
J. King Saud Univ., Vol. 17, Comp. & Info. Sci., pp. 43-60 (A.H. 1425/2004)

43

ML-Quadtree: The Design of an Efficient Access Method for Spatial
Database Systems

A. Touir

Department of Computer Science, College of Computer and Information Sciences
King Saud University, Riyadh, Saudi Arabia

(Received 28 April 2003; accepted for publication 4 October 2003)

Abstract. The aim of this paper is to present a new indexing technique that provides an efficient support for
retrieving and handling spatial data. Traditionally, the mapping between layers (in a thematic point of view)
and index structures is one to one. Each layer is associated with an index structure. In some previous work, we
have presented a data structure, the FI-Quadtree that handles a set of images using only one index structure.
This handling is a raster-oriented format. In this paper, we focus on the processing of these objects from the
vector oriented format point of view. The Multi-Layer Quadtree (ML-Quadtree) is a new data structure that
allows the storage and processing of several layers at the same time. This structure is based on the PM-
Quadtree, which allows the storage of only a single-layer map. The aim of the ML-Quadtree is to be able to
manage, store and perform queries among multiple layers simultaneously. The design and the manipulation of
the proposed structure is presented in this paper whereas the implementation and the experimentation result
will be treated in a subsequent paper.

1. Introduction

Spatial Information systems require an efficient spatial data handling [1, 2]. The large
amount of information and the complexity of the characteristics of data have given rise
to new problems of storage and manipulation. One of the important problems is how to
store this kind of complex data for efficient search and retrieval operations. Convenient
data organization for spatial databases is still a problem to be solved [3, 4].

Data structures for storing objects in a vector format should satisfy various
characteristics. In fact, there is a trade-off between retrieval capabilities and storage or
memory requirement, and this is an important issue for spatial data handling. The
organization of spatial data objects requires the ability to cluster them together according

A. Touir

44

to their spatial location. The number of required disk accesses is usually used to measure
the efficiency of the operations. The first approach adopted in most reported research on
spatial access methods considered that free-form objects could be approximated by their
minimum bounding rectangles [5] to simplify the complexity of the search. R-trees [6]
and their extensions R+trees [7], R*trees [8], and other structures such as buddy tree [9]
are examples of such structures. Another approach is to consider the object as it is
without any approximation. In this case, the space is subdivided according to certain
rules. A commonly used data structure that fits this approach is the quadtree [10,11]. An
other approach is to use the SP-GiST index structure [12]. This latter aims at partitioning
unbalanced trees where it can behave as a quadtree, or any of its variants. Another
similar approach [13], the GL/GiST were proposed to deal with spatial index based on
granular locking technique. Quadtrees provide an interesting technique to code images
either in a raster format or in a vector format. In this paper we will be dealing with the
vector format using the quadtree approach.

The quadtree is a hierarchical data structure used to organize an object space. An
object can be a point, a line segment, a polyline, etc. This data structure has been widely
used in computer vision, geographic information systems and geometric modelling [14].
Its main advantage is its compactness and regularity. Consider that we have a binary
image; the principle of this structure consists in partitioning each object into
homogeneous quadrants and labelling each of them. A homogeneous quadrant could be
either white or black, and it is associated with a leaf (terminal) node of the quadtree. A
non-homogeneous quadrant is considered as a grey quadrant and it is associated with a
non-terminal node of the quadtree. Recursive subdivision is applied to the binary image:
a quadrant is subdivided into four equal parts until a homogeneous quadrant or pixel is
reached. The Morton order [15] can be used to organize and sort the squares that
aggregate the space. Fig.1 shows how squares are ordered and labelled.

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

00 01

10 11

Fig. 1. Ordering squares using Morton order.

The Morton code of a node [16] is built by interleaving the bits of x and y co-
ordinates of the upper left corner of the quadrant that corresponds to the node. The label
of a quadrant, which we call a prefix, may have several representations. In this paper, we

ML-Quadtree: The Design of an Efficient Access . . .

45

suppose that a prefix can be defined either by its binary label, or by its length (number of
bits that compose it) and its decimal value. The length of each binary label depends on
the image definition. Within a 2N x 2N bitmap image, the maximum length is 2N.

Some varieties of quadtrees have been proposed. Each one is more or less adapted
to manipulate a specific type of data. Linear quadtrees are used to code and store black
quadrants. The PM-Quadtree [11] represents line-segments data. Section 2.1 explains
this structure in more detail. Hjaltason improved the bulk-loading PMR quadtrees
[17,18]. Its principle consists in assuming that the quadtree is implemented using a linear
quadtree, a disk-resident representation that stores objects contained in the leaf nodes of
the quadtree is in a linear index ordered on the basis of a space-filling curve as shown
above. The PR-Quadtree [19] is used to code point and region data. Another kind of
quadtree is the MX-CIF-Quadtree [20]. It is used to represent data of type rectangle. The
principle of the MX-CIF-Quadtree is to associate with each rectangle, the quadtree node
corresponding to the smallest quadrant that contains it. The decomposition of quadrants
is recursively carried out until no quadrant contains any rectangle. The last two types of
quadtrees accept more than one data in a node. Moreover, using the MX-CIF-Quadtree,
data can be in any node (root, terminal or non-terminal nodes), whereas the use of the
other kind of quadtrees allows data to be stored only in leaves (terminal nodes).

All the presented spatial structures allow the storage and indexing of a single
object whatever this object is: a map, an image, etc. One quadtree is built for one object.
On the contrary, the FI-Quadtree [21,22] allows the storage of a set of images into a
single quadtree without any substantial difference from the complexity viewpoint. The
DI-Quadtree [23] is an improved version of the FI-Quadtree. Its main differences with
the FI-Quadtree reside in the labeling order of the nodes and in the storage mechanism.
Given the number of layers, the FI-Quadtree computes in advance the necessary space
needed to store them. If this number should be modified, the FI-Quadtree is reorganized
to create more rooms for those additional layers. On the contrary, the DI-Quadtree is
defined independently of the number of layers and it is used as a front structure. Both
structures are raster-oriented. The MOF-tree [24] is also a raster–oriented structure. Its
aim is to support images with multiple overlapping features. Its principle consists in
recursive decomposition of the image into four equal-sized quadrants until each quadrant
is fully covered by features covering it. Same is the case [25] with Multiversion Linear
Quadtree, a spatio-temporal access method based on Multiversion B-trees [26]. The
structure may be used as an index mechanism for storing and accessing evolving raster
images.

Unfortunately, all these quadtrees are not suitable when a given object, say a map,
is composed of several layers where layers are in vector-oriented format. Layers are used
for the purpose of thematic approach. Layers may represent districts, parcels, or a
network of roads, rivers, etc., one layer per theme. Several index structures are used to

A. Touir

46

process queries like: "Retrieve all the water pipes and the electrical cables situated in a
given region”. The use of a single index structure to perform such query is an attractive
track. In this paper, we focus on this type of problem and show that our proposed data
structure is suitable for this kind of queries. The use of the Multi-Layer-Quadtree
(ML-Quadtree or MLQ for short) considerably reduces the complexity of the process of
this type of queries in terms of I/O, time consumption and storage. Its flexibility resides
in the fact that only one index structure is used to manage several layers. Another
application of this structure is to manage multiple versions or temporal evolution of an
object in a spatial databases context.

The paper is organized as follows. In Section 2, we review the definition of the
PM-Quadtree and introduce the Multi-Layer-Quadtree: its definition, characteristics, and
properties. This section also deals with the proposed index structure. Section 3 gives
some details of the multiple layers search within the proposed structure; it introduces the
principle of the Insert and Delete operations and discusses the capabilities provided by
the ML-Quadtree in querying several layers. Finally, conclusions are given in Section 4.

2. The Multi-Layer-Quadtree Data Structure

2.1 Principles of the PM-Quadtree

The PM-Quadtree (PMQ) [11] represents objects of polygonal shapes. The
representation of objects is neither approximated nor based on digitization. Different
kinds of arithmetic and geometric operations could be performed using this type of
structure without any distortions of the objects. This is in contrast with the bitmap/raster
representation, where zooming in on, or rotating, an object may change its original
shape. In addition, the PMQ allows each entity of the stored object to have a semantic
meaning such as lake, hotel, road, etc.

Different kinds of PM-Quadtrees are used. Each of these PMQs consists in
subdividing each region into four equal-sized quadrants until we obtain quadrants that
satisfy the following rules [12]:

PM1-Quadtree (Fig.2.a): At most, one polygon vertex can lie in a region
represented by a quadtree leaf node. If a quadtree leaf node region contains a
vertex, then any edge of this region must contain that vertex. If a quadtree leaf
node region does not contain vertices, it can contain at most one edge. Each
region quadtree leaf node is maximal and contains at most one vertex.

PM2-Quadtree (Fig.2.b): It differs from PM1-Quadtree in that a region is
decomposed into four equal-sized quadrants as long as a quadrant contains more
than one line segment unless the line segments are all incident to the same vertex.

ML-Quadtree: The Design of an Efficient Access . . .

47

PM3-Quadtree (Fig.2.c): The decomposition depends only on the vertices. A
region is decomposed into four equal-sized quadrants as long as it contains more
than one vertex.
Bucket PM-Quadtree (Fig.2.d): Recursively decomposes a region into four
equal-sized quadrants as long as a quadrant contains more than BC line segments.
BC is called the bucket capacity of the PM-Quadtree. Table 1 reflects the prefixes
and the data generated from each kind of PM-Quadtree shown in Fig. 2.

A

B

C

D

E

F

A

B

C

D

E

F

 (a) PM1Quadtree (b)PM2-Quadtree

A

B

C

D

E

F

A

B

C

D

E

F

 c) PM3-Quadtree d)- Bucket PM-Quadtree with BC = 2

i.
Fig. 2. Principle of subdividing the space using different PM-Quadtrees.

A. Touir

48

Table 1. List of prefixes and their related data generated from the example of Fig. 2 according to the
 type of PMQ used

Quadtree type List of prefixes and their related data

PM1Q {(0000, B),(0001, D),(001000, AB),(001001, BC),(001010, AB),(001100,
BC),(001101, DE), (001110, BC),(001111, BC),(0101, F),(0110, E),(0111, EF),(1000,
A),(1001, BC),(11, C)}

PM2Q {(0000, B),(0001, D),(0010, [AB, BC]),(001100, BC),(001101, DE), (001110,
BC),(001111, BC),(0101, F),(0110, E),(0111, EF), (1000, A),(1001, BC),(11, C)}

PM3Q {(0000, B),(0001, D),(0010, [AB, BC]),(0011, [BC,DE]) ,(0101, F),(0110, E), (0111,
EF), (10,A),(11,C)}

Bucket-PMQ {(0000, B),(0001, D),(0010, [AB, BC]),(0011, [BC,DE]),(01, [E,F]), (10,A), (11,C)}

As we can notice, with the same data, a generated PMQ is more or less complex
depending on its definition (i.e. the number of items that could be contained in a
quadrant). PM1Q generates much more nodes than the other PMQs. A PM1Q leaf node
contains no more than one item (a vertex or a line segment). On the contrary, the other
PM-Quadtrees allow a leaf node to contain several items and, so, they need additional
processing.

2.2 Basic Idea

We consider a layer as a set of spatial objects and a map as a set of layers. A
spatial object may be part of several layers. In addition, queries may trigger the
processing of several layers, in search for the requested spatial objects. This multi-layer
processing is a complex operation. This complexity is due to the fact that the data set of
the spatial objects is very large. It is, therefore, crucial to support indexing techniques to
facilitate the retrieval of any portion of an object. In order to overcome this problem, we
present a Multi-Layer-Quadtree that allows for the processing of components of different
layers in the same structure. This processing could be considered as a multiple join
operations or a multiple criteria selection. We define MLQ as being based on the
PM1Quadtree. This choice of PM1Quadtree is due to the fact that the number of nodes
of the MLQ grows with respect to the inserted layers. So, nodes that are not generated
from one layer may be generated from others. As indicated, earlier, all PMQs but PM1Q
need additional processing to determine the right vertices; for this reason, we have
chosen PM1Q as the basic structure for the MLQ to avoid the extra processing. Applying
the MLQ based on the other PMQs may be presented as future work.

2.3 The Multi-Layer-Quadtree: Definition and Characteristics

ML-Quadtree: The Design of an Efficient Access . . .

49

Similar to the DI-Quadtree, the ML-Quadtree is defined as a pure index structure,
where each node is a pointer to a structure that contains the data belonging to that node
(Fig. 3). The maximum number of nodes that constitute an MLQ is 3

14 1N
 nodes. For

N = 10 we have a total of 1398101 nodes. The fact that the MLQ is used as a pure index
structure allows us to manipulate it as a main memory-oriented structure. Each node
addresses a rear structure defined as follows:

 Each rear structure is composed of a set of components {c1, …, ck}.
 Each component ci is defined as being a triplet (layeri, objectj, elementk), where

elementk (e.g. a line) belongs to objectj (e.g. a polyline), which in turn belongs
to layeri.

 As it is described in [23], after several insertions in a given rear structure (say
RS), the latter may be full; in which case a new rear structure is created and
logically linked to RS.

 Figure 3 shows how a new layer is inserted and handled with the ML-Quadtree
and its rear structure.

RS

MLQ

 (a) (b)

Fig. 3. Inserting a first layer in the ML-Quadtree.

Table 2. List of symbols and definitions

Symbol Definition
N
QN
PN
WN
HN
q.
p
Lp
Vp
b

Number of decompositions of the ML-Quadtree
Workspace of size 2Nx2N, consisting of all quadrants of a 2Nx2N image
The set of prefixes associated with QN
A set of integers defined as: WN={w/ p PN,w=HN(p)}
A mapping function between PN and WN
A quadrant of QN
An element of PN associated with a quadrant q
The number of bits that compose p
The decimal value of p
Bit value

A. Touir

50

w
Lmax
Scap

A node value. w belongs to WN
The maximum number of layers in the MLQ
The maximum number of components that can fit in a segment of the rear structure

We denote nd=(w, {c1, …, ck}) a node of an ML-Quadtree, where w is a node
label and {c1, …, ck} is the set of components indexed from that node. A triplet (Li, Oj,
Ek) defines a component ci, where Ek is the element of the object Oj belonging to the
layer Li.

An ML-Quadtree is a quaternary tree that satisfies the following:

i) Data of an ML-Quadtree is indexed from any node. Three components c1, c2, c3

could be distributed on three nodes nd1, nd2, nd3 of three different levels, where
nd1=(w1,{c1}) is a parent of nd2=(w2,{c2}), which is in turn a parent of
nd3=(w3,{c3}).

ii) if (w ,{c1, …, cn}) and (w , {d1, …, dm}) are in the same path, ci and dj could not
belong to the same layer, for any i= 1, ..., n and j = 1, ..., m; i.e two components of
the same layer must not be in the same path unless they are in the same node.

iii) The Morton code is used to label the upper left corner of the quadrant that
corresponds to a node. In this paper, we suppose that a prefix can be defined either
by its binary representation p, or by its length Lp (number of bits that compose it)
and its decimal value

pL

i

iLp
ip bV

1

)(2* . Thus for any prefix p = b1b2b3…bLp= (Lp, Vp),

where }1,0{ib .
In the sequel and by notation abuse, we use any of the two representation (p or (Lp,Vp)).

As defined in (Touir, 1991),

pL

i
ii

p
N b

L
pH

1
*

2
)(,

where

oddisiif

evenisiif

i

iN

1

)1
2

(

*2
3

14
.

This function offers a total order of labeling between PN and WN. It reflects a pre-order
traversal of the ML-Quadtree (Fig. 4).
Note that HN is a 1-1 onto mapping. Thus, it could be used to index nodes in a unique
way.

ML-Quadtree: The Design of an Efficient Access . . .

51

Suppose that we have already inserted a layer (say X) represented in Fig. 3, and

we would like to insert a new one (say Y) represented in Fig. 5. By applying the above
defined rules (i-iv), we obtain a virtual layer (say Z) Z=X Y (Fig. 6). Z is the
superimposition of X and Y.

40

43

23

0

1

171272

22

38332823

43

59544944

64

80757065

42414039
 (a) (b)

Fig.4. The labelling of quadrants in a quadtree (decimal values-pre-order traversal).

 (a) (b)

Fig. 5. Building a second layer component.

By applying (i), we see that Z has components distributed on many levels: (2,1,) is a
component in a node of level 1. This node is a parent of {(1,1,), (1,1,), (1,1,),
(1,1,)}.
By applying (ii), we see that if a component of X (resp. Y) is in a given node, all its sub-
nodes (children) do not contain any component of X (resp. Y).

A. Touir

52

 (a) (b)

Fig. 6. How the ML-Quadtree changes when a new layer is inserted.

ML-Quadtree: The Design of an Efficient Access . . .

53

2.4 Indexing Technique
As it was mentioned, the maximum number of nodes of an MLQ is 3

14 1N

nodes. We intend to use the MLQ as a pure main memory oriented index structure. For
this reason, we choose an index whose size is small enough to give the needed
information and to keep the MLQ reasonably small so that it can fit in the main memory.
As an illustration, consider the MLQ in Figure 4.a, where N=3, q1, q2 and q3 three
quadrant regions, then their corresponding prefixes are respectively p1=10=(2,2),
p2=0100=(4,4) and p3=011101=(6,29); Using HN and i where i=1…6, we obtain:
 w1= HN (p1)= 1+ 1= 43, w2 = HN (p2)= 2+ 2= 23 and w3 = HN (p3) =
3+ 2+ 3+ 4+ 6= 40.

By the definition of w and p, it can be seen that the size of w is smaller than the size of p.
Consequently using w as an index will reduce considerably the size of MLQ. To use w

as an index, we need to introduce the notion of HN

-1
, which is the inverse of HN. We

denote HN

-1
with GN (i.e. GN=HN

-1
). The intention is to determine p PN for every w in

WN. That is w WN, p PN / p=GN(w). With this in mind, we have developed the
algorithm below to compute NPp / p= GN(w) for each given w WN:
GN:
 input : w a value that belongs to WN, N
 output : p a value that belongs to PN
 length_of_p = 0
 value_of_p = 0
 for i=2N downto 1 do
 if w> 2N-i+1 then
 value_of_p = value_of_p<<1
 X =w- 2N-i+1
 if (2N-i+1> 2X) then
 value_of_p = value_of_p+1
 w=X
 endif
 endif
 else if value_of_p >0 then value_of_p = value_of_p<<1
 endfor
 length_of_p = (w<<1)
 value_of_p = value_of_p >>(2N-(length_of_p))

Where the expression “a<<1” allows to shift 1-bit to the left all bit-values of a.

A. Touir

54

3. Manipulation of Multi-Layer-Quadtrees

This section discusses the fundamental operations on the MLQ structure namely:
the insertion, selection and deletion.

3.1 The Insertion

The following algorithm details the steps of the insertion operation. It should be
noted that the conditions i-ii laid out in section 2.3 hold. Thus the algorithm makes sure
that the stated conditions are met for any inserted object. This is can be deduced from the
bold statement in the proposed algorithm below.
Insert:
 input: component to be inserted;
 output: the updated ML Quadtree

Clipping the component to be inserted against the squares corresponding to the
nodes. We process this operation to avoid looking at areas where the
component is not to be inserted.

 if the result of the clipping is null then we have nothing to insert
 else we have new components (say NC) resulting from the clipping against

the current square
* if the current node has some data C that belongs to the same layer as NC
 Merge C and NC
 Compute newComp = C NC
 if newComp does not verify PM Quadtree rules
 if the current node is a leaf
 split it into four nodes
 recall insert procedure for each new node to insert NewComp
 else recall insert procedure for each Son of the current node to insert NewComp
 else {if newComp verifies PM Quadtree rules against the current node}
 memorize that node say ND
 go down in depth to look for data that belong to the same layer as NC
 if data (say C) is found goto *
 else insert NC in ND
 end.

The resulting MLQ in Fig. 6 as insertion of a second layer in the MLQ and illustrated the
working of the above algorithm, whereas Fig. 3 shows the insertion of a first layer.

Remarks:

i. The first part of this algorithm is similar to the insert algorithm of a PMQ. The
statement “go down in depth…” takes into account more complex cases. Indeed,
after locating the right place, (say N) where a new component will be inserted,
non-empty nodes rooted at N will be visited until leaf nodes are reached, or data

ML-Quadtree: The Design of an Efficient Access . . .

55

from the same layer is met. This supplementary analysis is due to the lack of
information about layers stored in each node. In the example of Fig. 5, is
inserted in the second level. In the proposed algorithm, will be stored in a
specific node (say ND). But before inserting it, we have to go down in depth to
check if there is some data of the same layer other than . In this example the
result is an empty set and leaf nodes are reached. At this point the insertion is
performed. This step ensures that no data of the same layer exists in two different
levels of the same path.

ii. In fact, the proposed algorithm is too complex and it generates several unneeded
I/O. One of the implementations that we carried out concerning the insertion, to
overcome the I/O complexity, is: first build the PMQ of the layer to be inserted;
second update the MLQ according to the result of the obtained PMQ. This
method avoids testing each time the “go down in depth …” but it adds the
copying process of the PMQ to the MLQ.

3.2 The Selection

Queries can be of two types: point-based queries and region/window-based
queries. The MLQ is flexible enough to carry out those types of queries. In addition,
those queries can be performed on:

a. objects of a specified layer such as: select all the objects of layer X that are
located inside a region R

b. objects of several layers such as: : select all the objects of layers X1, X2,…, Xn that
are located inside a region R

c. objects of specific layer with more complex condition: select all the objects of
layer X that are located inside a region R and intersect objects of layers X1
and/or X2.

We can summarise those cases in the following :
 Select <list of objects>
 From <list of layers>
 Where <list of conditions>

This type of queries are processed in two steps:

1) Select the set of candidate objects using the select, from clauses.
2) Perform the user-conditions on those candidates using the where clause.

The following algorithm shows how to search an object according to a given

component. It mainly focuses on step 1.

Select Component:
 input : ML Quadtree ; RL : a list of layers’ information (say names) to which the
 selected components belong ; location ;
 output: list LC of components, their owner objects and their layers ;

A. Touir

56

 if location intersects the square of the current node
 if the current node is not a leaf
 fetch components of the desired layers
 for each found component
 remove its layer name from RL
 add the found triplet to LC
 if RL is empty return
 else for each son of the current node recall SelectComponent with RL and the
 current location
 else fetch components of the remaining layers RL and add them to LC
 end.

To illustrate the working of the above algorithm, suppose that we would like to select all
layers that contain objects that intersect the object that contains the vertex (). As a first
step, all objects that are in the search path are collected, which are in this case (2, 1,)
and (1, 1,). Then a second process on those objects is performed (to satisfy the user’s
criteria). This means that the intersection of object 1 of layer 2 and object 1 of layer 1 is
computed (Fig. 7). The result is the empty set. The reader can imagine the wide range of
queries that can be performed using this structure without being obliged to use as many
index structures as the involved layers.

Fig. 7. Selection of objects that are candidate to intersect the object containing

3.3 The Deletion

The deletion offers the same flexibility as shown in the previous section, when we
would like to delete objects that belong to one layer or more. The deletion may be point-
based or region/window-based queries. Cases a, b and c of section 3.2 are also valid. We
can summarise this in the following form:
 Delete
 From <list of layers>

ML-Quadtree: The Design of an Efficient Access . . .

57

 Where <list of conditions>

The following algorithm describes the main tasks of this operation:
 Delete:

input : ML-Quadtree; RL :a list of layers names from which these components
will be

 deleted; location and list of conditions;
 output: Multi Layers Quadtree
 if location intersects the square of the current node
 if the current node is not a leaf
 fetch components of the desired layers RL
 for each found component C of a given layer do
 if the user conditions are verified delete C
 remove its layer name from RL
 try Moving data one level up
 if RL is empty return

else for each son of the current node recall Delete with RL and the current
location

 else fetch components of the remaining layers RL
 if the user conditions are verified delete it
 check the possibility of moving data one level up
 end.

Suppose that we would like to delete the line () from the second layer (Fig. 6). The
resulting data is shown in Figure 8. We notice that two important actions are performed:

a. (2,1,E) is moved one level up (from level 2 to level 1) where (1,1,) resides.
b. Its new location has changed from a node to a leaf node.

 (a) (b)

A. Touir

58

Fig. 8. Deletion of the line () from the Multi Layer Quadtree.

ML-Quadtree: The Design of an Efficient Access . . .

59

The deletion of line () (Fig. 9), generates the update of two nodes.

 (a) (b)

Fig. 9. Deletion of the line () from the Multi Layer Quadtree.

4. Conclusion

In this paper we have proposed and analyzed a new Quadtree-based data
structure: the ML-Quadtree. This structure allows the simultaneous manipulation of
several Layers with the same index structure. The manipulation could be of a different
level of complexity. We have investigated different types of manipulations (insertion,
deletion, searching) within this structure, and we have shown that it is well adapted for
multi-criteria retrieval. We have analyzed this structure with respect to several insertions
of layers of different types and sizes. In a forthcoming work, some tracks are to be taken
into account:

The investigation of the parallel processing of such structure, where the behavior of
this spatial access method will be analyzed.

 The use of such a structure in the multi-version maps and map-history contexts.
 Labelling principle and the use of B-trees as carrier of such a structure are also

tracks to be investigated.
 Evaluation of the MLQ based on the other type of PMQ and comparing both the

complexity and flexibility of the operations using the generated MLQ.

A. Touir

60

References

[1] Chang, S. K., Jungert, E. and Li, Y. "The Design of Pictorial Database Based Upon the Theory of

Symbolic Projections”. In: Proceedings 1st International Symposium on Large Spatial Databases, Santa
Barbara, USA (1989), 303-323.

[2] Nardelli, E. and Projetti, G. “Time and Space Efficient Secondary Memory Representation of
Quadtrees”. In: Information Systems, 22, No. 1 (1997), 25-37.

[3] Erwig, M. and Guting, R. H. "Explicit Graphs in a Functional Model for Spatial Databases". In: IEEE
Transaction on Knowledge and Data Engineering, 6, No. 5 (1994), 787-804.

[4] Kriegel, H. P., Fahldiek, A. and Mysliwitz, N. "Query Processing of Geometric Objects with Free Form
Boundaries in Spatial Databases". In: Proceedings DEXA'93, International Conference on Database and
Expert Systems Applications, Prague (1993), 349-360.

[5] Brinkhoff, T., Kriegel, H.P. and Seeger, B. "Efficient Processing of Spatial Join Using R-Trees". In:
Proceedings ACM SIGMOD'93 International Conference on Management, (1993), 237-246.

[6] Guttman, A. “R-Trees: A Dynamic Index Structure for Spatial Searching”. In: Proceedings ACM
SIGMOD (1984), 47-57.

[7] Sellis, T., Roussopoulous, N. and Faloutos, C. "The R+Tree: A Dynamic Index for Multidimensional
Objects". In: Proceedings 13th International Conference on Very Large Database, (1987), 507-518.

[8] Beckmann, N., Kriegel, H.P., Schneider, R. and Seeger, B. "The R*Tree: An Efficient and Robust
Access Method for Points and Rectangles". In: Proceedings ACM SIGMOD'90 International
Conference on Management of Data, (1990), 322-331.

[9] Seeger, B. and Kriegel, H. P. "The Buddy-tree: An Efficient End Robust Access Method for Spatial
Database Systems". In: Proceedings 16th International Conference on Very Large Database. (1990),
590-601.

[10] Samet, H. "The Quadtree and Related Hierarchical Data Structures". In: ACM Computing Surveys, 16,
No, 2 (1984), 187-260.

[11] Samet, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
[12] Aref, W. G. and Ilyas, I. F. “An Extensible Index for Spatial Databases”. In: Proceedings the 13th

International Conference on Statistical and Scientific Databases, Virginia. (2001), 49-58.
[13] Chakrabarti, K. and Mehrotra, S. “Efficient Concurrency Control in Multidimensional Access Methods”.

In: Proceedings ACM SIGMOD, Philadephia, Pennsylvania,USA (1999), 25–36.
[14] Samet, H. Applications of Spatial Data Structures. Addison-Wesley, 1990.
[15] Laurini, R. "Graphics Databases Built on Peano Space-filling Curves". Proceedings of the Eurographics

Conference, Nice (1985), 327-338.
[16] Morton, G. M. "A Computer Oriented Geodetic Database and a New Technique in File Sequencing".

IBM Ltd., Ottawa, Canada (1966).
[17] Hjaltason, G. R. and Samet, H. “Improved Bulk-loading Algorithms for Quadtrees”. In: Proceedings,

7th International Symposium on GIS (ACM GIS ’99), Kansas City, MO. (1999), 110-115.
[18] Hjaltason, G. R. and Samet, H. “Speeding up Construction of Quadtrees for Spatial Indexing”. Comp.

Sci. Dep. TR-4033, Univ. of Maryland, College Park, MD (1999).
[19] Ang, C. H. and Samet, H. "Node Distribution in a PR Quadtree". In: Proceedings 1st International

Symposium on Large Spatial Databases, Santa Barbara, USA. (1989), 233-252.

[20] Kedem, G. "The Quadtree-CIF Tree: A Data Structure for Hierarchical On-line Algorithms". In:

Proceedings 19th Design Automation Conference, Las Vegas, USA (1983), 352-357
[21] Cheiney, J. P. and Touir, A. " FI Quadtree: A New Data Structure for Content Oriented Retrieval and

Fuzzy Search". In: Proceedings SSD, 2nd International Symposium on Advances in Spatial Database,
Zurich, Switzerland (1991), 23-32.

[22] Touir, A. "The Design of an Eficient Data Structure in an Image Database System". In: Proceedings
DEXA International Conference on Database and Expert Systems Applications, Berlin, Germany
(1991.), 191-196.

ML-Quadtree: The Design of an Efficient Access . . .

61

[23] Vassilakopoulos, M. and Manolopoulos, Y. “Dynamic Inverted Quadtree: A Structure for Pictoral
Databases”. In: Information Systems, 20, No. 6 (1995), 483-500.

[24] Manolopoulos, Y. and Nardelli, E. “MOF-TREE: A Spatial Access Method to Manipulate Multiple
Overlapping Features”. Information Systems, 22, No. 8 (1997), 456-481.

[25] Tzouramanis, T., Vassilakopoulos, M. and Manolopoulos, Y. “Multiversion Linear Quadtree for Spatio-
temporal Data”. Stuller, J. et al. (Eds.): ADBIS-DASFAA 2000, LNCS 1884 (2001), 279-292.

[26] Becker, B., Gschwind, S., Ohler, T., Seeger B. and Widmayer, P. “ An Asymptotically Optimal
Multiversion B-Tree”. The VLDB Journal, 5, No.4 (1996), 264-275.

A. Touir

62

 : تصميم هيكل فهرسي فاعل(ML-Quadtree)الشجرة الرباعية المتعددة الطبقات
 متعدد الطبقات لنظم المعلومات الفضائية

 عامر الطوير

 ، كليه علوم الحاسب والمعلوماتقسم علوم الحاسب
 جامعة الملك سعود، الرياض

 م)٤/١٠/٢٠٠٣م؛ وقبل للنشر في ٢٨/٠٤/٢٠٠٣(قدّم للنشر في

يتناول هذا البحث تقديم تقنية فهرسية جديدة لمساندة العملية الاستعلامية ث.ملخص البح
والتحليلية للمعلومات الفضائية. إن تركيبة الخريطة الجغرافية هي عبارة عن عدة طبقات، كل طبقة تمثل

عليها نوعاً معيناً من المعلومات مثل طبقة الأĔار وطبقة الطرق ... الخ. كما أن الطريقة المتعارف
والمتعامل đا لمعالجة الطبقات هي إنشاء هيكل فهرسي لكل طبقة، يتم من خلالها الوصول إلى بيانات
تلك الطبقة وتنفيذ عملية المعالجة التي يريدها المستخدم. فلو أردنا أن نعرف مثلاً ما هي نقاط التقاطع

لهيكل الفهرسي التابع لطبقة شبكة بين شبكة المياه وشبكة الكهرباء في منطقة معينة فيجب استخدام ا
المياه والهيكل الفهرسي التابع لطبقة شبكة الكهرباء. وتعتبر هذه الطريقة مكلفة جداً مما يجعل من
الصعوبة على أنظمة المعلومات الجغرافية توفير هذه الخدمة. إننا ومن خلال هذا البحث نقترح تقنية

استعلام أو معالجة لعدة طبقات باستخدام هيكل فهرسية جديدة نستطيع من خلالها تنفيذ أي
فهرسي موحد. نستعرض من خلال هذه الورقة تعريف وتوصيف هذا الهيكل وكيفية إنشائه وتعديله

 والاستعلام من خلاله.

