
J. King Saud Univ., Vol. 16, Comp. & Info. Sci., pp. 1-15 (A.H. 1424/2004) 

1 

A Systolic Array Architecture for Computing Time-varying  
Higher-order Cumulants 

 
Mohammed AlOqeely and Abdullah Al-Shoshan 

Department of Computer Engineering, College of Computer & Information Sciences 
King Saud University, P.O. Box 51178 Riyadh 11543, Saudi Arabia 

 
(Received 6 November 2001; accepted for publication 18 May 2003) 

 
Abstract. For non-stationary processes, the conventional power spectrum does not reflect the time variation of 
the process characteristics. Higher-order cumulants or bispectrum has been applied in the analysis of non-
minimum phase linear, time-invariant (LTI) systems under stationarity assumptions and restricting the signal to 
have non-symmetric distribution. It is clearly of interest to examine what type of analysis is available for those 
cases where the assumption of stationarity becomes untrue or unrealistic. In many practical applications such as 
seismic surveying, detection, system identification, sonar, communications, speech, and medical 
instrumentation, the signal analysts are faced with the task of processing signals whose spectral characteristics 
are time-dependent [1] and [2]. In this paper, a simple hardware architecture for computing the time-varying 
cumulants of non-stationary signals is proposed using systolic arrays. 
 
 

1.  Introduction 
 

Due to a large number of applications in diverse fields, the problem of designing 
hardware implementations to deal with non-stationary signals is of utmost important. A 
common and well-known procedure for dealing with stationary stochastic processes is 
based on the application of the power spectrum. Although this procedure has a wide 
range of applications, it has certain limitations. The fact that the power spectrum carries 
only the magnitude information and no phase information implies that minimum-phase 
(or maximum-phase) characteristics had to be assumed a-priori. Since non-minimum 
phase systems are systems that have zeros inside and outside the unit circle, the analysis 
of non-minimum phase LTI systems cannot be done using the power spectral analysis. 
Furthermore, for non-stationary processes (processes which have at least one time-
varying parameter), the conventional power spectrum does not reflect the time variation 
of the process characteristics. Higher-order cumulants or bispectrum has been applied in 
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the analysis of non-minimum phase LTI systems under stationarity assumptions and 
restricting the signal to have non-symmetric distribution [3], [4], [5]. 
 

System analysis when the input/output are non-stationary requires new techniques 
and a great deal of work is needed in this area. It is clearly of interest to examine what 
type of analysis is available for those cases where the assumption of stationarity 
becomes untrue or unrealistic. In many practical applications such as seismic surveying, 
detection, system identification, sonar, communications, speech, and medical 
instrumentation, the signal analysts [1], [2] are faced with the task of processing signals 
whose spectral characteristics are time-dependent. Therefore, non-stationary signals need 
special mathematical treatment when estimating their spectrum or when identifying 
systems with non-stationary input. An accurate spectral analysis of these signals cannot 
be accomplished by the simple use of classical time-domain or frequency-domain 
representation. To deal with time-dependent spectrum, the concept of time-frequency 
distributions has been introduced. These methods represent an attempt to provide a 
general solution to the problem of representing non-stationary signals. In order to 
develop a useful theory we need to replace stationarity by a more general notion which 
still allows us to carry out meaningful statistical analysis and to develop a form of time-
dependent spectral analysis which shares many of the features of the spectral analysis of 
stationary processes [6], [7]. 

 
 

2. Spectrum and Polyspectrum 
 
 

Let x(n) be a stationary random process up to order k. Then, its kth order cumulant 
is defined as [3] 
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which is called the cumulant generating function, and E{.} is the expected value 
operator. The first, second, and third cumulants of x(n) as functions of its moments are 
given by 
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If x(n) is a zero-mean stationary process, then its first, second, and third cumulants 
reduce to the first, second, and third order moments of x(n), respectively. 
 
The (k+1)st order spectrum Sk+1(w1,w2,...,wk) of the process x(n) is defined as the Fourier 
transform of its (k+1)st order cumulant ck+1(m1,m2,...,mk). That is  
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In general, Sk+1(w1,w2,...,wk) is complex and a sufficient condition for its existence is that 
ck+1(m1,m2,...,mk) be absolutely summable. 
 
Particular cases of the (k+1)st order spectrums are the power spectrum and the 
bispectrum defined as follows: 
 
Power Spectrum (k=1) 
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Let H(z) be the transfer function of an LTI exponentially stable system, (i.e., its impulse 
response decays exponentially with time), whose input is an independent, identically 
distributed (i.i.d.) non-Gaussian process with non-zero (k+1) order cumulant 

k+1 (m1,...,mk). The (k+1)st order cumulant of the output process is related to the system 
impulse response h(n) by 
 

n
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In the frequency domain, the (k+1)st order spectrum of the output process is related to 
the system transfer function H(w) by 
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The above two equations are of fundamental importance because they serve as the bases 
for most non-minimum phase system identification methods. 
 

Most of the standard parameter estimation and linear system identification 
algorithms available in the literature estimate only a spectrally equivalent minimum 
phase system because these techniques exploit only the second-order statistics which 
suppress all phase information of the underlying process; thus they are incapable of 
identifying the non-minimum phase structure of the system. Furthermore, for non-
stationary processes, the conventional power spectrum does not reflect the time variation 
of the process characteristics. With the recent introduction of the bispectrum in digital 
signal processing, a new approach to the solution of non-minimum phase system 
identification problem has been devised. This approach exploits the fact that the 
bispectrum contains information regarding both the phase and the magnitude of the 
system. Although the bispectrum has been applied in the identification of non-minimum 
phase LTI systems, it requires the assumption of stationarity and restricts the process to 
have non-symmetric probability density. Therefore, when the input/output of the system 
are non-stationary or when they have symmetric probability densities, system analysis 
requires a new approach. In [8] a new method based on the evolutionary spectrum was 
proposed to solve some of these problems. In this paper, we propose a hardware 
implementation for evaluating the time-varying cumulants of a non-stationary signal. 
 

 
3.  Normal Equations for Time-varying Autoregressive Moving Average 

Systems Using the Time-varying Cumulants 
 
 

Consider the time-varying autoregressive moving average (TVARMA) equation 
q
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where the residuals e(n) are a set of mutually independent stationary random variables, 
identically distributed with zero-mean and unit-variance. Then multiplying both sides of 
equation (3) by x(n+m)x(n) and taking the expected value of both sides and assuming 
that E{e(n)e(n+m)e(n+k)}= n

e (m,k), we have 
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where cx

n(m,k)=E{x(n)x(n+m)x(n+k)} is the time-varying third-order cumulant of x(n). 
Equation (4) can be written in a matrix form as 
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where for k=1,2,...,p and m=q+k=k when a time-varying AR model is considered, then 
we have 
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an=[a1(n) a2(n) ... ap(n)]T, and x
nc =[ x

nc (1,0) x
nc (2,0) … x

nc (p,0)]T ,where T stands for 
matrix transpose. The above equations constitute a set of linear equations at each instant 
of time n. 
 
3.1 Estimation of the time-varying cumulants 
  The time-varying cumulants (TVC) can be estimated from the evolutionary 
bispectrum [7], [8] as follow: 
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where N is the data sequence length and M is an arbitrary constant depends on signal 
non-stationarity. Using the evolutionary bispectrum defined as 
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and wn(m) is a time-varying window. From equations (8) and (9), equation (7) becomes 
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which is an estimate of the third-order time-varying cumulant of x(n). In the case that 
x(n) is stationary, equation (10) reduces to 
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which is an estimate of the third-order cumulant of x(n). Modifying the algorithm 
proposed by [9] to the time-varying signals, let Cn be a symmetric matrix defined as 
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then, by defining the upper triangular matrix Un to be 
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and Dn as a diagonal matrix whose elements are 
 

dn(I,I)=wn(I)x(I),    I=0,1,…,N-1 
 
then Cn can be written in a matrix form as 
  
Cn= t

nU DnUn           (11) 
 

In the following section, a hardware architecture for implementing the time-varying 
cumulants defined in equation (11) is proposed using systolic arrays. 
 

 
4.  Parallel Architecture for Computing the Time-frequency Spectrum 

  
In this paper we present a linear (one dimensional) systolic system for computing 

TVC. We exploit the formulation of the problem, as a series of matrix multiplication 
operations rather than the direct application of the original definition of the problem [10, 
11]. The main advantage of doing so is to be able to ''re-use'' old work on systolic and 
processor-array design for matrix multiplication. Systolic array design for matrix 
multiplication has received a significant attention from researchers during the last two 
decades [12 - 17]. Using such well known and established work as a building block in 
our proposed system makes it modular, easy to understand, easy to test and easy to 
enhance or modify. The other approach (which we will not address in this paper) is to 
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design a systolic array starting from the original definition of the problem using standard 
systematic mapping techniques e.g., [18]. However, the systematic design techniques, 
often, yield complex Processing Elements (PEs) designs which are difficult to 
understand, test or modify. Our main goal in this paper is to map the computations onto a 
linear systolic array. The basic PEs used are extremely simple and are very suitable for 
VLSI implementations. We focus on linear array implementations since they have 
several advantages over two dimensional arrays. Specifically, they are more suitable for 
VLSI implementation and require lower I/O bandwidth; usually O(1) compared to two 
dimensional arrays which require O(N) bandwidth where N is the number of data points. 
Therefore, as the problem size becomes larger, linear arrays become more attractive [19, 
20]. Furthermore, linear arrays make it easier to incorporate fault tolerance capabilities 
into the system. In this paper we propose a linear system for computing TVC in O(N3) to 
O(N2) time using from O(N2) to O(N) processing elements depending on the size of PEs 
local storage and choice of configuration. The proposed system uses, in part, a linear 
array for matrix multiplication presented in [19 - 22]. The rest of this section covers the 
proposed architecture in detail. 
  
4.1 Linear array design for TVC 

As mentioned earlier, we are dealing with a non-stationary process so the matrix 
Cn in equation (11) has to be computed at each instances of time (i.e., for n=0, 1, ... N-1). 
Nevertheless we will focus first on designing a system capable of computing a single Cn 
and later we will show how to compute all instances of Cn on the same system. Equation 
(11) is the core of our proposed architecture. By ignoring the scaling constant, we notice 
that the problem is redefined as a series of matrix multiplication operations of NxN 
matrices. All the elements of these matrices, except for Dn, could be pre-computed (for a 
fixed value of w). Matrix Dn is a diagonal matrix and its diagonal elements can be 
obtained  "on the fly". Therefore, what is left is to carry out the multiplication 
operations. By re-examining (11) one can see that there are two types of matrix 
multiplication operations. Basically, the first type multiplies two regular matrices 
together. We call it non-trivial matrix multiplication. The second type multiplies a 
regular matrix with a diagonal matrix, which we call trivial matrix multiplication. Trivial 
matrix multiplication, which is multiplying a matrix A with a diagonal matrix B, is 
equivalent to multiplying each row of A with the corresponding diagonal element in B. 
Since no addition is involved, only multipliers are needed. If the data is fed serially, then 
a single multiplier (denoted as S-MUL module) will suffice as shown in the complete 
system design later. For non-trivial matrix multiplication, a full-fledged systolic array for 
matrix multiplication (denoted as M-MUL module) adopted from [19] is used and 
incorporated into the system. The over-all design consists of two building blocks of type 
S-MUL and M-MUL connected together in a serial fashion to form a linear system which 
implements the computations of equation (11). 
 

The proposed architecture consists of two parts S-MUL and M-MUL that can 
perform the matrix multiplication of (11) as depicted in Fig. 1. S-MUL performs the first 
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multiplication and feeds its results to M-MUL which is basically a matrix multiplication 
array based on the VMF design in [19], [22]. M-MUL multiplies t

nU Dn by Un to form Cn  
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Fig. 1. The proposed architecture:  
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b) Data flow into the system. 
 
 
Care was taken to make sure that the output data of S-MUL is in the format required by 
M-MUL (i.e., Column major Row major as specified in [19]). The matrix Dn is a 
diagonal matrix with non-zero entries dn(I,I)=wn(I)x(I). Multiplying the matrix t

nU  by 
the diagonal matrix Dn is equivalent to multiplying the first diagonal element x(.) of Dn 
by the entries of the first column of 2

nU , the second diagonal element x(.) by the non-
zero entries of the second column, and so on. As mentioned earlier, since data is fed 
serially, it was surprisingly sufficient to put S-MUL as a single multiplier to multiply the 
two input sequences that correspond to the elements of t

nU  and Dn matrices. 
 

In order for the reader to understand how the whole system works, we will 
explain how the module M-MUL works since it is the most complex component. Let us 
consider the VMF systolic array presented in [19], [22] (assuming that the parameter S 
equals 1, where S is the internal storage capacity of Pes [19]). M-MUL is a linear array 
that multiplies two mxm matrices A and B to obtain C. The linear array is obtained by 
mapping a 2-dimensional array onto a 1-dimensional array. As a simple example, 
assume that A, B and C are 4x4 arrays. The flow of input data in the original 2-
dimensional array is shown in Fig. 2(a). Each processor performs one multiply-and-
accumulate operation and passes the A and B elements to its right and bottom neighbor 
respectively. All the operations for computing Cij are performed by PE(I-1)m+j. This 
particular 2-dimensional array is mapped onto 1-dimensional (linear) array by stretching 
each row in row major order and eliminating vertical links of the array. Therefore, the 
resultant linear array will have m2 (in this case = 42) Pes as shown in Figure 2(b). In the 
resultant one-dimensional array, the data flows into the array through the left most PE. 
The elements of the A matrix are fed in column major while those of the B matrix are fed 
in row major order, which correspond to the A and B bands in Figure 2. Each element 
b1j(1≤ j≤ 4) in the B band has to meet with the element a1,1 in the A band. Since all data 
is fed serially at the leftmost PE, in order for a1,1 to meet the elements of the B band, the 
B band data must travel faster than the A band data. This alignment of operands is 
achieved using two speed data channels. The general methodology used to design a 
linear array for matrix multiplication given in [19] assuming that we will partition the 2-
D array into m-rows is as follows: 

 The 2-dimensional array is partitioned into m rows: CROW1, CROW2,..., 
CROWm. 

 The linear array consists of m blocks each block having m Pes. The 
computation performed by the PE’s in blocki is the computations of Pes in 
CROWi, (1≤ I ≤ m). 

 The Pes are selectively activated to perform a step of the matrix multiplication 
algorithm. 
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 Within each block, the elements of B matrix are saved in a slow channel that 
will be used by the PE’s in the next block. At the end of each block, the B 
matrix data is switched from slow to fast channels so that they can commute 
with the elements of A matrix within the next block. 

 

 
 

(a) 

(b) 
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Fig. 2. The linear array with continuous data streams used in M-MUL (Courtesy of [19]): 
a) Original 2-dimensional array. 
b) Linear array. 
The array is built using the basic PE shown in Fig. 3 that contains only one 

Multiply and Acummulate (MAC) unit. Data travels across the array through chains of 
registers (or channels). There are three major channels for moving data: one fast channel 
(BF) which carries the elements of B within one block, and two slow channels AS and 
BS which are used to carry the elements of A and B, respectively, as shown in Figs. 3 
and 4. Control is accomplished using, one bit wide control lines I, J and ACT which 
connect neighboring Pes. Rows of the B matrix are moved from CROWi to CROWi+1 
(i.e., from blocki to the blocki+1) using the slow channel BS. Moreover, the fast channel 
is used to move the data (of the B matrix) within a block of Pes. At the end of each 
block, data in the fast channel are discarded. Fig. 3 shows hardware details inside Pes to 
perform the channel switching at the end of each block by using multiplexes and the 
control signal . 
 

 
Fig. 3. Block diagram of the basic PE used in M-MUL (Courtesy of [19]). 

 
 

AS.LR: Input register of  AS channel 
ASRR: Output resister of AS channel 
BF.R: Register of BF channel 
BS.LR: Input register of BS channel 
BS.RR: Output register of BS channel 
C: The register where the partial sum is 
stored 
MA,MB: Multiplexers controlled by  
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Fig. 4. Organization of the PEs in M-MUL. 

 
The control signal ACT flag is used to trigger a partial product computation and 

the flag  is used to control data multiplexing. If ( =1) then multiplexer MA selects data 
from AS.LR and MB selects data from BS.RR; otherwise MA selects data from AS.LR 
and MB selects data from BS.RR. A PE is activated to perform a multiply-and-
accumulate operation Cij = Cij+aik*bkj (aik in the AS.LR of the slow channel is multiplied 
with bkj in the register BF.R of the fast channel (see Fig. 3)) when the signal ACT=1. At 
the end of a block, the current element of matrix A is deactivated and the next element of 
A is activated. Concurrently with feeding data,  is set in PEm*i (1≤ i ≤ m) using the I 
and J control signals. The data are input in every clock period continuously. Also, the 
control input ACT is set to 1 every time a1k (1 ≤ k ≤ m) is inserted, into the array. For 
more details on the operation of the array see [22]. This array performs the 
multiplication of two mxm matrices using m2 PEs in 3m2 - m-1 clock cycles [22] 
(assuming that S=1). Recall that in our system, m equals N (the size of the matrices is 
NxN). 
  

Now that we have a linear array that can compute Cn for a single value on n, what 
is left is to replicate the process to compute all Cn  for all possible values of n. In general 
one can replicate the architecture N times and let each linear system compute a Cn 
matrix. This will guarantee that all computations will be performed in parallel so the 
whole system will have an O(N2) computation time which is the time needed to compute 
an instance of Cn. On the other hand, it is also possible to compute all Cn matrices (i.e. 
for n=0,1,..., N-1) using the single liner system showing in Figure 1 sequentially and thus 
no replication of hardware is needed. The tradeoff between the two options will be 
discussed in the next section. 
  
4.2 Performance analysis 

As mentioned earlier, M-MUL has a computation time of N2+2N(N/S)-(N/S) +1 
clock cycles, where S is the size of PEs local storage. Therefore, the over-all 
computation time involved in computing one matrix Cn is given by: 
 

Computation Time  = TM-MUL +TS-MUL  
= [N2+2N(N/S)-(N/S) +1]+1 
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which is O(N2); remarkably faster than the non-parallel computation time that is of 
O(N3). On the other hand the number of PEs in the system equals the sum of PEs in the 
building blocks which is given by  
  

Number of PEs = N(N/S) + 1 
 
which ranges from O(N2) to O(N) depending on the PEs local storage S. No previous 
work on the same subject is available for comparison. Table 1, however, summarizes the 
main features of the proposed architecture for computing one Cn matrix. 
 

As for the over-all design for computing all instances of Cn, the first option 
discussed in the previous section (that is replicating the system for each instance of Cn) 
is N times faster than the second option (that is using a single linear system to compute 
all instances of Cn sequentially) but this performance boost comes at a cost. The second 
option will require N times the hardware and N times the I/O requirement of the first 
option which could make it undesirable if the system is to be realized in VLSI. It is up to 
the designer to judge according to the needs and constraints of his/her particular 
application and constraining environment. 
 
Table 1. Main features of the proposed architecture for computing one Cn matrix 

# of PEs N [N/S] for M-MUL 
Plus 
1 for S-MUL 

# of MACs/PE   1 
Computation Time   {N2+2N [N/S]-[N/S] +1} +1 
Max Speedup over Serial Comp. O(N) 

 
 

5.  Conclusion 
 

In this paper, a new approach for linear systolic array realization of time-varying 
cumulants (TVCs) is proposed. The underlying matrix multiplication formulation 
obviously simplifies the design process considerably. A very simple architecture that 
uses an existing matrix multiplication systolic array as a building block has been 
developed. The new design has the advantage of simplicity, flexibility and the suitability 
for VLSI implementation. An obvious advantage of the development presented in this 
paper is putting the problem in a formulation that can benefit from past (and possibly 
future) research in systolic architectures for matrix multiplication. A specific example 
from the literature [19] has been adopted in this paper because of its simplicity and 
efficiency, but other techniques (see [12]) can be considered as well. The decision of 
which approach for matrix multiplication to choose would depend on the overall design 
objectives and constraints. 
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 معمارية مصفوفة لحساب الطيف عالي الدرجة المتغير مع الوقت
 

 عبداالله إبراهيم الشوشانود.   د. محمد عبدالعزيز العقيلي
 ،قسم هندسة الحاسب، كلية علوم الحاسب والمعلومات، جامعة الملك سعود

 لمملكة العربية السعوديةا ، ١١٥٤٣الرياض  ،٥١١٧٨ص .ب 
 

 م)١٨/٠٥/٢٠٠٣م؛ وقبل للنشر في ٦/١١/٢٠٠١(قدّم للنشر في 
 

إن طريقة تحليل الطيف التقليدية لا تعكس الخصائص المتغيرة مع الزمن للإشارة، وطرق نشر الطيف  ملخص البحث.
تماثل نشر طيف الإشارة. لذا ذوات الدرجات العالية تفرض بأن خصائص الإشارة لا تتغير مع الزمن مع فرضية عدم 

ذه الفرضيات المذكورة لما لها  بدت الرغبة في البحث عن طرق رياضية لمعالجة الإشارات غير مستقرة الخصائص لا تتقيد 
من تطبيقات واسعة الانتشار، حيث أصبح لزاما علينا التعامل مع هذه الإشارات الصادرة من ظواهر طبيعية مثل 

 الملاحة والإشارات الصادرة من الأجهزة الطبية ونحوها. تراإشارات الزلازل وإشا
 

ونظراً لهذه الأهمية، فقد أصبح من الضروري أيضاً تصميم دوائر إلكترونية تقوم بمعالجة مثل هذه الإشارات، 
قتراح حيث تم في هذا البحث دراسة المعادلات الرياضية التي تتعامل مع الإشارات غير مستقرة الخصائص مع الزمن وا

طريقة جديدة لتصميم معمارية خاصة لمعالجتها. حيث تم تحويل معادلات النظام إلى صيغة مصفوفات ومتجهات قابلة 
 للمعالجة.




