
J. King Saud Univ., Vol. 13, Comp. & Info. Sci., pp. 105-125 (A.H. 1421/2001)

105

A Framework for the Prototype-based Software
Development Methodologies

Abad Shah

Department of Computer Science, College of Computer & Information Sciences
King Saud University, P.O.Box 51178, Riyadh 11543, Saudi Arabia

(Received 28 November 1999; accepted for publication 11 October 2000)

Abstract. In the object-oriented paradigm, two techniques, class-based technique and prototype-based
technique are available for modeling the real-world objects. In this paper, we first study and analyze both
object-modeling techniques, then using this study and analysis we identify a class of applications, and argue
that the class-based methodologies that use the class-based technique as the object-modeling technique, are
inappropriate to use for the development of this class of applications. Considering the requirements of the
identified class of applications, we argue for need of a class of software development methodologies which are
referred to as the prototype-based methodologies. In this paper, we also propose modifications in the classical
Water-Fall life-cycle software development model, which make it consistent with the requirements of the
prototype-based methodologies. The modified life-cycle model provides a framework and basic guidelines for
proposing the prototype-based methodologies.

Keywords: object-oriented paradigm, class-based technique, prototype-based technique, object modeling,
software development methodologies, framework

1. Introduction

In the literature, two techniques are available in the object-oriented paradigm for
modeling the real world objects. The first technique is based on the mathematical
concept of set, and the second technique is based on the observation of objects to acquire
their knowledge and the acquired knowledge is used for modeling the objects [1, 2].
These two object-modeling techniques are referred to as the class-based technique and
the prototype-based technique, respectively.

The class-based technique models an object by the two parameters, structure and state
[3, 4]. The structure of an object provides the structural and behavioral capabilities to
the object, and it is defined by a set of instance variables and methods

Abad Shah

106

(or operations). The state of the object assigns data values to the instance variables, and
the methods of the object that operate on the state. A set of objects that share the same
structure is referred to as a class [4]. In this technique, classes of a system are organized
as a directed acyclic graph (DAG) or simply by a graph, and this organization of the
classes is referred to as a class-lattice [4]. The classes in a class-lattice hold parent-child
relationships among the classes. A child-class (or sub-class) inherits the structure from
its parent-class (or super-class), and this knowledge sharing mechanism is referred to as
the inheritance mechanism [5]. In the class-based technique, we refer to the structure of
an object as the knowledge of the object.

 The prototype-based technique defines an object by a single unit of knowledge
which can be the structure, state, or a combination of both [1, 6]. An object is referred to
as a prototype in this technique. Note that in this paper while referring the prototype-
based we use the terms prototype and objects interchangeably. A prototype is defined by
its default knowledge, and the knowledge is acquired by observing the prototype when it
is created. The default knowledge can be the structure, state, or a combination of both
parameters of the prototype [1, 2, 7]. A new object (or prototype) can be defined by
sharing the knowledge of one or more existing objects and by defining additional
knowledge in the newly defined object. The prototype-based technique is a class-less
technique, which means that all objects of a system are placed at the same level without
forming any structural organization (e.g., class-lattice) of the objects [1. 2].

 The class-based technique and object-oriented paradigms have become
synonymous among the computer professionals, and they consider every object-oriented
language or system as a class-based language or system. The source of this
misconception is due to an early programming language Simula-67 [8] which used the
class-based technique as an object-modeling technique in the programming language.
Although, the prototype-based technique is considered more flexible, powerful, and
simpler technique than the class-based technique but the prototype-based technique
could not get the popularity that it deserved, and it had been ignored in the past [1, 2, 9].
Recently, the prototype-based technique is getting momentum, and languages and
systems such as SELF programming language and temporal object system (TOS) [3, 6,
10, 11] have emerged, which are based on this technique.

Several object-oriented software development methodologies such as Object
Modeling Technique (OMT), Booch methodology, Yourdon object-oriented
methodology, Fusion Methodology and many more are reported in the literature [12 -
17]. These methodologies suggest different schemes for object-oriented analysis and
design of a system. In other words, these methodologies suggest different processing
steps in the analysis phase, design phase, and other phases of the classical Water-Fall
life-cycle model (or simply the classical life-cycle model) during the development of a
system [18]. A comprehensive comparison and study of some popular object-oriented

A framework for the Prototype-based . . .

107

software development methodologies is available in [19, 20]. The common feature of
these methodologies is that they use the class-based technique as the object-modeling
technique, and we refer to these object-oriented methodologies as the class-based
methodologies.

 To the best of our knowledge, no software development methodology is reported
in the literature, which uses the prototype-based technique as the object-modeling
technique. Note that the methodologies which will use the prototype-based technique as
the object-modeling technique, are referred to as the prototype-based methodologies.
However, there exists a class of applications for which the prototype-based
methodologies are more appropriate to use for their development than the class-based
methodologies. The applications such as software development environment, Computer-
Aided Construction (CAC), and the Web applications belong to this class of
applications. One typical characteristic of the objects of this class of applications is that
they frequently change their structure, state, or both. These frequent changes to the
objects make a class-lattice complex and inefficient, and consequently make the class-
based methodologies inappropriate to use for the development of this class of
applications. Also, in some applications of this class such as Computer-Aided
Construction (CAC), it is desirable to store, and later trace back the history of changes
to a specific object [21]. The history of changes can be consulted in making
maintenance decisions about the object. The class-based methodologies do not suggest
any mechanism or guidelines during the system development for storing and later tracing
back the history of changes to a specific object [3, 21, 22]. Therefore, we are
convinced that there is a need of a new class of methodologies to properly develop this
class of applications. We identify the characteristics of the class of applications later in
Section 3.

 Another common feature among the class-based methodologies is that they follow
the classical life-cycle model [18]. Here the term follow means that the class-based
methodologies develop a system using the general guidelines that are suggested by the
classical life-cycle model. In our opinion, this follow of the prototype-based
methodologies the classical life-cycle model without proper modifications will not
permit the methodologies to exploit all features of the prototype-based technique, and
the prototype-based methodologies will not be able to capture the crucial characteristics
of the identified class of applications. For further support of our this claim, we give more
reasons in the next paragraph.

 The prototype-based technique does not differentiate between the two parameters
(i.e., structure and state) of an object, and both parameters can be captured
simultaneously as a prototype. The classical life-cycle model and the methodologies that
follow this model, do not support the capturing the data parameter or the simultaneous
capturing of both parameters of an object during the system development in any phase.

Abad Shah

108

This deficiency of the classical life-cycle model influences the methodologies (such as
the class-based methodologies) that follow it, and the model makes these methodologies
unsuitable to use for the development of the identified class of applications. Therefore, it
is necessary to modify the classical life-cycle model to overcome this deficiency and
make it suitable for the prototype-based methodologies. The modified life-cycle model
can provide a framework (or basic guidelines) for the proposing prototype-based
methodologies.

 The remainder of this paper is organized as follows. In Section 2, we study and
analyze the class-based and prototype-based techniques, and give a comparison of both
object-modeling techniques. Using this study and analysis, we identify the characteristics
of a class of applications for which we argue that the prototype-based methodologies are
appropriate to use for their development. In Section 3, we give the characteristics and
identify a class of applications for which the prototype-based methodologies are
appropriate to use for the development of this class of applications. The proposed
modifications in the classical life-cycle model which can be used as a framework for the
prototype-based methodologies, are given in Section 4. Finally, in Section 5, we give our
concluding remarks and future directions.

2. Class-based and Prototype-based Techniques: Study and Analysis

In the previous section we briefly described the class-based and prototype-based
techniques. In this section we give a comparative study of both object-modeling
techniques. The comparative study is also summarized in Table 1. In the next section we
use this study for identifying the characteristics of a class of application for which the
prototype-based methodologies are appropriate to use for the development of this class
of applications. This study also leads us in proposing the modifications to the classical
life-cycle model.

2.1 Basis of the techniques
 As mentioned earlier, the basis of the class-based technique uses the first
knowledge representation technique that is based on the mathematical concept of set [2].
The set theory suggests that firstly a set be defined, then the set is instantiated. All
instances (or members) of a set share a common definition (or properties). Similarly, in
the class-based technique we first define a class (or the structure) by defining its instance
variables and methods, then create instances of the class [1, 2]. All instances (or states)
of a class share a common definition of the class, and instances are dependent on the
definition of the class. The prototype-based technique uses the second knowledge
representation technique, called the observation. An object is modeled by acquiring its
default knowledge through observation [1, 2].

A framework for the Prototype-based . . .

109

Table 1. A comparison of the class-based and prototype-based techniques
No Features Class-Based Technique Prototype-Based Technique
1 Basis Mathematical concept – set of

knowledge representation
Knowledge representation through object
observation

2 Object
modeling
parameters

(i.) defines an object by distinct
parameters structure and
state.

(ii.) Object is not defined in an
incremental fashion.

(i.) defines an object by a single parameter -
prototype and does not differentiate
between structure (or meta-data) and state
(or data) of the object

(ii.) Objects are defined in a pure incremental
fashion.

3 Organization
of objects of a
system

Objects are organized into a
hierarchical structure, called a
class-lattice

Objects are not organized in any hierarchical
structure - no class-lattice

4 Tracing of
changes to a
specific object

not possible Possible, since each change to an object is
stored in a separate prototype.

5 Knowledge
sharing
mechanism

Inheritance mechanism, and it is
static mechanism.

Delegation mechanism, and it is dynamic
mechanism.

6 Fixation of
message-
Passing pattern

Message-passing pattern is fixed
at compile-time.

Message-passing pattern is fixed at run-time.

7 Retention
control while
message-
passing

Control remains with the self
class while the search goes to the
next super-class.

Control is passed to the next prototype with
the search delegation.

8 Flexibility
and
efficiency

(i.) In case of simple inheritance
and single-parent delegation,
both mechanisms are equally
powerful (Stein, 1987)

(ii.) Otherwise it is less flexible,
and less powerful than the
delegation mechanism.

(iii.) Efficiency is predictable.

In case of simple inheritance and single parent
delegation, both mechanisms are equally
powerful.
More flexible and powerful than the Inheritance
mechanism.
Efficiency is not predictable

2.2 Object parameters
 The class-based technique models an object by two distinct parameters, and they
are considered two different entities [2]. The data (or state) parameter of an object
depends on the structure parameter of the object. It means that if the structure of a class
suffers a change, then all states of the class are also affected by the change. During
discussing the class-based technique, we refer to the structure of an object as the
knowledge of the object.

 An object is modeled as a single unit (or parameter) of knowledge in the
prototype-based technique. The single unit can be the structure, state, or both. The
property of not-differentiating between structure and state of an object of the technique
empowers it to capture both parameters of an object simultaneously and in the same
manner.

Abad Shah

110

2.3 Organization of objects
 In the class-based technique the object classes of a system are organized into a
hierarchical structure - class-lattice. Level of a class in a class - lattice determines the
abstraction level of the class. It means that a class at a higher level in a class - lattice is at
a higher level of abstraction than a class at a lower level in the class - lattice. The parent
-child relationship among classes results into the inheritance of knowledge (which is
only the class’s structure).

 The prototype-based technique does not form any hierarchical structure among
objects (or prototypes) of a system. The technique considers all objects of a system at the
same level, and any object can dynamically share the knowledge of other objects of the
system using the delegation mechanism which is explained later.

2.4 Tracing of changes to a specific object
 After the creation of an object, the object can suffer different types of changes.
The changes can occur to the structure, the state, or both parameters of the object. The
class-based technique proposes schema evolution management system [4], and version
management system [23] to capture and trace back the changes to the structure and state
of an object, respectively. But as mentioned earlier, the technique does not suggest any
solution to the situation when an object suffers a change to its both parameters
simultaneously. In this situation the change to an object neither it can be captured nor it
can be traced back. This drawback makes the class-based technique an unsuitable object-
modeling technique for many applications.

 Since the prototype-based technique defines a prototype by structure, state or
combination of both, therefore this flexibility of the technique allows capture of all types
of changes (including simultaneous change to both parameters) to an object as a
prototype. As each change is captured as a separate prototype, it can later be traced back.

2.5 Knowledge sharing mechanisms
 A knowledge sharing mechanism of a data modeling technique brings reusability
of knowledge in a system. The inheritance mechanism is the knowledge (only structure)
sharing mechanism of the class-based technique. It fixes at the compile-time knowledge
sharing pattern (called class-lattice) among objects of a system, but the knowledge
among the objects is shared at the run-time through message-passing [2]. The class-
based technique prohibits any change to the pattern (or a class-lattice) of a system at the
run-time [2]. Many types of inheritances such as the single (or simple) inheritance,
multiple inheritance, restricted (or selective) inheritance, and repeated inheritance are
available in the technique (details can be seen in the literature [5, 24, 25].

A framework for the Prototype-based . . .

111

 The prototype-based technique provides a dynamic knowledge sharing
meachanism - called the delegation mechanism. Note that the delegation mechanism
allows sharing of both parameters of an object (or a prototype) to another object. The
mechanism fixes at the run-time the knowledge-sharing pattern among objects of a
system [2, 7]. The dynamic nature of the mechanism facilitates the user to pick-up at the
run-time a prototype (or prototypes) for the purpose of knowledge sharing. This facility
makes the delegation mechanism more flexible and powerful than the inheritance
mechanism. Two types of delegations are reported in the literature, and those are the
single-parent delegation and the multi-parent delegation [2, 7]. The working of the
delegation mechanism is described in Section2.6. Conceptually they are close to the
simple inheritance and multiple inheritance, respectively.

 Stein proposed two mathematical models for the inheritance and delegation
mechanisms and formally proved that “Inheritance Is Delegation” [7]. But both these
models have limited capability because they capture only the cases of single-parent
inheritance (or simple inheritance) and single-parent delegation. Since the two models
do not handle the cases of multiple inheritance and multiple-parent delegation, therefore,
it is difficult to say in general that the inheritance mechanism is equal to the delegation
mechanism [7].

2.6 Retention of control while message-passing
 In the class-based technique, when part of knowledge (which can be an instance-
variable or a method) is requested in a sub-class that is referred to as the self class, the
search for the requested knowledge starts from the self class. The self class first tries to
meet the request from its own local knowledge. Note that here the class’s own local
knowledge means the class structure. If the self class is unable to meet the request, then
the search goes up in class-lattice of the system by sending a message to its immediate
super-class (or parent class) of the self class. The immediate super-class is called the
client class. If all the immediate classes of the self class are unable to meet the request,
then the search goes to super-classes at the next upper level of the self class in the search
of the requested knowledge. In this way, the search continues until either the requested
knowledge is found and fetched and the result is brought back to the self class or the
requested knowledge is not available in any super-class of the self class at any level in
the class-lattice and in this case an error message is generated [2, 7]. In the class-based
technique, when a search for a requested knowledge goes up the super-classes of a self
class, the control remains with the self class. If the requested knowledge is found in one
of the super-class of the self class, then the knowledge is processed there and the result is
brought back to the self class. Thus the whole process covers two-ways in the class-
lattice, one for the search of the requested knowledge starting from the self class, and the
other to bring the result back to the self class [2, 7].

Abad Shah

112

 On the other hand, the delegation mechanism forwards the control from the self
prototype to a client prototype with the request for the knowledge. The requested
knowledge is either found or not found in the prototypes of the system, in both the cases
the control or the result of the requested knowledge never comes back to a self prototype
[2, 7]. Due to this feature of the delegation mechanism, the search for a requested
knowledge goes only one way in prototypes of a system. This feature of the delegation
mechanism makes it more powerful and efficient than the inheritance mechanism [2].

2.7 Creation of a new object
 In the class-based technique, a new object can be created in two different
situations: first situation is when an instance is created in an already existing class of a
class-lattice, and second situation is when first a new class is defined in a class-lattice
and then its instance is created. In the first situation, schema of a class-lattice is not
affected, whereas in the second situation schema is affected and also overall
performance of the system.

 In the prototype-based technique, there are two approaches for creating a new
prototype by sharing the knowledge of the existing prototypes. The first approach is
called the copying (or cloning) of the existing prototypes [1]. After copying knowledge
from an existing prototype (or prototypes), the new prototype is independent and has no
connection with the original prototypes. Later, any changes to the original prototype do
not reflect in the new prototype and vice versa [1, 2, 7, 26]. In the second approach, a
new prototype is created as an offspring of one or more existing prototypes [1]. This new
prototype is defined in an incremental fashion as an extension of an existing prototype
(or prototypes) by defining only additional knowledge in the newly defined prototype.
The additional knowledge is the difference between the knowledge of the existing
prototype (or prototypes) and the new prototype [1, 2]. In the second approach, a group
of prototypes that share a common knowledge, can be grouped together by placing the
common knowledge at some common place as a prototype, and new prototypes are
defined as the offsprings of the common knowledge [1-3, 7, 26]. This technique puts a
group of prototypes which share a common knowledge into a single class, and the
technique is considered a hybrid technique of the class-based and prototype-based
techniques [2].

2.8 Flexibility and efficiency
 From our discussion in the above sections, it is easy to conclude that the
prototype-based technique is considered more flexible than the class-based technique [2,
6, 9]. Generally, there is a concern about the efficiency of the object-oriented
technology. As mentioned earlier, the prototype-based technique supports a dynamic (at
run-time) knowledge sharing mechanism while the class-based technique supports a
static (at compile-time) knowledge sharing mechanism. Therefore, the languages and
systems that use the class-based technique, are considered more efficient than the

A framework for the Prototype-based . . .

113

languages and systems that use the prototype-based technique, respectively [1, 2]. We
also experienced the same while developing an application [10, 11] using the prototype-
based programming language SELF version 4.0 [6, 7, 26]. The cause of the efficiency
problem is the dynamic (i.e., the run-time) knowledge sharing of the delegation
mechanism. If we select many prototypes for the purpose of knowledge sharing, the
efficiency problem becomes more serious. In other words, for applications that are
developed using this technique, the efficiency of an application depends on the number
of prototypes that are selected for the purpose of knowledge sharing. The efficiency of
small size applications is acceptable. A complete performance comparison of C++
(class-based) and SELF version 4.0 (prototype-based) object-oriented languages can be
seen in [10, 11].

3. The Characteristics of the Class of Applications Suitable for
the Prototype-based Methodologies

 In this section, we identify six (6) characteristics of a class of applications, and
argue that the prototype-based methodologies are appropriate to use for the development
of this class of applications. The identified class of applications is considered as a
separate class and is referred to as the identified class of applications. The characteristics
of the class are identified based on our study and analysis of the two data-modeling
techniques in Section 2.

3.1 Applications without hierarchical structure

Objects of some applications have inherent property that their objects can easily
be organized into a strong hierarchical structure. Objects of this type of applications
interact with each other in a fixed and pre-defined pattern. For example, structural
organization of a company’s employees (e.g. president, executive presidents, vice-
presidents, etc.) are related to each other in a strong hierarchical structure). Objects of
this type of application interact with each other in a fix and pre-defined pattern that is
defined by the hierarchy of the application. For this type of applications, the class-based
methodologies are appropriate to use for their development. But there are another type of
applications such as software development environments, objects of this type of
application are loose or no hierarchical structure among its objects, and they do not
interact with each other in any fix and pre-defined pattern because they are loosely
related to each other. It may also possible that an object of such type of application is
defined for only some specific purpose. We consider these applications as a class of
applications, and advocate that the prototype-based methodologies are appropriate to use
for their development because the methodologies use the object-modeling technique
which is consistent with the characteristics of the class of application (details can be seen
in the previous section).

Abad Shah

114

3.2 Rapid prototype development
 Objects of some applications such as software development and computer-aided
design and computer-aided manufacturing (CAD/CAM) are of dynamic and evolutionary
nature (for details see Section2). For a specific purpose a new version an object of this
type application is created and effect of this new version of the object is seen on over all
application. Sometimes different versions of the same or different objects of an
application are created quickly (or rapidly) to see and achieve some desired objectives
and results. This process of rapid versioning is referred to as rapid prototyping. Note that
a new version of an object can be created due to structural or stature change to the
object. We consider the applications that need this type of requirements as the class of
applications. Since the prototype-based technique captures all types of changes to an
object in a single uniform manner, therefore the prototype-based methodologies are
suitable for the development of this class of applications.

3.3 Incremental growth of objects

In some applications such as Computer Aided Construction (CAC) and Virtual
Reality, knowledge of the objects grows in an incremental fashion. In this type of
application, an object is created with its default knowledge (i.e., the knowledge that is
available at the time of its creation), and later its knowledge grows over its life-span. For
example in CAC, an object building is defined when it is initially built, then each time
the building needs maintenance and the maintenance is done, the knowledge of the
object is updated. This update of knowledge shows maintenance that is done to the
building. The incremental growth of the knowledge of objects can be in the structure,
state or both parameters of the object. From our study of object-modeling techniques, it
is obvious that the prototype-based methodologies are appropriate for the objects that
grow their knowledge in incremental fashion. The class-based methodologies will design
a complex and inefficient class-lattice for such type of applications.

3.4 Desirability to trace back changes to a specific object

In the engineering applications such as CAC, CAD/CAM and other complex and
engineering related applications, it is desirable to trace back the history of changes to the
structure, state, or both parameters of a specific object. The consultation of the history of
a specific object is helpful in making the maintenance decision for the specific object.
The history provides the maintenance engineer complete details of all changes that occur
to the object since its creation. In [21], this type of CAC application is described and the
importance and benefits of maintaining and tracing the history of changes to the objects
are given. This characteristic of this type of applications is an important feature which
makes these applications different from others.

3.5 Where the grouping of objects is not important

This characteristic is extension of the characteristic, which is already discussed in
Section 3.1.The class-based technique puts the objects into a group (or class), which

A framework for the Prototype-based . . .

115

share common properties, and different groups are then linked into a graph (class-
lattice). But if we have some applications (such as the application on Web and virtual
reality) in which each object is its own type, and the objects of this type of application do
not much interact with each other, then it is inappropriate grouping of the objects and
make their class-lattice. Therefore, for this type of applications in which objects have
almost heterogeneous properties, it is not beneficial to organize the objects of these
applications into a hierarchical structure like class-lattice. Rather it more useful to put
all objects of such type of application at the same level as the prototype-based technique
suggests.

3.6 Simultaneous capturing of changes to both parameters of objects

In our study (see Section 2), we have concluded that the class-based technique
and methodologies are not capable to capture simultaneous changes to both parameters
of an object. But in some applications such as the hypermedia systems, the web systems
and the semi-structure applications [27], this type of change to objects occurs frequently
and it is essential to capture the change. This characteristic of these applications makes
the class-based methodologies unsuitable for the development of this type of
applications.

The six (6) characteristics of the identified class of applications are briefly

mentioned and argued that the prototype-based methodologies are appropriate to use for
the development of these applications.

4. Proposed Framework for the Prototype-based Methodologies

In this section, first we look at the two types of software development
methodologies i.e., the function-oriented and class-based methodologies and the object-
modeling techniques used by them. The function-oriented methodologies are formally
defined in the next paragraph. Some representative function-oriented methodologies are
Structure Analysis/Structure Design (SA/SD), SADT, etc. [28, 29], and the class-based
object-oriented methodologies are Object Modeling Technique (OMT), Fusion, Booch,
etc. [12, 13, 17, 30]. After the study of the two object-modeling techniques, we point-
out the difference between the two techniques, and describe how the classical life-cycle
model is modified for the class-based methodologies to accommodate this difference.
We also describe how the difference between the class-based methodologies and
prototype-based methodologies makes the classical-life model an unsuitable framework
for the prototype-based methodologies. In the last part of the section, we propose the
modifications in the classical life-cycle model to adjust the difference. After
incorporating the modifications the classical life-cycle model works as the framework
for proposing the prototype-based methodologies.

Abad Shah

116

The principle of aggregation in the function-oriented methodologies groups
together functions of a system that are constituents of a higher level function
implementation. In other words, the main emphasis of the function-oriented
methodologies is on the system functionality, and the methodologies are referred to as
the function-oriented methodologies [17]. In the class-based methodologies the principle
of aggregation groups together functions (or methods) that operate on the same set of
data. The main emphasis in the class-based methodologies is on designing object classes
of a system and their organization [17]. Due to emphasis on different aspects of problem
statement of a system in these two types of methodologies, the class-based
methodologies spend more time and effort in the design phase than the analysis phase as
compared to the function-oriented methodologies (for details see [17]). In other words,
the difference in the object-modeling techniques of the function-oriented methodologies
and the class-based methodologies has affected the processing of the two phases (the
analysis phase and design phase) of the classical life-cycle model. The difference is
accommodated through a modification which recommends that for the class-based
methodologies the design phase of the classical life-cycle model spend more time and
effort than its analysis phase. We conclude that the difference between two classes of
methodologies may pursue modifications to the classical life-cycle model to
accommodate the difference.

The prototype-based methodologies differ from the class-based methodologies

since they use two different object-modeling techniques. We magnify the main
differences between these two types of methodologies and they are based on our study of
the two object-modeling techniques in Section 2. The differences are listed as follows:

(i.) The prototype-based methodologies and the class-based methodologies
use different object-modeling techniques. The object-modeling technique
that is used by the prototype-based methodologies models objects in
entirely different and unique manner.

(ii.) The prototype-based methodologies are more implementation-oriented
than the class-based, because their emphasis is more on design and run-
time (or dynamic) aspects of objects of a system.

(iii.) The prototype-based methodologies do not organize objects of an
application into a hierarchical structure like class-lattice, rather they
place objects of a system at the same level, and the knowledge-sharing
pattern among the objects of the system is fixed at the run-time.

(iv.) Objects of a system which are developed using some prototype-based
methodology, pass only once through the analysis process (or phase) in
their life-span when the system is developed for the first time. After the
system development, each update to the objects of the developed system
is only processed by the design and implementation phases. It means that
objects of a system are processed only once by the analysis phase and
many times by the design and implementation phases of a prototype-

A framework for the Prototype-based . . .

117

based methodology. But this is not the case for development of a new
system and later updating the developed system using some class-based
methodology, in both cases a fixed order sequence of the phases is
followed. This difference between the two types of methodologies points
out that the design phase and implementation phase of the prototype-
based methodologies hold an iterative property since objects of a system
may be processed by the two phases more than once in their life-spans.
This difference is also further explained in Section 4.1.2.

4.1 The Proposed modifications and the framework

In this section we propose modifications to the classical Water-Fall life-cycle
model, and the modifications are based on the above mentioned differences between the
class-based and prototype methodologies, and the weakness and deficiencies mentioned
in the next paragraph. The modified life-cycle model provides a framework for the
prototype-based methodologies. Note that we use the terms the modified life-cycle
model and the framework for the prototype-based methodologies in the same meaning.

The classical Water-Fall life-cycle model and its main phases are shown in Fig.1.
Note that in the figure, the operation and maintenance phase is not shown. The function-
oriented and class-based methodologies mainly follow the general guidelines of the
classical life-cycle model but as it has been mentioned earlier, the class-based
methodologies follow the model with minor modifications [17]. In the figure, an
additional knowledge represents an update to objects of an already developed system.

 Back-cycle

Problem
statement
 R1 R2
 RR1
 Predictor

Additional knowledge
(or New system requirements and/or updates to the existing objects)

Legend:
R1: Analysis report - output of analysis phase
R2: Design report - output of design phase
Product: A developed system

Design
phase

Impleme-
ntation
and
testing
phase

Analysis
phase

Abad Shah

118

Fig.1. A common representation of classical water-fall life-cycle model.
Now we list the properties of the classical life-cycle model and point out that it

holds, weaknesses and deficiencies. These weaknesses and deficiencies are also present
in the class-based and function-oriented methodologies.

(i.) The phases of the model work sequentially for both the cases; the
development of a new system and update to an already developed system
with additional knowledge. We refer to this property of the classical life-
cycle model as a static order of its phases.

(ii.) The Back-Cycles (see Fig. 1) represent the revision process of a system
that is under-development.

(iii.) During the development of a system, the only meta-data knowledge (i.e.,
system specifications and requirements) of the system is considered and
acquired. The data knowledge of a system is neither considered nor
acquired due to absence of guide-lines from the classical life-cycle
model.

(iv.) The classical life-cycle model does not provide explicit guide-lines for
the development of applications such as the web applications and
hypermedia systems [27]. In these applications, the data or both data and
meta-data are available before system development. We consider this as
a deficiency in the classical life-cycle model.

The above listed weaknesses and deficiencies of the classical life-cycles model are

the reasons that make it unsuitable for the prototype-based methodologies. Therefore,
these weaknesses and deficiencies of the classical life-cycle model provide the
justification and basis for its modification. Keeping these weaknesses and deficiencies
and the characteristics of the prototype-based methodologies in mind, we suggest the
following modifications in the classical life-cycle model.

Figure 2 shows overall structure of the modified version of the classical life-cycle model,
and we refer it to as the modified life-cycle model. For the first case, when a system is
developed from scratch both the modified life-cycle model and the classical life-cycle
model function in the same fashion. But for the second case, when an additional
knowledge is incorporated into an already developed system, then they differ (compare
Fig.1. and Fig.2.). These two cases are shown as two types of events that occur at
different time instances on the Time-Line. The time instance t0 on the Time-Line
represents the occurrence of the first type of event, when a system is developed from
scratch and both the modified life-cycle model and the classical life-cycle model work in
a similar manner. The time instances t1, t2,, tn, represent the occurrences of the second
type of event on the Time-Line, when the instances of additional knowledge AK1, AK2, . .
. AKn,, respectively updates an already developed system. At these time instances, the
modified life-cycle model works differently from the classical life-cycle model. This is
the second type of event which makes the modified life-cycle model different from the
classical life-cycle model. The two types of events are formally defined in Section 4.1.2.

A framework for the Prototype-based . . .

119

This is the occurrence of the second type of event that makes the modified life-cycle
model suitable to be followed by the prototype-based methodologies.

 It is already mentioned that both the design phase and implementation phase of
the modified life-cycle model works iteratively and closely at occurrence of each
instance of update to an already developed system. In other words, each update to an
already developed system costs one iteration to the modified life-cycle model. An
iteration means processing of the two phases. Due to this reason we consider both phases
as a single phase, and refer it to as the development phase (see Fig. 2). In the figure, the
development phase is shown by a rectangle with dotted sides, and one iteration is equal
to one processing of the development phase.

 Iterative-cycle

 Legend:

DK: Default knowledge
(problem statement) of
system at time t0
AK1: Additional
knowledge of system
available at time t1
AK2: Additional
knowledge of system
available at time t2 . .
.
AKn: Additional knowledge of system available at time tn
R1, R2 and Product: hold the same meaning as they hold in Fig. 1

Fig. 2. The modified classical life-cycle model.

 The iterative property of the development phase is shown by the Iterative-Cycles
in Fig. 2. The Back-Cycles (in Fig. 1) and the Iterative-Cycles (in Fig. 2) differ in their
objectives and functions. An Iterative-Cycle represents the incorporating process of
additional knowledge into an already developed system, whereas, a Back-Cycle
represents the incorporating Process of a revision to an under-development system. The
first difference between them is that a Back-Cycle represents a revision to an under-
development system. and an Iterative-Cycle represents an update to an already
developed system. Another difference between the two cycle models is that a Back-
Cycle can be initialed from any phase of the classical life-cycle model, whereas an
Iterative-Cycle can only be initiated for the development phase (see Fig. 2). Note that a

Design
phase

Implementation
and testing
phase

Analysis
phase

pr

Development phase

DK (problem
statement) R1

R1->E1
AK1 -> E2

AK2 -> E2

AKn -> E2

Product

t0 t1 t2 . . . tn Time-Line

Abad Shah

120

product (in Fig. 2) means an already developed system and also after completion of each
iteration of the development phase.

 The modified life-cycle model consists of two phases, namely: analysis phase
and development phase as shown in Fig. 2. In the next two sections we describe the
processing guidelines of the two phases which can also be followed by the prototype-
based methodologies.

4.1.1 Analysis phase
 General processing activities such as detail and comprehensive study of problem
statement and identification and analysis of the system requirements of this analysis
phases and the analysis phase of the classical life-cycle model are alike in the case of
development of a system from scratch. Here we mainly describe those processing
activities of the analysis phase which are different from the analysis phase of the
classical life-cycle model. After completing the preliminarily processing activities such
as detail study of a system, and identifying and analyzing the system requirements, this
phase suggests to pick-up an initial list of prototypes of the system. The list is referred to
as the list of candidate prototypes. This list can be prepared using similar criteria that
are used by the class-based methodologies such as OMT and some others [17, 30]. The
criterion that is commonly used by the class-based methodologies picks the nouns from
a problem statement, and considers them as candidate prototypes. After preparing a list
of candidate prototypes, the list is further processed, which includes discarding of the
redundant and vague prototypes from the candidate prototypes, and merging identical
and closely related prototypes, and a final list of prototypes is prepared. The output of
the analysis phase is an analysis report which is denoted as R1 in Fig. 2, and it contains
the final list of prototypes and other necessary information about the system such as
relationships and links among the prototypes.

The main difference between this analysis phase and analysis phase of the
classical life-cycle model is that a system is processed by this phase only once in life-
span of the system, when the system is developed from scratch. Whereas, the analysis
phase of the classical life-cycle model may process a system many times in its life-span
(see Fig. 1). This phase also differs from the analysis phase of the classical life-cycle
model in providing guidelines for study and analysis of both data and meta-data
knowledge (if they are available) of a system during the analysis phase. This difference
mainly makes the modified life-cycle models suitable for the prototype-based
methodologies.
4.1.2 Development phase
 As it has been mentioned earlier, the development phase consist of two phases,
i.e., the design and implementation phases that work closely due to the characteristics of
the prototype-based technique. This object-modeling technique does not differentiate
much between the processes of design and implementation of an object (for details see

A framework for the Prototype-based . . .

121

Section 2). The input to the development phase is the output of the analysis phase, which
is denoted R1. In this phase, the data types of instance-variables of every prototype are
defined and default data-values to the instance-variables are assigned. Also, instance-
variables are identified, defined, and assigned data values in the case of an update to an
already developed system. In Fig. 2, the time instances t1, t2,, tn show those cases.
Methods of every prototype are designed and coded in these phases.

 A system schema is developed using the final list of prototypes and establishing
the delegation links/relationships among the prototypes of the system. The links are
defined using the information that are collected in the analysis phase in the case of a new
system development, or from additional knowledge in the case of an update to an already
developed system. The run-time scenario and interface of the system are also designed
and developed in this phase. These things can be done using the report R1.

 The development phase is triggered on the occurrences of the two events that are
referred to as E1 and E2. E1 triggers the developed phase only once in the life-span of a
system, when the analysis phase completes its processing. This trigger of the
development phase is denoted by R1 -> E1 in Fig. 2. E2 triggers the development phase
to update an already developed system using additional knowledge. In Fig. 2, n number
of triggers of E2 are shown, and the triggers are denoted by AK1 -> E2, AK2 -> E2, .
. ., Akn -> E2 in the figure.

 When E2 is triggered, the development phase takes both a product (an already
developed system) and additional knowledge as input, and process them to incorporate
the additional knowledge to the product following the guidelines which are mentioned
earlier. The output of the development phase is an updated version of the product in the
case of occurrence of E2, or a newly developed system in the case of occurrence of E1.
Now we summarize the main functions of the development phase as follows:

(i) It defines the data types and assigns data values (if available) to instance-
variables. Also, it designs and codes methods of the prototypes. This
function corresponds to occurrence of E1.

(ii) It incorporates additional knowledge to an already developed system by
using function described in (i). This function operates on the occurrence
of E2.

(iii) It establishes relationship among prototypes by using the information
that is collected for this purpose in the analysis phase and is available in
R1, or from additional knowledge in the case of an update of an already
developed system. This function of the phase also develops a system
schema by defining the delegation links among the prototypes of the
system.

Abad Shah

122

(iv) It designs and implements interfaces and the run-time knowledge sharing
patterns of a system.

5. Conclusions and Future Work

 We have presented a study and analysis of the two object-modeling techniques of
the object-oriented paradigm. Based on this study and analysis, we have identified the
characteristics of a class of applications, and argued that the class-based methodologies
are inappropriate to use for the development of the class of applications. We have also
studied the classical Water-Fall life-cycle model which is used as a framework (or
guidelines) by the class-based and function-oriented methodologies. We have pointed
out its weaknesses and deficiencies in the model, and argued that the classical Water-Fall
life-cycle model in its classical form is unsuitable to use for proposing the prototype-
based methodologies. We further argued that it is necessary to modify the classical
Water-Fall life-cycle model to make it a suitable framework for the prototype-based
methodologies. For this purpose, we have proposed the modifications to the classical
life-cycle model.

 The modified life-cycle model consists of two main phases, namely: the analysis
phase and the development phase. The main feature of the analysis phase is that it works
once and processes information of problem statement of a system when initially the
system is being developed. Whereas, the development phase may work and process
information of a system more than one time in the life-span of the system. The
development phase allows to capture both parameters (meta-data and data) of objects of
the system. These salient features of the modified life-cycle model make it a suitable
framework for the prototype-based methodologies.

In our opinion the proposed framework can be helpful in proposing a class of
methodologies, i.e., the prototype-based methodologies. These methodologies can be
used for developing the identified class of applications. We are actively working for
proposing a prototype-based methodology using the proposed framework.

A framework for the Prototype-based . . .

123

References

[1] Borning, A. H. “Classes Versus Prototypes in Object-oriented Languages.” ACM/IEEE Fall Joint

Conference, (1986), 36-40.
[2] Lieberman, H. “Prototypical Objects to Implementation Shared Behavior in Object-oriented Systems.”

Proceedings of the ACM International Conference on Object-oriented Programming Languages,
Systems and Applications (OOPSLA’86), 1986, 214-223.

[3] Fotouhi, F., Shah, A., Ahmed, I. and Grosky, W. “TOS: A Temporal Object-oriented System.” Journal
of Database Management, 5, No. 4, (1994), 3-14.

[4] Nguyen, G. T., and Rieu, D. “Schema Evolution in Object-oriented Database Systems.” Data &
Knowledge Engineering Journal, North-Holland, 4, No. 1 (1989), 43-67.

[5] Kim, W. “Introduction to Object-oriented Databases.” The MIT Press, Cambridge, Massachusetts, USA,
1990.

[6] Chambers, C., Unger, D. and Lee, E. “An Efficient Implementation of SELF Dynamically-typed Object-
oriented Language Based on Prototypes.” Proceedings of ACM International Conference on Object-
oriented Programming Languages, Systems and Applications (OOPSLA’86), 1986, 49-70.

[7] Ungar, U. and Smith, R. B. “SELF: The Power of Simplicity.” Proceedings of the ACM International
Conference on Object-oriented Programming Languages, Systems and Applications (OOPSLA’87),
1987, 227-242.

[8] Dahl, O.J. and Nygaard, K. “SIMULA - An ALGOL-Based Simulation Language.” Combinations
of the ACM, 9(9), (September 1966), 671-678.

[9] Aksit, M., Dijkstra, W. J. and Tripathi, A. “Atomic Delegation: Object-oriented Databases.” The IEEE
Software Journal, (March 1991), 84-92.

[10] Shah A. and Mathkour, H. “SELF Programming Language as an Implementation Tool.” The 16th
National Computer Conference, Saudi Arabia, (February 4-7, 2000), 347-358.

[11] Shah A. and Mathkour, H. “Developing an Application Using SELF Programming Language.”
ECOOP'96 Workshop WS14, Linz, Austria, July 1995 (accepted)

[12] Booch, G. “Object-oriented Design With Applications.” Redwood City, California: Benjamin
Cumming, 1991.

[13] Coleman, D. et al. “Object-oriented Development - The Fusion Methods.” Prentice Hall, International,
Inc.. 1990.

[14] Jackson, M. A. “System Development.” Englewood Cliffs, New Jersey: Prentice Hall , International,
1993.

[15] Seidewitz, E. V. and Stark, M. “Towards a General Object-oriented Software Development
Methodology.” The ACM Ada Letters, 7, No. 4 (1987), 54-67.

[16] Shumate, K. “Structured Analysis and Object-oriented Design are Compatible.” The ACM Ada Letters,
11, No. 4 (1991), 78-90.

[17] Wirfs-Brock, R., Wilkerson, B. and Wiener, L. “Designing Object-oriented Software.” Englewood
Cliffs: New Jersey: Prentice Hall, 1991.

[18] Pressman, R. “Software Engineering-A Practitioner’s Approach.” McGraw-Hill, 1992.
[19] Bernard Software Engineering Inc. “A Comparison of Object-oriented Development Methodologies.”

902 Wind River Lane, Gaithersburg, Maryland, USA. 1992.
[20] Embley, D., Jackson, R. and Woodfield, S. “Object-oriented Systems Analysis: Is It or Isn’t It?.” IEEE

Software, (July 1995), 19-33.
[21] Shah, A., Fotouhi, F., Grosky, W., Al-Dehlan, A. and Vashishta, A. “A Temporal Object System for a

Construction Environment.” Proceedings of the XIII Conference of the Brazilian Computer Society
(SEMISH-90), September, 1993, 211-225.

[22] Shah, A., Fotouhi, F., and Grosky, W. “Share-kno: Knowledge Sharing Mechanism of the Temporal
Object System.” The Journal of King Saud University, Computer and Information Sciences, Vol. 11,
(1999), 25-43.

[23] Katz, R. H., Chang, E., and Bhatega, R. “Version Modeling Concepts for Computer-aided Design
Databases.” Proceedings of the ACM SIGMOD Conference, 1986, 379-386.

Abad Shah

124

[24] Kim, W., et al. “Composite Objects Support in an Object-oriented Databases.” Proceedings of Second
International Conference on Object-oriented Programming Languages, Systems and applications
(OOPSLA) 1989, 118-125.

[25] Mayer, B. “Object-oriented Software Construction.” Prentice-Hall, 1988.
[26] Hölzle, U. and Ungar, D. “A Third-generation Self Implementation.” Proceedings of the ACM

International Conference on Object-oriented Programming Languages, Systems and Applications
(OOPSLA) 1994, 229-243.

[27] Nestorov, S., Abiteroul, S. and Motwan, R. “Extracting Schema from Semistructures.” ACM-SIGMOD
Record, 27, No. 2 , June 1998.

[28] DeMarco, T. “Structured Analysis and System Specification.” New York: Yourdon Press, 1978.
[29] Yourdon, E. and Constantine, L. “Structured Design.” Englewood Cliffs, New Jersey: Prentice Hall,

1979.
[30] Rumbaugh et al. “Object-oriented Modeling and Design.” Englewood Cliffs, New Jersey: Prentice Hall,

1991.

A framework for the Prototype-based . . .

125

 إطار عمل لطرائق تطوير البرمجيات المؤسسة على استخدام نماذج برمجية ابتدائية

 أباد شاه
 علوم الحاسب، كلية علوم الحاسب والمعلومات، قسم

 ، المملكة العربية السعودية١١٥٤٣، الرياض ٥١١٧٨جامعة الملك سعود، ص.ب:

 م)١١/١٠/٢٠٠٠م؛ وقبل للنشر في ٢٨/١١/١٩٩٩(قدّم للنشر في

في النمذجة الشيئية، هناك أسلوبان فنيان متاحان للحصول علـى نمـاذج لمواضـيع مـن ملخص البحث.

 عالم الواقع ، أحدهما مؤسس على النوع، والآخر مؤسس على النموذج الابتدائي.
 وفي هــذا البحــث، فإننــا ســندرس ونحلــل كــلا الأســلوبين المســتخدمين للنمذجــة الشــيئية، وبالتــالي

بأن سنستخدم النتائج في تحديد أنواع التطبيقات الممكنة، ومن ثم نطرح للمناقشة ونساند الرأي القائل
لتطـوير ائق المبنية على النموذج المؤسس علـى النـوع كأسـلوب للنمذجـة الشـيئية، لا تصـلح كأسـاسالطر

 هذا النوع من التطبيقات.
وبالنظر إلى متطلبات هذا النوع المحدد من التطبيقات، فإننا نرى شدة الحاجة إلى هذا النوع من

 على النموذج الابتدائي.طرائق تطوير البرمجيات، والذي يشار إليه بالطرائق المؤسسة
وفي هذا البحث، نقترح أيضاً التعديلات اللازمة على نموذج تطوير البرمجيات التقليدي المعروف

التطوير طرائقبدورة حياة الشلال، وهذه التعديلات تؤدي إلى جعل هذا النموذج متوافقاً مع متطلبات
إلى إيجــاد ونمــوذج دورة الحيــاة المنبثــق عنهــا، المؤسســة علــى النمــوذج الابتــدائي. وتــؤدي هــذه التعــديلات

 إطار عمل وإرشادات أساسية لاقتراح طرائق مؤسسة على النموذج الابتدائي.

