
3. its overall cost is small and it is scalable to large databases. 

 
The OPAQ algorithm meets all the above criteria. It requires only one pass over 

the data to compute the quantiles. Its computational and memory requirements are linear 
and sub linear in |R|, respectively. OPAQ generates lower and upper bounds of each 
quantile; i.e. Lq and Uq. Further, it bounds the number of distinct values in the intervals 
defined by the lower and upper bounds by 2n/s, where s is a parameter of the OPAQ 
algorithm. Fig. 2 shows the output of the OPAQ algorithm. Now, we need to determine 
the query result from the candidates set; i.e. Phase II. There are two main steps that need 
to be considered. In the first step, we prune the candidates set. The frequencies of the 
remaining elements, if any, are computed in the second step. 
 

 
Fig. 2. True, lower and upper bounds on quantiles and some of their relationships. 
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 Step 1 In this step we prune intervals based on the intervals' boundaries. These 
pruned intervals are not considered for further processing. For some intervals, we 
can prove there relationship with the query result; i.e. part or not part of the result. 
There are a number of cases that can considered for performing pruning. Below we 
discuss four such cases. 

 
1. Case 1:  For adjacent intervals with Lqif  = Uq(i+1)f (Fig. 2), we can 

determine an element of the query result from the intervals' 
boundaries. It can easily be shown that an element x that is equal to 
Lqif  and Uq(i+1)f  for some i is part of the query result. Further, the 
intervals [Lqif , Uqif] and [Lq(i+1)f , Uq(i+1)f] consist of only one element 
(i.e.x) and they can be pruned out from the remaining processing. 

 
2. Case 2: For adjacent intervals with Uqif = Lq(i+2)f  (Fig 2), interval 

[Lq(i+1)f , Uq(i+1)f]  is part of the query result and it can be pruned out. 
 

3. Case 3: An interval [Lqif , Uqif]  is not part of the query result if  Uq(i-

0.5)f   Lqif   and     Lq(i-0.5)f   Uqif .  This interval can be pruned out. 
Note that Uq(i-0.5)f and Lq(i-0.5)f are computed on the fly using OPAQ 
without any additional I/O. 

 
4. Case 4: An interval [Lqif , Uqif] is part of the query result if  Lq(i-0.5)f  = 

Uq(i-0.5)f . Also, Lq(i-0.5)f  and Uq(i-0.5)f  are computed on the fly using 
OPAQ without any additional I/O. 

 
 Step 2: For other intervals (i.e. alive intervals), we need to compute the exact 

frequency of all their elements to filter out the false positives.  Note that in case 
there is no alive intervals, Phase II is completed without any additional 
scanning of R and computing the iceberg query took one scan of R. The size of 
the alive intervals (i.e. the number of distinct values) can affect the cost of 
Phase II. In case that all the alive intervals can fit into the main memory, 
finding the query result can be done by scanning R and computing the elements 
frequency in memory as follows. An element, first, is pruned out if it is part of 
the iceberg query result (Step 1) or it does not belong to any alive interval. 
Otherwise, it is assigned to the first alive interval such that it belongs to.  Note 
that an element can belong to two alive intervals. Each alive interval is sorted 
incrementally.1  Each element of the sorted interval consists of a value and its 
current frequency. In case the alive intervals cannot fit into the main memory, 
we need to process them in stages. We expect, however, this almost always will 
not be the case (see, below, the memory requirement of the alive intervals). 
Note that the actual counts of the output can be computed in the second phase, 

                                                           
1 One can use other techniques for counting, e.g. hashing. 
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if needed. In what follows, we derive an upper bound of the size of the alive 
intervals. 

 
The size of the alive intervals  The maximum size of an alive interval is 2n/s (this result 
was derived elsewhere [5]). The maximum number of the alive intervals is 1/f. Thus an 

upper bound of the requirement of processing the alive intervals is proportional to 
fs
n2  . 

We can set s to be a function of n, e.g. s = 1%n. Thus the memory requirement is 200/f. 
For f = 20%, this bound is less than 1K and it is less than 20M for f = 0.001%. In the best 
case, there are no alive intervals. The best case for the alive intervals is one element for 
each interval; the memory requirement is 1/f. Clearly, the memory requirement of Phase 
II, in the worst-case, is small and it can be almost always met. 
 
Analysis  The new algorithm is very attractive. Its memory, disk, I/O and computational 
requirements are very small. The overall memory requirement is the maximum of the 
memory requirements of Phases I and II. Phase I requirement is exactly the requirement 
of the quantile algorithm. With OPAQ, this is )( nsO  for a given n and s. For s = 
0.1%n, this requirement is proportional to 1%n. One of the features of OPAQ is that we 
can control the value of s; thus for very large relations we can use a small value of s to 
meet the memory limitations. The memory requirement of Phase II is proportional to 

fs
n2 . For large relations, the memory requirement of the new algorithm is the memory 

requirement of the quantile algorithm; it is )( nsO  with OPAQ. The new algorithm 
does not require an additional disk space, even for non-materialized relations (cf. 
Characteristics below).  
 

The I/O requirement of the new algorithm is the sum of the I/O requirements of 
Phase I and Phase II. For Phase I, OPAQ makes one scan over the relation. In Phase II, 
one extra scan (or less) is required in almost always all the cases.  Thus we can compute 
the result of a query in two or less scans over relation R. The computational requirement 
of the new algorithm is, again, the sum of the requirements of Phase I (the quantile 
algorithm) and Phase II. With OPAQ, Phase I can be done in O(n log s) time [5]. Phase 
II requires, assuming fixed f and s is a small fraction of n, O (n lg A) (where A is the 
number of alive intervals) and O(1) in the worst-case and best-case, respectively. Thus 
the overall computational requirement of the new algorithm is O(n log s). Table 3 
summarizes the different requirements of the new algorithm. 
 



Khaled AlSabti 

 

58 

 

Table 3. Resources' requirements of the new algorithm 
Resource Cost 
Memory )( nsO  

Disk __ 
I/O Almost always two or less scans of R 

Computational O(n log s) 
 
 
Limit on Threshold f Clearly, the value of f can affect the cost of solving the iceberg 
queries since the size of the result of an iceberg query is inversely proportional to the 
value of f. From the definition of the iceberg query problem (cf. the Introduction), the 
value of the threshold f is a percentage of n. For example with f = 1%n, the upper bound 
of the query result size is 100. In contrast, it is 10,000 for f=0.01%n. The value of f that 
can be handled by our algorithm is constrained by the quantile algorithm limitations as 
well as those of Phase II. With OPAQ, we have the following constraints [5]: 

                                                               )(1 2

n
mO

f
 (2) 

                                                                     fs 10  (3) 

Phase II, in the worst-case, has the following constraint. 

                                                                    m
fs
n2  (4) 

 
The above constraint is required so that the entire phase can be guaranteed to be 
completed in one scan over R. In case that it is not satisfied, this phase must be staged. 

This corresponds to m
f

200 , assuming that s = 0.1%n. Thus, the new algorithm is very 

scalable with respect to the value of the threshold. 
 
Characteristics  The new algorithm has several characteristics that make it the 
algorithm of choice.  The new algorithm requires (at most) two passes over the data for 
almost always all the cases independent of the data distribution. The memory 
requirement of the new algorithm is very small.  For s = 0.1%n, it is proportional to 
3%n.  The new algorithm does not require any extra disk space. This feature is important 
for large applications. Another feature of the algorithm is that it does not require 
materialized relation to produce the result. It can work directly on non-materialized 
relations. Again, this is important feature for large applications. Its running time is 
deterministic as shown in Table 3. It is very accurate; it produces exact result. It is not 
sensitive to the data order, i.e. its running time and result does not depend on the order of 
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the data.  Moreover, it does not require any prior knowledge about the data distribution. 
The new algorithm can be efficiently parallelized. For Phase I, the OPAQ algorithm is 
highly parallelizable [5].  The main operations of Phase II are I/O and counting. 
Parallelizing I/O is straightforward, and it is optimal or near-optimal.   For the counting 
operation, it can be performed in two stages. In the first stage, we perform a local count, 
which is optimal or near optimal. The second stage (i.e. the overhead) can be done 

efficiently using a global combine primitive [27] of size (at most) 
sf
n2 . The cost of this 

operation (the overhead) is very small compared to the overall cost. We expect the 
parallel version of our algorithm to exhibit good scale-up, size-up and speedup 
characteristics.  
 
Our Approach vs. Previous Approaches We compare our approach to the random 
sample approach and to those of Fang et al. [12]. The random sampling approach is 
simple and has small requirements compared to other approaches. For applications that 
require exact results or bounded non-probabilistic errors, this approach is a poor choice 
(cf. Section 2). The approaches of Fang et al. exhibit nice properties (cf. Section 2). 
However, the "best" approaches of these approaches (e.g. DEFFER-COUNT, MULTI-
STAGE, MULTISCAN-SHARED2 and UNISCAN) suffer from at least one of the 
following: 
 

1. The I/O requirements are large compared to our algorithm.  Their requirements 
can be higher than those of the new algorithm by a factor of two (or more) 
since they require at least four I/O scans. 

2. The computational requirements are linear in n. However, they use multiple 
hashing techniques; which can be a relatively expensive. 

3. The memory management required for achieving a good performance can be a 
difficult task. 

4. They have a relatively large number of parameters. Setting these parameters 
for achieving good performance can be a hard task. 

5. Sensitivity to the data skew.  Some of the proposed algorithms in [12] are 
sensitive to the data distribution.  

 
We can conclude from the characteristics of the new algorithm and the above 

discussion that the new algorithm is a better option for computing the iceberg queries 
that we consider in this paper. This is due to (1) its small memory, computation and I/O 
requirements, (2) ease of management, (3) a small number of parameters, (4) its 
robustness to the data distribution and others (cf. Characteristics section, above). 

 
4.  Performance Evaluation 
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In this section we evaluate the performance of our algorithm. We have 
implemented the new algorithm in C and ran it on Linux Red Hat version 6.0. The 
machine used has the following configuration: Intel Pentium III, 512 KB cache and 128 
MB RAM. The parameters of the new algorithm are n, f, data distribution and the 
available memory m. Below, we describe the data distributions that we used. 
 
Datasets We want to study the behavior of the new algorithm under different known 
distribution. For this, we have used Uniform and Zipf [28] distributions. We also use a 
large real world dataset. Brief descriptions of these datasets are giving below: 
 

1. Uniform: For a given size n, we generate a data where the elements are drawn 
randomly from [ 0..n/1000). 

2. Zipf: The Zipf distribution models many real life phenomena [28]. It has a 
parameter that determines the skew degree. This parameter p ranges between 
zero and one where the degree of skew is inversely proportional to its value. A 
value of 1 results in Uniform distribution, where a value of zero results in very 
skewed distribution. We generated Zip0.8, Zip0.6, Zip0.4, Zip0.2 and Zip0.0 
datasets using 0.8, 0.6, 0.4, 0.2 and 0.0 as values of this parameter; 
respectively. For a given size n and a given p, we generate a data where the 
elements are drawn from [0..n/1000) using Zipf distribution with p. 

3. Real: We use a network connections dataset, which was used in the 1999 KDD 
intrusion detection contest (KDD-Cup99) [1]. This data has a number of 
attributes (continues and discrete). This dataset can be accessed in [6]. The task 
of the KDD-Cup99 is to build a predictive model to detect illegitimate 
connections called attacks. This dataset has training and testing versions. In 
this work, we use the first 4.5M values of the 5th and 6th attributes of the 
training dataset. We call these datasets Att5 and Att6. The data distributions of 
these columns are not known. 

 
We performed four main experiments. For each experiment, we mainly report the 

total execution time, the percentage of the processed data in Phase II, the memory 
requirement of Phase II and number of I/O scans performed. For all these experiments 
we set s to 10/f.  
 
Sensitivity to the data size  In this experiment, we set the available memory to 10 
Million elements, data distribution to Zip0.2 and vary n (20 M, 40 M, 60 M, 80 M and 
100 M elements) and the threshold f (0.01%, 0.05%, 0.1%, 0.5%, 1%, 5% and 10%).  
Fig. 3 shows the total execution time in seconds for a number of settings. We observe the 
following from this experiment. The algorithm made at most two I/O scans over the data. 
For some cases, it required one scan only; e.g. for a relatively large threshold f. This 
explains the sudden drop in the execution time; e.g. 100M & 1%, and 40 & 5%.  Note 
that this depends on the effectiveness of the pruning in Phase II. Using the current 
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pruning technique, it is expected to get a lot of pruning for a large threshold and/or a 
small degree of skew in the data distribution. The second observation is the robustness of 
the algorithm against the threshold values for the same requirements of the I/O scans. 
Put other way, the overall cost of Phase II is not very sensitive to the threshold given that 
a second I/O scan is performed. This is because the I/O cost and a significant portion of 
the computation cost are independent of the threshold. The third observation is that the 
algorithm scales very well with the relation size; its scalability is a sub-linear. Fig. 4 
shows the number of elements of the alive intervals in Phase II. For all the cases, the 
total size of the alive intervals is very small; it varies between 16% and 0%. As expected 
the total size decreases with the increase of the threshold. Note that the total size of the 
alive intervals is the upper bound of the memory requirement of Phase II. The exact 
memory requirement is the number of distinct values of the alive intervals, and it was 
less than 1% for all the cases. 
 

 
Fig.  3. Dataset size vs. threshold: Total time in seconds. 

 
 
Sensitivity to the data distribution We set the data size n to 60 Million and the 
available memory to 10 Million elements. We vary the data distribution (Uniform, 
Zip0.8, Zip0.6, Zip0.4, Zip0.2 and Zip0.0) and the threshold.  Fig. 5 shows the total 
execution time of a number of settings.  We observe the following.  First the total 
execution can be sensitive to the data distribution (equivalently the threshold). The 
overall cost of the algorithm can decrease by a factor of two for the same data size but 
different distribution (or threshold). This is because the I/O scans and the associated 
computation requirement can decrease by a factor of two. This explains the sudden drop 
of the execution time for some cases. For the Uniform case, there was no sudden drop 
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since its I/O requirement was one scan for all the tested threshold values. It is interesting 
to notice the time of the sudden drop of the execution time. It was 0.05%, 0.5%, 1%, 5% 
and 10%) for Zip0.8, Zip0.6, Zip0.4, Zip0.2 and Zip0.0; respectively.   One can estimate  
 

 
Fig. 4. Dataset size vs. threshold: Percentage of data falls in the alive intervals. 

 
 
the skew degree of a dataset or compare a number of datasets by trying different 
threshold values. The overall cost of the algorithm for different data distributions is 
comparable in case it requires the same number of I/O scans. This is attributed to the fact 
that a little of the performed work is dependent of f; e.g. generating the sample points 
and pruning the intervals.  Fig. 6 shows the total number of elements of the alive 
intervals in Phase II. It varies between 11% and 0% of the data size. Further, it decreases 
with the increase of the threshold. The curve of the Uniform case is not shown since it is 
always zero. Again, the exact memory requirement is the number of distinct values of 
the alive intervals, and it was less than 1% for all the cases. 
 
Sensitivity to the available in memory  We set the data size to 60 million elements 
and the data distribution to Zip0.2, and vary the available memory (1 million, 5 million 
and 10 million) and the threshold. Fig. 7 shows the total execution time of the algorithm. 
Due to the small memory requirements of the new algorithm, the total execution time 
was virtually independent of the available memory.  For all the cases, the sample points 
fit into the available memory and the memory requirement of Phase II was very small; 
i.e. less than 0.1%. It is interesting to notice that using 1 million of memory results in 
marginally better performance. We attribute this phenomenon to the cache effects since 
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we are not optimizing the memory accesses to effectively use the memory hierarchy of 
the machine. The total number of the alive intervals is virtually the same for the different 
memory sizes Fig. 8. Note the sample points can be different for different memory sizes 
due to behavior of the quantiling algorithm that we use. 
 

 
Fig.  5. Data distribution vs. threshold: Total time in seconds. 
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Fig. 6. Dataset distribution vs. threshold: Percentage of data processed in the second phase. 

 
 

 
Fig. 7. Memory size vs. threshold: Total time in seconds. 
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Fig. 8. Memory size vs. threshold: Percentage of data processed in the second phase. 
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Real dataset  We ran the new algorithm on the 1999 KDD cup dataset (Att5 and Att6). 
Fig. 9 shows the total time for different threshold values. The behavior of the algorithm 
on real datasets comforts the general findings of the previous experiments. The total 
running time slowly decreases with the increase with the threshold values till a 
significant drop happen when the number of required I/O reaches to one scan. 
 

 
Fig. 9. Attributes number 5 and 6 of the real datasets: Total time in seconds. 

 
  

We conclude from the analysis of Section 3 and the above experiments that the 
new algorithm is scalable with respect to the value of the threshold f; it can efficiently 
handle relatively small values. For all the above experiments, we measured the I/O and 
computation times. The I/O generally consumes between 45% and 70% of the overall 
time. This fact offers an opportunity to further reduce the overall cost of the algorithm by 
overlapping the I/O with the computation. 
 
 

Conclusion 
 

We have presented an efficient algorithm for computing an important class of the 
iceberg queries which returns frequently occurring values from a set of attributes. It uses 
a set of estimates of quantiles of the input relation to focus the search of the query result. 
The new algorithm almost always requires two (or less) scans. It can compute the 
iceberg queries using one scan for some input. The new algorithm has nice properties 
that make it the algorithm of choice for solving the iceberg queries considered in this 
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work. It scales very well with respect to the relation size as well as the threshold. It is 
robust against the data distribution. Its memory and computational requirements are 
small. 
 

As a future work, the I/O with the computation can be overlapped to further 
reduce the overall running time. Also, optimizing the memory accesses to better utilize 
the memory hierarchy may reduce the running time. One can use more quantiles to 
devise more aggressive pruning techniques. There is, however, a tradeoff between the 
pruning cost and the cost of Step 2 of Phase II which needs to be investigated further. It 
would be interesting to extend the new algorithm where the data elements have different 
weights. 
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 الشبكة المشقبة التي تدور عكسيا: هيكل جديد للشبكات الحلقية في المناطق المدنية
 

 خالد السبتي
 ، كلية علوم الحاسب والمعلوماتقسم علوم الحاسب

 الملك سعود، الرياض امعة ج
 

 م)١١/١٢/٢٠٠٤م؛ وقبل للنشر في ٢٨/١٠/٢٠٠٣(قدّم للنشر 
 

 لا يوجد ملخص  ملخص البحث.




