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The failure of shallow neural network architectures in replicating human intelligence led the machine
learning community to focus on deep learning, to computationally match human intelligence. The wide
availability of increasing computing power coupled with the development of more efficient training algo-
rithms have allowed the implementation of deep learning principles in a manner and span that had not
been previously possible. This has led to the inception of deep architectures that capitalize on recent
advances in artificial intelligence and insights from cognitive neuroscience to provide better learning
solutions. In this paper, we discuss two such algorithms that represent different approaches to deep
learning with varied levels of maturity. The more mature but less biologically inspired Deep Belief
Network (DBN) and the more biologically grounded Cortical Algorithms (CA) are first introduced to give
readers a bird’s eye view of the higher-level concepts that make up these algorithms, as well as some of
their technical underpinnings and applications. Their theoretical computational complexity is then
derived before comparing their empirical performance on some publicly available classification datasets.
Multiple network architectures were compared and showed that CA outperformed DBN on most datasets,
with the best network architecture consisting of six hidden layers.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In an endeavor to replicate human level intelligence, artificial
intelligence (AI) research has fused insights from the fields of com-
puter science, cognitive neuroscience, computational science, and a
litany of others to produce algorithms that performwith increasing
efficacy on what is arguably the core element of intelligence:
learning.

Notable among the many learning algorithms in AI are artificial
neural networks (ANN) and their many variants. ANN are collec-
tions of interconnected artificial neurons that incrementally learn
from their environment and attempt to mimic some of the basic
information processing processes in the brain. Their function is
defined by the processing performed at the neuron level, the con-
nection strengths between neurons (synaptic weights), and net-
work structure (organization and linkage of neurons) [1]. It is the
latter that resides at the core of the discussion presented herein.

Throughout their evolution, discussed in more details in the
next section, shallow ANN still suffer from multiple issues in the
context of complex applications requiring a higher level of abstrac-
tion. However, with the rapid increase in processing power, the
opportunity to successfully implement the computationally
demanding designs of deeper architectures has recently emerged.
The development of efficient training algorithm such as Hinton
et al.’s greedy algorithm [2] has also helped ANN’s resurgence.
Furthermore, findings in computational neuroscience have led to
increased interest in deep, biologically inspired architectures
[3–5] which adhere more faithfully to neuro-scientific theories of
the human brain’s topology.

In this paper, we limit the scope of our comparative study to
two - nowadays popular - algorithms: Hinton et al.’s Deep Belief
Networks (DBN) [2], and Cortical Algorithms (CA) [6]. While many
other deep architectures have been developed, including long
short-term memory for sequential data processing and convolu-
tional neural networks for image processing, this comparative
study compares feedforward architectures. Specifically, DBN, one
of the more efficient deep architecture training algorithms is com-
pared to CA, a feedforward architecture with more biologically
faithful properties. Deep neural networks (DNN), specifically
DBN, is presented as the state of the art of ANN in their traditional
forms with network topologies built from layers of neuron models
but with more advanced learning mechanics and deeper architec-
ture, without modeling the detailed biological phenomena consti-
tuting human intelligence. Maintaining a high-level abstraction of
the biological modeling, results in simpler mathematical models
for DBN compared to CA. On the other hand, CA represents the shift
towards incorporating more biologically inspired structures than
DBN, like cortical columns and inhibiting and strengthening learn-
ing rules, as outlined by Edelman and Mountcastle’s work [7].

The structure of the paper is such that Section 2 summarizes the
history of ANN while Sections 3 and 4 review the fundamental con-
cepts and learning schemes of DBN and CA, respectively. Section 5
derives both algorithms’ theoretical computational complexity.
Finally, Section 6 presents an empirical comparison on classifica-
tion tasks before concluding with closing remarks in Section 7.
2. Artificial neural networks history

Before delving into the deeper network structures presented in
this paper, we will go over the evolution of neural networks from
their shallow beginnings to the complex structures that have
recently become popular.

2.1. Concepts from neuroscience

Despite the advances in neuroscience and technology that have
allowed for a detailed description of the structure of the brain, the
learning process in the brain is yet to be completely understood.
Biologically, the brain mainly consists of the cerebrum, the cerebel-
lum, and the brain stem [8].

The cerebral cortex, biologically defined as the outer layer of tis-
sue in the cerebrum and believed to be responsible for higher order
functioning, is an association of an estimated 25 billion neurons
interconnected through thousands of kilometers of axons propa-
gating and spreading about 1014 synapses simultaneously [9],
arranged in six layers and divided into regions, each performing
a specific task [10].
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Though it is not very clear how certain areas in the brain
become specialized, it is known that multiple factors affect the
functional specialization of the brain areas such as structure, con-
nectivity, physiology, development and evolution [11]. Neurons,
considered the basic element in the brain, have different shapes
and sizes but are all variations of the same underlying scheme,
i.e. they start the same general-purpose function but become spe-
cialized with training [12]. While dendrites are the site of reception
of synaptic inputs, axons convey electrical signals over long dis-
tances. Inputs to neurons cause a slow potential change in the state
of the neuron; its characteristics are determined by the membrane
capacitance and resistance allowing temporal summation [13].

Studies showed that the organization of the cortex can be
regarded as an association of columnar units [14,15], each column
being a group of nodes sharing the same properties. Learning in the
human brain is mainly performed using plastic connections,
repeated exposures and firing and inhibition of neurons. In a sim-
plified manner, information flowing in the cortex causes connec-
tions in the brain to become active, over time, with repeated
exposures these connections are strengthened creating a represen-
tation of the information processed in the brain. Moreover, inhibi-
tion of neurons - physically defined as prohibiting neurons from
firing - partly account for the forgetting process [16].

2.2. Shallow beginnings

At a nodal level, ANN started with the simplified McCulloch-
Pitts neural model (1943) [17], which was composed of a basic
summation unit with a deterministic binary activation function.
Successors added complexity with every iteration. At the level of
activation functions, linear, sigmoid, and Gaussian functions came
into use. Outputs were no longer restricted to real values and
extended to the complex domain. Deterministic models gave way
to stochastic neurons and spiking neurons which simulated ionic
exchanges. All these additions were made to achieve more sophis-
ticated learning models.

At the network level, topologies started out with single layered
architectures such as Rosenblatt’s perceptron (1957) [18], Widrow
and Hoff’s ADALINE network (1960) [19] and Aizerman’s kernel
perceptron (1964) [20]. These architectures suffered from poor
performance and could not learn the XOR problem, a simple but
non-linear binary classification problem. This led to the introduc-
tion of more complex networks starting with the multilayer per-
ceptron (Rumelhart, 1986) [21], self-recurrent Hopfield networks
(1986) [22], self-organizing maps (SOM or Kohonen networks,
1986) [23], adaptive resonance theory (ART) networks (1980s)
[24] and various others which are considered shallow architectures
due to the small number of hidden layers.

Successive iterations incrementally improved on their prede-
cessors’ shortcomings and promised higher levels of intelligence,
a claim that was made partially feasible due to the hardware’s
improved computational capabilities [25] and due to the develop-
ment of faster and more efficient training and learning algorithms.
Learning mechanics, whether supervised (back propagation) or
unsupervised (feed forward algorithms), matured in parallel and
allowed for better performance in a varied set of specific tasks.
Nonetheless, the compound effect of the innovation targeting all
aspects of these shallow networks was not enough to capture true
human intelligence while large computational needs throttled the
progress of deeper networks.

2.3. Shallow networks’ limitations

Supervised learning presents many challenges including
the curse of dimensionality [26] where the increase in the number
of features and training samples makes learning more
computationally demanding. Furthermore, non-linear data is more
difficult to divide into classes due to the inherent feature overlap.
Unable to position themselves as strong AI models - general intel-
ligent acts as defined by Kurzweil - which can faithfully emulate
human intelligence, ANN lagged Support Vector Machines (SVM)
[27] in the 1990–2000s.

2.4. Deep architectures

The early 2000s saw a resurgence in ANN research due to
increased processing power and the introduction of more effi-
cient training algorithms which made training deep architec-
tures feasible. Hinton et al.’s greedy training algorithm [2]
simplified the training procedure of Boltzmann machines while
deep stacking networks broke down training to the constitut-
ing blocks of the deep network to reduce the computational
burden. Furthermore, Schmidhuber’s long short-term memory
architecture [28] allowed the training of deeper recurrent neu-
ral networks. While these architectures do not borrow biologi-
cal properties from the brain beyond the neuron, deep
architectures with neural network topologies that adhere more
faithfully to neuro-scientific theories of the human brain’s
topology are gaining traction in the connectionist community
due in part to the momentum achieved in computational
neuroscience.

One of the major and most relevant contributions in that field
was made by Edelman and Mountcastle [7]. Their findings lead
to a shift from positioning simplified neuron models as fundamen-
tal functional units of an architecture to elevating that role to cor-
tical columns, collections of cells characterized by common feed-
forward connections and strong inhibitory inter connections. This
provided a biologically feasible mechanism for learning and form-
ing invariant representations of sensory patterns that earlier ANN
did not.

Additionally, two supplementary discoveries were believed to
be key in emulating human intelligence. The first was the sus-
pected existence of a common computational algorithm in the
neocortex [12]. This algorithm is pervasive throughout these
regions irrespective of the underlying mental faculty. Whether
the task is visual, auditory, olfactory, or other, the brain seems
to deal with sensory information in very similar ways. The sec-
ond was the hierarchical structure of the human neocortex
[12]. The brain’s regions are hierarchically connected so that
the bidirectional flow of information merges into more complex
representations with every layer, further abstracting the sensory
stimuli.

The combination of these two findings forms potential
grounds for building a framework that replicates human intelli-
gence; a hierarchy of biologically inspired functional units that
implement a common algorithm. These novel insights from neu-
roscience have been reflected in the machine learning (ML) and
AI fields and have been implemented to varying layers in several
algorithms.

While CA restructured the neurons and their connections
as well as the learning algorithm [6] based on Edelman
and Mountcastle’s finding [7], other algorithms modeled other
biological theories of the brain’s workings. Symbolic architec-
tures such as Adaptive Character of Thought (ACT-R) [29]
modeled working memory coupled with centralized control
that refers to long term memory when needed. Emergentist
architectures such as Hierarchical Temporal Memory (HTM)
[30] are based on globalist memory models and use rein-
forcement or competitive learning schemes to generate their
models. Integrating both classes of architectures to form
hybrid architectures also exist and include Learning Intelligent
Distribution Agent (LIDA) [31].



Table 1
DBN nomenclature.

n‘n;m Weight of the edge connecting the nth neuron in the ‘th layer to the
mth neuron in the ‘thþ 1 layer; ‘ is suppressed when there are only 2
layers in the network

nrn Vector of connection weights leaving the nth neuron in the ‘th layer
n‘ Matrix of weights connecting the ‘th layer to the ‘thþ 1 layer
l Learning rate
j Number of Gibbs sampling steps performed during CD
N Hidden-layer neuron cardinality
M Input-layer neuron cardinality
L Number of hidden layers
t Sampling step
Qð:j:Þ Conditional probability distribution

h‘ Binary configuration of the ‘th layer

pðh‘Þ Prior probability of h‘ the current weight values
x0 Input layer data point

xðtÞm
Binary configuration of mth input-layer neuron at sampling step t

X Set of training points
Hn Binary configuration variable of neuron n in the hidden layer at

sampling step t

hðtÞ
n

Binary configuration value of neuron n in the hidden layer at sampling
step t

bm mth input-layer neuron bias
cn nth hidden-layer neuron bias
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3. Deep belief networks

3.1. Overview

DNN are deeper extensions of shallow ANN architectures that
are composed of a simplified mathematical model of the biological
neuron but do not aim to faithfully model the human brain as do
CA or some other ML approaches. DNN are based on the Neocogni-
tron, a biologically inspired image processing model [32], that
attempt to realize strong AI models through hierarchical abstrac-
tion of knowledge. Information representation is learned as data
propagates through the network, shallower layers learn low-level
statistical features while deeper layers build on these features to
learn more abstract and complex representations. Lacking clear
skills for logical inferences, DNN need more morphing to be able
to integrate abstract knowledge in a human manner. Recurrent
and convolutional neural networks, first introduced in the 1980s,
can be considered predecessors of DNN and were trained using
back-propagation which has been available since 1974.

ANN were first trained using back-propagation, an algorithm
that updates the network weights by propagating the output error
backwards through the network [33]. However, the propagated
error vanishes to zero as the network depth increases, preventing
early-layer weights from updating and significantly reducing the
performance of the network [34–37]. Thus, other training algo-
rithms for DNN were investigated. In 1992, Schmidhuber proposed
to train recurrent neural networks by pre-training layers in an
unsupervised fashion then fine-tuning the network weights using
back-propagation [28]. Momentum further picked up in 2006
when Hinton et al. proposed a greedy training algorithm for DBN
specifically. In what follows, we restrict our discussion of DNN to
DBN, a popular and widely used deep architecture, trained using
Hinton et al.’s algorithm.

While DBN is a type of deep ANN, back-propagation fails to pro-
duce a suitable model that performs well on training and testing
data due to DBN’s architectural characteristics [2]. This has been
attributed to the ‘‘explaining away” phenomenon. Explaining
away, also known as Berkson’s paradox or selection bias, renders
the commonly held assumption of layer independence invalid
and consequently adds complexity to the inference process. The
hidden nodes become anti-correlated because their extremely
low probabilities make the chances of both firing simultaneously
impossible.

To remedy this issue, Hinton et al. proposed a training algo-
rithm based on the observation that DBN can be broken down to
sequentially stacked restricted Boltzmann machines (RBM), a
two-layer network inter-layer neuron connections only. This novel
approach rekindled the interest in these deep architectures and
saw DBN applied to many problems from image processing
Fig. 1. DBN archi
[38,39], natural language processing [40–42], automatic speech
recognition [43–46] and feature extraction and reduction [47–
49], to name a few.

3.2. Network structure

3.2.1. Restricted Boltzmann machines
RBM, first known as Harmonium by [50], are two-layer net-

works where only inter-layer neuron connections are allowed.
They are a special case of Boltzmann machines (BM) which allow
both inter and intra-layer connections. RBM’s neurons form two
disjoint sets (as indicated in Fig. 1 by the black boxes), satisfying
the definition of bipartite graphs. Thus, training RBM is less com-
plex and faster. The neuron connections in RBM may be directed
or undirected; in the latter case, the network forms an auto-
associative memory which is characterized by bi-directional infor-
mation flow due to feedback connections [2].

3.2.2. Deep belief networks
DBN are stacked directed RBMs, except for the first RBM which

contains undirected connections, as shown in Fig. 1. This network
architecture significantly reduces the training complexity and
makes deep learning feasible. Focusing on two layers of the net-
work, the weighted edges connecting the various neurons are
annotated using the variable notation n‘n;m which implies that
tecture [51].
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neuron n in layer ‘ is connected to neuron m in layer ‘þ 1. An
exhaustive list of the entire nomenclature adopted in this section
is included in Table 1.

3.3. Training algorithm

3.3.1. Restricted Boltzmann machines
Hinton et al. proposed the contrastive divergence (CD) algo-

rithm to train RBM in both supervised and unsupervised scenarios.
CD estimates the log-likelihood gradient using a j Gibbs sampling
steps which is typically set to 1. The optimal weight vector is
obtained by maximizing the objective function in (1) through gra-
dient descent [52]. CD’s pseudo-code is summarized in Table 2.

Gibbs sampling is a randomized MCMC algorithm that allows
the sampling of approximate samples from a multivariate proba-
bility distribution [53]. The generated samples are correlated and
form a Markov chain. Eq. (2) describes the energy function that
represents the joint probability distribution, derived from Gibbs
distribution and calculated using (3). nn;m, bm and cn are real valued
weights; hn and xm can take values in the set f0;1g [54].

maxnPx2XPðxÞ ð1Þ

Eðx; hÞ ¼ �
XN
n¼1

XM
m¼1

nn;mhnxm �
XM
m¼1

bmxm �
XN
n¼1

cnhn ð2Þ

pðx;hÞ ¼ 1P
x

P
he�Eðx;hÞ e

�Eðx;hÞ ð3Þ
3.3.2. Deep belief networks
A simple and efficient layer-wise training algorithm was pro-

posed for DBN by Hinton et al. in 2006 [2]. It trains the layers
sequentially and greedily by tying the weights of unlearned layers,
using CD to learn the weights of a single layer and iterating until all
layers are trained. Tying the weights not only allows us to use
RBM’s training algorithm but also eliminates the ‘‘explaining
away” phenomenon. Then, the network weights are fine-tuned
using a two-pass ‘‘up-down” algorithm.

In general, deep networks are pre-trained using unsupervised
learning before using labeled data to improve the model with
supervised learning. This scheme almost always outperforms net-
works learned without pre-training [56] since this phase acts as
a regularizer [57,58] and aid [59] for the supervised optimization
problem.

The energy contained in the directed model can be calculated
using (4) where the maximum energy is upper bounded by (5)
and achieves equality when the network weights are tied. At
equality, the derivative is equal to (6) and is used to solve the
now simpler maximization problem.

Eðx0;h0Þ ¼ �ðlogpðh0Þ þ log pðx0jh0ÞÞ ð4Þ
Table 2
Contrastive divergence workflow used in training RBM [55].

1. Set the weights to zero: n‘ ¼ 0; ‘ ¼ 1 . . . L
2. 8x 2 X

a. Propagate training instance through the network
b. For j sampling steps

i. Loop over N hidden-layer neurons and sample hðtÞ
n � pðhnjxðtÞÞ

ii. Loop over M input-layer neurons and sample xðtÞm � pðxmjhðtÞÞ
c. Loop over input and hidden-layer neurons and compute

i. Dnn;m ¼ Dnn;m þ pðHn ¼ 1jxð0ÞÞxð0Þm � pðHn ¼ 1jxðjÞÞxðjÞm

ii. Dbm ¼ Dbm þ xð0Þm � xðjÞm

iii. Dcn ¼ Dcn þ pðHn ¼ 1jxð0ÞÞ � pðHn ¼ 1jxðjÞÞ
logpðx0Þ P
X
8h0

Qðh0jx0Þðlogpðh0Þ þ log pðx0jh0ÞÞ

�
X
8h0

Qðh0jx0Þ logQðh0jx0Þ
ð5Þ
@ log pðx0Þ
@nn;m

¼
X
8h0

Qðh0jx0Þ logpðh0Þ ð6Þ

After iteratively learning the weights of the network, the up-
down algorithm [2] fine-tunes the network weights. This algorithm
is a supervised variant of the wake-sleep algorithm that uses CD to
modify the network weights. The wake-sleep algorithm [60] is an
unsupervised algorithm used to train neural networks in two
phases: the ‘‘wake” phase is applied on the feed-forward path to
compute the weights and the ‘‘sleep” phase is applied on the feed-
back path. The up-down algorithm, described in Table 3, is applied
to network to reduce under-fitting which is commonly observed in
greedily-trained networks.

Specifically, in the first phase (up-pass) of the algorithm, the
weights on the directed connections, termed generative weights
or parameters, are modified by calculating the wake-phase proba-
bilities, sampling the states, and updating the weights using CD. On
the other hand, the second phase (down-pass) stochastically acti-
vates earlier layers through the top-down links, termed inference
weights or parameters. The sleep-phase probabilities are calcu-
lated, the states are sampled and the output is estimated.
4. Cortical algorithms

4.1. Overview

CA are a deep artificial neural network model, which borrows
several concepts and aspects from the human brain. The main
inspiration is drawn from the findings of Edelman and Mountcastle
[15,7], which state that the brain is composed of cortical columns
arranged in six layers. He also uses the concept of strengthening
and inhibiting to build a computational training algorithm capable
of extracting meaningful information from the sensory input and
creating invariant representations of patterns. Further description
of the CA model and its biologically plausible aspects can be found
in [61,51,62].
4.2. Network structure

A typical CA network consists of an association of columns
grouped in layers or levels. A column is a collection of neurons
associated with the same stimulus, as shown in Fig. 2. Hence, CA
can be considered as a three-level hierarchy structure. The neu-
rons, like in other neural network architectures, use an activation
Table 3
Up-Down training algorithm workflow [2].

1. Bottom-up phase
a. Calculate wake-phase probabilities
b. Sample network states
c. Using wake-phase probabilities, calculate CD statistics
d. Perform Gibbs sampling for j iterations
e. Using (1.d), calculate sleep-phase CD statistics

2. Down-pass phase
a. Compute sleep-phase probabilities through top-down pass
b. Sample network states
c. Estimate network output

3. Re-compute generative weights
4. Re-compute network’s directed sub-graph weights
5. Re-compute inference weights



Fig. 2. Illustration of a cortical network.
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function f ð:Þ to compute their output from their input. This activa-
tion function is common for all neurons in the architecture.

Columns in a layer connect to those in the subsequent level:
these connections are referred to as vertical connections and exist
only between consecutive levels. A synaptic input terminating at a
column’s input is shared within neurons constituting said column,
however, the learned weights of the connections are different lead-
ing to distinct neuronal outputs. The latter are summed to form the
column’s output being forwarded to the next layer. Such configura-
tion permits the column to act as a basic computational structure
in CA as opposed to neurons in DBN and other neural network
architectures.

Furthermore, lateral connections or intra-level connections, are
‘‘communication means” employed to deliver inhibiting signals
that modify a column’s weights based on the activity of other col-
umns during training. Contrarily to their vertical counterpart, these
connections do not transmit data and are hence are not explicitly
shown in Fig. 2. Data can only flow in a bottom-up direction, from
level to level, through vertical connections.

4.3. Mathematical model

The complete mathematical description based on the model of
[6,63] can be found in [62,61], and is summarized below based
on the adopted nomenclature in Table 4.

A column of N neurons receives connections from the output of
columns in the previous layer and hence is represented by a 2D
matrix concatenating vectors of weights of incoming connections
Table 4
CA nomenclature.

c Destination column index
n Destination neuron index
l Destination level index
s Origin column index
e Training epoch
N Number of nodes in a column
Cl Number of columns in level l
T Tolerance

nl;ec;n;s Weight of connection between neuron n, column c, level l, and column
s in previous level, during epoch e

Nl;e
c;n

Vector of connection weights entering neuron n, of column c, level l

Nl;e
c

Matrix of weights entering column c, level l

!l;e Output vector of level l

tl;ec Output of column c

zl;ec;n Output of neuron n, column c of level l
synapsing at each of its neurons as shown in Eq. (7). Epoch number
is denoted by e, layer number by l, the receiving column index by c,
the receiving neuron n and the sending column by s.

Defining !l;e as the output vector of level l for epoch e and tl;ec
the output of column c, within the same level; for the same train-
ing epoch, we can write (8). The output of a neuron, zl;ec;n defined by
(9) is the result of the nonlinear activation function f ð:Þ in (10) in
response to the weighted sum of the input connections while the
output of the column is the sum of the outputs of the column’s
neurons. T is a constant (across layers) tolerance parameter empir-
ically selected and the nonlinear activation function emulates the
brain’s observed nonlinear activity.

Nl;e
c ¼ Nl;e

c;1 . . . Nl;e
c;n . . . Nl;e

c;N

h i

¼

nl;ec;1;1 . . . nl;ec;n;1 . . . nl;ec;N;1

..

. ..
. ..

. ..
. ..

.

nl;ec;1;s . . . nl;ec;n;s . . . nl;ec;N;s

..

. ..
. ..

. ..
. ..

.

nl;ec;1;Cl�1
. . . nl;ec;n;Cl�1

. . . nl;ec;N;Cl�1

2
6666666664

3
7777777775

ð7Þ

!l;e ¼ tl;e1 . . . tl;ec . . . tl;eCl

h i
ð8Þ

tl;ec ¼
XN
n¼1

zl;ec;n

zl;ec;n ¼ f
XCl�1

c¼1

nl;ec;n;st
l�1;e
c

 ! ð9Þ

f ðsÞ ¼ 1
1þ es�ð/ðsÞ�TÞ

/ðsÞ ¼ �2; if s ¼ 1
s; otherwise

� ð10Þ
4.4. Training algorithm

4.4.1. Random initialization
The network is assumed to be initially fully connected with ran-

dom weak weights (with absolute values less than 0.1). This is a
common ‘‘blank slate” approach to ensure that the network is
not initially biased to any specific pattern. As learning proceeds,
these weights are incrementally updated so that the connectivity
of the network is modified. All weights that fall to zero represent
disabled connections. Therefore, an initially fully connected net-
work is not necessarily preserved.

4.4.2. Unsupervised feed-forward learning
The first stage in training a cortical network aims at creating

input-specific representations via random firing and repeated
exposure. An input propagating through the levels of the network
causes certain columns to fire (i.e. generate a threshold crossing
response) based on initially random weights. This activation is
then reinforced by strengthening the active columns’ weights
and inhibiting neighboring ones. Repeated exposure or batch
learning trains columns to identify (via activation) particular
aspects or patterns of the training data, extracting discriminatory
features with increasing complexity through levels (lower levels
recognize basic elements, higher levels in the hierarchy learn
higher order concepts and reasoning). The strengthening process
increases a column’s weights rendering it more receptive to
stimulation, while inhibition weakens the weights diminishing
activity of a certain column. Connections formed or weakened
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are plastic, i.e. can be altered during the feedback learning phase
and vice versa. Strengthening and inhibition rules are shown in
Eqs. (11)–(13).

nl;eþ1
c;n;s ¼ tl;ec � ðnl;ec;n;s �XðNl;e

c ÞÞ ð11Þ

nl;eþ1
c;n;s ¼ tl;ec � nl;ec;n;s þ al;e

c;n;s þ q � 1

1þ e
nl;ec;n;s�T

XðNl;ec Þ

0
BB@

1
CCA ð12Þ

XðNl;e
c Þ ¼

XN
n¼1

XCl�1

c¼1

al;e
c;n;sn

l;e
c;n;s

al;e
c;n;s ¼

1 if nl;ec;n;s > �
0 otherwise

( ð13Þ
4.4.3. Supervised feedback learning
The feed-forward learning phase relies only on aspects of the

given data to train columns that identify significant features with
no error propagation or label information. The supervised feedfor-
ward stage aims at correcting misclassifications occurring when
the network is exposed to variations of the same patterns (more
accurately training class) which may result due to the absence of
label information in the previous phase.

Following the unsupervised phase, a ‘‘unique representation”
based on the average firing scheme observed for a particular pat-
tern is stored, the feedforward learning fine-tunes the network’s
weights to achieve this scheme (within certain bounds to avoid
overfitting) for all instances of a known class. A misclassification
hence triggers an error signal at the top-most or output layer
(where the final output is produced) correcting misfiring columns
(through inhibition) and strengthening weakened columns firing
for the original pattern forcing the column firing for the original
Table 5
CA generic training workflow.

1. Random initialization
for l ¼ 1 : 6

for c ¼ 1 : Cl

Nl
c ¼ randnðCl�1;NÞ

2. Feedforward phase
a. Processing of training data

for all training instances
for l ¼ 1 : 6

com
for l ¼ 1 : 6

for

b. Store average representations of patterns
for all classes

for l ¼ 1 : 6
for c ¼ 1 : Cl

tl;avc

3. Feedback phase
while MSE > h

for all training instances
for l ¼ 1 : 6

whi
pattern (strengthening and inhibition are the only weight update
rules adopted in opposition to gradient descent employed in the
backpropagation learning of traditional artificial neural networks).
After multiple exposures, the top level attains a stable state also
known as a ‘‘stable activation” in which columns are able to cor-
rectly generate the desired firing scheme. The term ‘‘firing scheme”
refers to the firing pattern of neurons for a given input.

After stabilizing the top layer, the error signal is propagated
back to the previous level which in turn executes a series of
inhibition and strengthening to achieve the desired firing
scheme. The same process in repeated for each of the layers
until a convergence condition (expressed as a discrepancy
between the desired and actual activation) is met. The training
exits when all layers are stable and the network can recognize
all variations of the same pattern in the training data (within a
certain tolerance).

A pseudo-code showing the implementation of the training
algorithm is shown in Table 5. An illustration of the feedback train-
ing process is shown in Fig. 3. The top row shows the firing scheme
(blue squares represent active columns) obtained after the feedfor-
ward propagation of two variations of the same pattern as well as
the desired firing scheme (average activation obtained based on all
variations of this pattern in the training set). The middle and bot-
tom rows show a succession of training epochs (for pattern 1 and 2
respectively) in which the error signal is generated at the top level
and stable activations are formed from top to bottom. One can see
that at convergence both instances are represented with the same
firing scheme in the network.
5. Theoretical computational complexity

In this section, we derive the theoretical computational com-
plexity of each algorithm to assess the required resources when
deploying such a network for real world problems. We investigate
pute !l;e

c ¼ 1 : Cl

if tl;ec > �
for n ¼ 1 : N apply (12)

else
for n ¼ 1 : N apply (11)

g ¼ tlc

le !l;e � !l;e
��� ��� > h

for c ¼ 1 : Cl

if tl;avgc � tlc
��� ��� > h

for n ¼ 1 : N apply (11)
else

for n ¼ 1 : N apply (12)



Fig. 3. An example of the feedback process.
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two aspects of the computational complexity: memory and com-
putations. While the required memory storage depends on the
number of non-zero weights in the network, the number of com-
putations depends on the non-zero weights and the adopted acti-
vation function. Comparing CA to DBN, the more computationally
demanding network is data specific since each problem would
result in a different number of non-zero weights. We empirically
compare the network sizes in the next section.
5.1. Number of non-zero weights

5.1.1. DBN
DBN is formed of R layers with Mr neurons in layer r. During

training, the network starts out fully connected leading to a total

number of weights equal to Nw ¼PR
r¼1Mr �Mr�1. Assuming not all

weights are non-zero when training is complete, with c 2 ½0;1� is
the fraction of non-zero weights or firing rate, the number of

non-zero weights is equal to NNZW ¼PR
r¼1c �Mr �Mr�1. Empirical

results in Section 6 reveal that c is usually greater than 90%. Know-
ing that the weights are double precision floating point numbers
which require 8 bytes of storage, an upper bound on the memory

requirements during training are
PR

r¼18 �Mr �Mr�1. During testing,

the number of bytes is equal to
PR

r¼18 � c �Mr �Mr�1.
Table 6
Computational complexity of some activation functions

Activation function Equation Computations (per neuron)

Hard limit (14) Oð1Þ
Linear (15) Oð2Þ
Piecewise linear (16) Oð4Þ
Gaussian (17) Oðm3Þ
Sigmoid, Tangent (18) Oð165Þ
Sigmoid, Logarithm (19) Oð83Þ
Softmax (20) Oð83MRÞ
5.1.2. CA
CA is formed of R ¼ 6 levels; the first level contains L1 ¼ I col-

umns with M neurons per column. We assume, without loss of
generality, the number of columns is cut in half in each subsequent
level, as used in [6,63,64] i.e. level r contains Lr ¼ I

2r�1. Each level has
a weight matrix with dimensions Lr �M. Therefore, the total num-
ber of weights is equal to Nw ¼PR

r¼1Lr �M � Lr�1. However, some of
these weights could be equal to zero. Therefore, we denote by
c 2 ½0;1� the firing rate of the network, the fraction of neurons that
are non-zero, which leads to the number of firing neurons equal to

NFC ¼ c
PR

r¼1Lr . To simplify the computations, a uniform distribu-
tion of firing columns across levels will be assumed. Therefore,
the number of firing columns per level is NFC=L ¼ NFC

R . Finally, the
total number of non-zero weights can be approximated by

NNZW ¼PR
r¼1M � Lr � NFC=L. Empirical results in Section 6 reveal that

c does not usually exceed 50%. Knowing that the weights are dou-
ble precision floating point numbers which require 8 bytes of stor-
age, an upper bound on the memory requirements during training
are

PR
r¼18 � Lr �M � Lr�1. During testing, the number of bytes is equal

to
PR

r¼18 � c �M � Lr �
PR

r¼1
Lr
R .
5.2. Number of operations per neuron

Since a neuron is composed of a summation and an activation
function, the number of operations performed to obtain the output
of each neuron can be divided into the operations to compute the
sum and the activation function computational complexity.

5.2.1. Summation
The number of floating point operations required to compute

the summation depends on the number of input connections of a
neuron. Assuming there are m connections, m multiplications
and m additions (including the bias term) are required, which is
of the order of Oðm2Þ. For an input layer neuron, m is equal to
the number of features in the input vector. For a hidden layer neu-
ron, m is at most equal to the number of neurons in the previous
layer.

5.2.2. Activation function
Depending on the activation function, the computation of each

neuron output will require a certain number of floating point and
comparison operations. Some of popular activation functions and
their computational complexity are summarized in Table 6.

The hard limit activation function, described by (14), requires
one comparison. The linear function in (15) requires one multipli-
cation and one addition whereas the piece-wise linear function in
(16) requires two comparisons and at most one multiplication and
addition operation.

/ðxiÞ ¼
1 if xi P 0
0 otherwise

�
ð14Þ

/ðxiÞ ¼ axi þ b ð15Þ

/ðxiÞ ¼
b if xi P b

axi þ b if � b 6 xi < b

�b if xi < �b

8><
>: ð16Þ
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Computing the Gaussian activation function, described by
(17), requires m multiplications and mðm� 1Þ additions to
compute the magnitude term, where m represents the dimen-
sionality of the vector xi and is equivalent to the number of
input connections of a neuron. Dividing by the standard devi-
ation requires 3 additional multiplication operations. In addi-
tion, the calculation of an exponential, estimated using the
Taylor series expansion with approximately 10 terms, requires
approximately 81 operations. In total, m2ðm� 1Þ þ 81 opera-
tions are required.

/ðxiÞ ¼ exp
�kxi � lik2

2r2

 !
ð17Þ

The tangent sigmoid function in (18) has two exponential
terms, each requiring approximately 81 operations, in addition
to two additions and one multiplication operations which
leads to a total of approximately 165 operations. On the other
hand, the logarithmic sigmoid in (19) has one exponential
term and one addition and multiplication for a total of 83
operations.

/ðxiÞ ¼ tanhðxiÞ ¼ 1� e�2xi

1þ e�2xi
ð18Þ

/ðxiÞ ¼ 1
1þ e�xi

ð19Þ

Each exponential term in the softmax activation function,
described by (20), requires approximately 81 operations. The
numerator has one exponential term while the denominator has
MR terms. In total, 81ðMR þ 1Þ þ 1 operations are required.

/ðxiÞ ¼ exiP
j2MR

exj
ð20Þ
Table 7
UCI dataset characteristics.

Dataset Number of
instances

Number of
features

Number of
classes

Planning relax 182 12 2
Breast cancer diagnostic

Wisconsin
569 32 2

Tic Tac Toe 958 9 2
Spambase 4601 57 2
Wilt 4889 5 2
White wine 4898 11 2
MNIST 70,000 784 10
Skin segmentation 245,057 3 2

Table 8
Nomenclature adopted for network architectures.

Network name Network architecture (hidden layers)

N1 [5, 5]
N2 [50, 50]
N3 [50, 50, 50]
N4 [500, 500, 500]
N5 [500, 500, 2000]
N6 [1000, 1000, 2000]
N7 [2000, 1000, 500, 250, 125, 62]
5.3. Pruning

The term synaptic pruning refers to the procedure by which
synaptic connections are terminated during the early ages of
mammals’ lives [65]. Starting with approximately 86� 8 billion
neurons at birth, the human brain quintuples its size until adoles-
cence after which the volume of synaptic connection decreases
again [66]. This process of pruning is mainly thought of as the
byproduct of learning. While the total number of neurons
remains roughly unaltered, the distribution and number of con-
nections are tailored by learning [67,68]: the structure of the
brain moves from a stage where its primary function falls under
perception–action due to disconnected cortical hubs [69,70] to
distributed networks spanning the brain performing a variety of
complex cognitive tasks [71].

The training of a cortical network bears several resemblances to
the synaptic pruning procedure: starting with a fully connected
structure, the network goes through an unsupervised phase where
connections are pruned through inhibition leaving only ‘‘signifi-
cant” ones. In more accurate terms, the strengthening of firing col-
umns ensures the establishment of selective connections while
inhibition prunes irrelevant connections. This process plays a cru-
cial role not only in extracting meaningful characteristics of the
input stimuli but also in avoiding overfitting due to the especially
complex structure of a cortical network. This is further demon-
strated in the number of non-zero weights in different network
architectures as shown in our theoretical and empirical analysis:
the number of ‘‘alive” connections decreases with the increase of
parameters, hence a minimal effect on performance as shown in
our experiments. This property of CA’s structure and training is
not shared with DBN.
5.4. Overall computational complexity

In summary, the overall computational cost of DBN and CA
depends on the architecture of the network: the number of layers
and the number of neurons per layer which affect the number of
connections. The activation function can be fixed for both DBN
and CA. Sigmoid is a common activation function used in both
algorithms. After training, some of these connections will have a
weight of zero. Based on the previous sections, we notice that for
a fixed network architecture, CA will have less non-zero weights
due to the pruning algorithm. However, the depth of the best net-
works for each algorithm vary based on the data. six-layer archi-
tectures are commonly used in the literature for CA while DBN
depth’s varied from 3 to 5 hidden layers.

6. Empirical comparison

In this section, we report on the experimental results of DBN
and CA on multiple databases from the UCI ML repository [72].
We compare the classification accuracy, network complexity and
computational complexity of both algorithms.

6.1. Experimental setup

CA and DBN were empirically compared on classification prob-
lems using datasets from the UCI machine learning repository,
described in Table 7. The datasets contained real-valued features.
A 4-fold cross validation was adopted, i.e. each database is ran-
domly divided into 4 sets where 3 sets (or 75% of the data samples)
are used in training and 1 set is used in testing. The results are
averaged over four runs where each set is used for testing once
and the remaining for training. The CA library is a set of Matlab
functions obtained from [73,74]; it was run on a Windows 7
machine with Intel Core i5. The DBN library is a set of Matlab func-
tions modified from [75]; it was run on an Intel Core i7 processor
machine. Multiple network architectures, summarized in Table 8,
were tested on the datasets. The number of neurons for the hidden
layers are displayed only. The input layer’s neurons are equal to the
number of features and the output layer’s neurons are equal to the
number of classes. The chosen architectures can be grouped into
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one of three sets based on the pattern of hidden layer neurons: net-
works with an equal number of neurons in all hidden layers, net-
works with an increasing (doubling) number of neurons as the
layer depth increases and networks with a decreasing (halving)
number of neurons as the layer depth increases. Furthermore, the
number of hidden layers is increased from 2 to 6 hidden layers. For
the results reported in Table 9, DBN’s unsupervised training and
fine-tuning algorithms were each run for 50 epochs and the batch
size was set to 10. The second column indicates the number of col-
umns per layer for CA (there were 20 neurons per column) and the
Table 9
Classification results.

DB

Dataset Net. size Acc. (%)

Planning N1 69.4
relax N2 68.8

N3 69.4
N4 70.6
N5 68.8
N6 68.1
N7 66.3

Breast N1 62.1
cancer N2 88.4
diagnostic N3 88.4
Wisconsin N4 87.5

N5 87.5
N6 87.0
N7 67.9

Tic N1 65.1
tac N2 65.1
toe N3 65.1

N4 65.1
N5 65.1
N6 65.1
N7 65.1

Spambase N1 89.9
N2 90.5
N3 91.4
N4 92.2
N5 91.3
N6 91.8
N7 88.5

Wilt N1 94.6
N2 94.6
N3 94.6
N4 94.6
N5 94.6
N6 94.6
N7 94.6

White N1 96.4
wine N2 96.4

N3 96.4
N4 96.4
N5 96.1
N6 96.3
N7 96.4

MNIST N1 38.8
N2 84.1
N3 84.2
N4 89.0
N5 88.3
N6 89.4
N7 86.5

Skin N1 79.6
segmentation N2 79.6

N3 79.6
N4 79.6
N5 79.6
N6 79.6
N7 79.6

The bold values refer to the best accuracy obtained per dataset.
number of neurons per column for DBN. The connectivity of a net-
work is computed by taking the ratio of weights greater than 5% of
the average value of weights to the total number of weights in the
network. The threshold is not set to a fixed value since the weights
range of weights varies based on the input data, i.e. for some data-
sets all the weights might be less than this set threshold even
though this threshold might be very small. Furthermore, the
threshold is not set to zero since some weights will not exactly
zero but significantly smaller than the other weights in the net-
work and their contribution is insignificant. The classification
N CA

Connec. (%) Acc. (%) Connec. (%)

91.1 71.4 86.4
49.6 65.2 72.5
55.0 70.8 68.7
9.1 75.6 55.1
3.8 80.8 43.4
3.2 82.5 30.9
6.0 86.1 29.1

99.1 97.0 95.8
98.7 97.1 90.7
98.5 96.8 86.4
97.3 97.5 77.1
97.3 98.2 68.3
97.2 98.2 56.5
96.9 99.0 35.6

100.0 67.0 86.3
94.9 79.3 83.5
97.0 80.1 79.8
99.4 89.4 68.1
99.4 90.5 56.4
98.9 92.7 45.9
99.1 93.1 34.7

98.1 90.5 89.7
98.7 91.8 87.6
98.9 92.8 79.9
96.7 93.7 66.4
96.1 94.3 58.1
95.3 95.6 46.8
93.5 97.5 36.3

100.0 94.6 88.4
99.9 95.5 80.7
99.9 96.5 77.5
99.9 97.8 66.9
99.4 98.2 55.3
99.2 98.0 45.5
97.8 98.2 35.8

94.1 95.1 81.7
99.7 96.0 80.3
98.6 97.5 73.2
70.1 98.1 67.9
73.0 98.9 47.3
60.0 99.5 36.8
62.8 99.7 26.1

88.1 96.2 89.8
91.8 97.1 85.2
98.8 98.5 79.1
47.2 98.5 58.7
54.9 99.2 43.5
53.9 99.8 37.6
40.8 99.8 28.5

80.6 94.5 83.2
94.4 94.8 79.5
95.8 94.8 75.3
97.2 95.7 64.3
97.1 97.8 53.8
97.1 97.8 50.1
97.3 99.9 33.5
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accuracy simply reports the percentage of correctly classified
instances in the test set. Running time is not compared since each
algorithm is written and run in a different environment.
6.2. Classification results

First, we compare the performance of DBN when varying the
network architecture. For some databases, such as White wine,
the performance does not significantly vary as the network archi-
tecture varies, achieving approximately 96.4% accuracy. On the
other hand, performance varied significantly across architectures
for MNIST, ranging from 38.8% to 89.47%. Hence, DBN is either able
to achieve good accuracy or bad accuracy on a specific database.
This is mainly due to the lack of enough training points to allow
DBN to learn a good model of the data. However, for other datasets
such as Breast cancer diagnostic Wisconsin, the classification accu-
racy varied significantly as the network architecture varied. Next,
considering CA’s performance on the various datasets when vary-
ing the network size, we notice that the six-layered network
always outperforms other network sizes on all datasets, although
it occasionally marginally outperforms some networks. For exam-
ple, CA achieved 99.9% accuracy for N7 on skin segmentation com-
pared to 94.5% for N1 (2 layers). Comparing CA to DBN, we notice
that CA outperforms DBN on almost all datasets. In addition, a six-
layered architecture seemed to always perform better than other
architectures, reducing the burden of searching for the optimal
network architecture by training multiple networks.
6.3. Network connectivity

DBN exhibit high connectivity for most datasets on various net-
work sizes. Therefore, Hinton et al.’s greedy training algorithm
does not eliminate a large number of connections resulting in an
almost fully connected graph. This is evident in the experimental
results reported in Table 9 which reports the percentage of non-
Table 10
Statistical significance tests.

Pairwise t-test

Database p-value Statistically significant

Planning relax 2.88E�4 Y
Breast cancer diagnostic Wisconsin 0 Y
Tic tac toe 5.28E�10 Y
Spambase 0 Y
Wilt 4.65E�79 Y
White wine 0 Y
MNIST 9.11E�84 Y
Skin segmentation 0 Y

Fig. 4. CA vs. DBN ranking based
zero weights in a DBN network to be around 90%. Unlike DBN,
CA generally results in a sparsely connected network, evident by
the low percentage of non-zero weights obtained after training;
CA networks had less than 50% of their connections in tact com-
pared to almost 90% for DBN. Furthermore, we notice that CA’s
connectivity tends to decrease as the network size increases which
implies that if certain data does not require a large network, CA’s
training algorithm will reduce the number of connections to pro-
duce a sparsely connected network. For example, connectivity per-
centage decreases from 98.7% to 40.8% for MNIST when increasing
the network architecture from a two-hidden layer network to a
six-layer architecture.
6.4. Effect of batch size

The DBN code randomly reorders and divides the data into mini
batches. While training, each mini batch is loaded into memory
and used to update the weights of the network connections.
Increasing the size of a batch meant loading a larger chunk of data
into memory. This renders training slower if the chunk was too
large to fit into memory. However, decreasing the batch size meant
more memory transfers per epoch and therefore, increasing train-
ing time. On the other hand, CA does not randomly reorder and
divide the data into mini batches. Therefore, the network is
exposed to the data in the order it was presented. Theoretically,
reordering or dividing the data has no effect on the performance
of the algorithm as all patterns are employed and must achieve a
stable activation.
6.5. Statistical analysis

Next, we perform the pairwise t-test [76] and Friedman test
[77] to gain further insight into the differences between CA and
DBN. The N7 architecture is trained on the various databases.
Table 10 summarizes the p-values of both tests and show that
Friedman test

p-value Statistically significant Nemenyi critical distance

3.64E�02 Y 0.1
9.26E�126 Y 0.1
1.92E�09 Y 0.1
0 Y 0.0
4.74E�75 Y 0.0
0 Y 0.0
6.09E�61 Y 0.0
0 Y 0.0

on Nemenyi post hoc test.
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there is a statistical significance between CA and DBN on all data-
bases; the p-value was less than 5%. Furthermore, the Nemenyi
post hoc [78] was performed once a significant difference was
observed, to rank the algorithms. The rankings revealed that CA
outperformed DBN on most databases except for Skin Segmenta-
tion, as shown in Fig. 4. The critical distance is summarized in
Table 10.
7. Conclusion

In this work, we compared two DNN architectures on super-
vised classification problems. While DBN can be easily seen as an
established technique developed from within a traditional AI per-
spective, CA are more biologically inspired and can be classified
as theories in the making, solidly rooted in principles inherited
from neuroscience research. A theoretical computational complex-
ity analysis for both algorithms was presented before empirically
comparing CA and DBN. Experiments were run on eight publicly
available classification databases. Multiple CA and DBN network
architectures were compared based on their classification accuracy
and resulting network connectivity. CA achieved the best perfor-
mance on most databases using a six-layer architecture with
decreasing number of hidden neurons for deeper layers. Results
showed that deeper CA networks had lower connectivity than shal-
lower CA networks. Furthermore, DBN did not prune as many con-
nections as CA’s training algorithm. On the tested databases, CA
generally had a higher classification accuracy than DBN. In the
span of this work, we attempted to provide the reader with enough
background and technical details for each of the algorithms while
understanding that the breadth of the topic necessitates the inclu-
sion of more involved insights. We therefore urge the interested
reader to use this paper as a foundation for further exploration of
the rapidly expanding sub-field of deep learning.
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