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This empirical paper examines the time delays that occur between the publication of Common
Vulnerabilities and Exposures (CVEs) in the National Vulnerability Database (NVD) and the Common
Vulnerability Scoring System (CVSS) information attached to published CVEs. According to the empirical
results based on regularized regression analysis of over eighty thousand archived vulnerabilities, (i) the
CVSS content does not statistically influence the time delays, which, however, (ii) are strongly affected by
a decreasing annual trend. In addition to these results, the paper contributes to the empirical research
tradition of software vulnerabilities by a couple of insights on misuses of statistical methodology.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Software vulnerabilities are software bugs that expose weak-
nesses in software systems. The CVSS standard is used to classify
the severity of known and disclosed vulnerabilities. Once the clas-
sification and evaluation work has been completed for a vulnera-
bility identified with a CVE, the structured and quantified
severity information is stored to vulnerability databases. Moti-
vated by a recent empirical evaluation [16], this paper examines
the time delays between the publication of CVEs and the usually
later publication of CVSS information. The scope is restricted to
NVD and the second revision of the CVSS standard.

The use of CVSS is mandated and recommended by many
state agencies for assessments in different security-critical
domains [36], including but not limited to medical devices [38]
and the payment card industry [2]. The standard has been also
incorporated into different governmental security risk, threat,
and intelligence systems. Furthermore, CVSS information is used
in numerous different commercial products [16], ranging from vul-
nerability scanners and compliance assessment tools to automated
penetration testing and intrusion detection systems.
CVSS is also widely used in academic research. Typical applica-
tion domains include risk analysis [2,14], security audit frame-
works [4], so-called attack graphs [7,26], and empirical
assessments using CVSS for different purposes [1,25,31,33]. To
these ends, a lot of work has been done to improve CVSS
with different weighting algorithms [17,40], among other
techniques [9,30]. With some rare exceptions [13], limited atten-
tion has been given for examining how severity assessments are
done in practice.

Practical approaches are important because CVSS has faced also
challenges. Analogous to problems that have affected CVE assign-
ments [33,34], different practical problems have influenced the
severity assignments for CVE-stamped vulnerabilities. Excluding
the actual content of the standard, the historical problems related
to classification inconsistencies, time delays, and the proliferation
of classification standards [5,24]. Some of these problems have
continued to exist. For instance, proliferation has continued in
recent years; new standards have been introduced for classifying
software misuse and configuration vulnerabilities [3]. Some coun-
tries [45] and companies [43] have also introduced their own
severity metrics. To examine whether also the problem with time
delays is still present—as has been suspected [18], a brief remark is
required about the CVE and CVSS publication processes in the con-
text of NVD. Although the available documentation about these
processes is limited [28], the sketch presented in Fig. 1 is not a
far-fetched analytical speculation.

The process starts when security researchers, vendors, and
other related actors request CVEs for vulnerabilities they have dis-
covered or made aware of. These request-response dynamics are
handled by the non-profit MITRE corporation. As is common in
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Fig. 1. A simplified model for CVSS processing.
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software engineering, MITRE presumably maintains a backlog for
the CVEs assigned, some of which may be even rejected for inclu-
sion to NVD. Although the structure of the backlog is unknown, a
simple FIFO (first-in, first-out) might be considered in order to con-
nect the speculation to a recent theoretical work [10]. In any case,
eventually the vulnerabilities accepted for archiving are published
in NVD. In parallel to the coordination and archiving work related
to CVEs, vulnerabilities are evaluated for their severity by the NVD
team, which largely operates independently from others carrying
similar evaluations [16]. Once the evaluation has been completed,
the CVE-referenced vulnerability information is updated in NVD.
The time lags between the initial CVE publications and the later
CVSS updates constitute the empirical phenomenon examined.

There is another viewpoint to the abstract CVE backlog. This
viewpoint originates from the so-called switching costs, which
are often high for information technology standards [37]. Such the-
oretical costs cover also database maintenance: even small
changes made to standards may imply a lot of evaluation work par-
ticularly in case old information needs to be updated. This concern
was raised also during the 2007 introduction of the second revision
of the CVSS standard [36]. In other words, updates can be costly in
terms of time and resources—given the nearly ninety thousand vul-
nerabilities currently archived in NVD. Therefore, it is relevant to
ask the following research question (RQ) about the time lags affect-
ing CVSS scoring.
RQ1
 Do the time delays between CVE publications and CVSS
updates vary systematically according to an annual year-
to-year trend?
Another question relates to the content of the CVSS standard in
terms of the vulnerabilities scored. Reflecting the disagreements
among experts about the severity of some vulnerability
types [13], it can be hypothesized that the CVSS content itself
affects the time delays. Not all vulnerabilities are equally easy (or
hard) to classify in terms of severity; hence, some vulnerabilities
may take a relatively short (long) time to classify. This reasoning
is presented as a second research question, stated as follows.
RQ2
 Do the time delays vary systematically according to the
content of the CVSS severity information?
Fig. 2. CVE-CVSS publication time delays (Eq. 1).
Finally, a third and final question can be postulated for control-
ling the answers to the earlier two questions:
RQ3
 Does the answer to RQ2 hold when also the annual trend is
controlled for?
According to the empirical results, only the answer to RQ1 is
positive. For predicting the time delays, the CVSS content is largely
noise. The statistical effect (RQ2) also fades away once the annual
trend is controlled for (RQ3). To elaborate how these conclusions
are reached, the remainder of this paper is structured into three
sections. Namely: Section 2 introduces the dataset and the opera-
tionalization of the variables used, Section 3 outlines the statistical
methodology and presents the empirical results along the way, and
Section 4 finally discusses the findings.

2. Setup

To outline the setup for the analysis, the following discussion
will address the operationalization of the delay metric examined
the covariates used to model the metric.

2.1. Response

Following the so-called vulnerability life cycle research tradi-
tion [25,33], the interest relates to a time difference

Di ¼ sCVSSi � sCVEai ; given ð1Þ
sCVSSi P sCVEai for all i ¼ 1; . . . ;n:

The integer sCVSSi denotes the day (timestamp) at which a CVSS
entry was generated for the i:th CVE that was published at sCVEai . In
practice, the two timestamps map to the fields cvss:generated-
on-datetime and vuln:published-datetime in the NVD’s
extensible markup language schema. Although the exact meaning
of the fields is undocumented, the time differences can be inter-
preted as delays between CVE and CVSS publications.

Of the 89,465 archived vulnerabilities with both CVE and CVSS
entries, the condition sCVSSi P sCVEai fails to satisfy only for 1,375

vulnerabilities. Without loss of generality, these cases were
excluded. The same applies to CVEs without severity records. At
the time of retrieving the NVD content [27], there were 2,218 vul-
nerabilities that were published but still lacked CVSS records. Most
of these cases relate either to new vulnerabilities that are still in
the pipeline for severity assessments, or to already published CVEs
that were later rejected as inappropriate for archiving. Either way,
these had to be also excluded in order for Di to be defined for all
cases observed. In total, the dataset examined contains
n ¼ 89;465� 1;375 ¼ 88;090 archived cases. Given these cases,
the distribution of the time delays observed is shown in Fig. 2.

The timelines exhibit a heavy-tailed distribution with extre-
mely long right tail. A half of the vulnerabilities observed have seen
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severity assignments already a day after CVEs were published, but
the standard deviation is still over a year. Most of this deviation is
caused by a few extreme outliers for which the severity scores
were assigned even a decade after the CVEs were originally
published.

To briefly probe these outliers further, Fig. 3. displays the distri-
bution of another time difference

di ¼ sCVSSi � sCVEbi ; ð2Þ

where sCVEbi denotes the vuln:last-modified-datetime field in

NVD. The large amount of negative values indicate that CVEs are
often updated after these were already published with CVSS infor-
mation. Interestingly, 187 outlying cases satisfy di > 0, which may
point toward some inconsistencies in database maintenance; CVSS
information was generated without updating the corresponding
sCVEbi timestamps. About a quarter of the cases observed satisfy

di ¼ 0, meaning that the latest CVE modifications matched the gen-
eration of severity information.

2.2. Covariates

Two types of covariates are used for modeling the time
delays in (1). The first contains the CVSS information itself. The
CVSS (v. 2) standard [6] classifies the impact of vulnerabilities
according to confidentiality, integrity, and availability (CIA). Each
letter in the CIA acronym further expands into three categories that
characterize the impact upon successfully exploiting the vulnera-
bility in question. Thus, the analytical structure behind the impact
dimension can be illustrated with a diagram:

IMPACT 2

CONFIDENTIALITY 2
NONE�

PARTIAL

COMPLETE

8><
>:

INTEGRITY 2
NONE�

PARTIAL

COMPLETE

8><
>:

AVAILABILITY 2
NONE�

PARTIAL

COMPLETE

8><
>:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

The three impact metrics measure the severity of a vulnerability
on a system after the vulnerability has already been exploited.
However, not all vulnerabilities can be exploited; therefore, the
CVSS standard specifies also an exploitability dimension for vul-
nerabilities. Like with the impact dimension, exploitability
expands into three metrics (access vector, complexity, and authen-
tication) that can each take three distinct values. The analytical
meaning can be again summarized with the following diagram:
Fig. 3. CVE-CVSS modification time delays (Eq. 2).
EXPLOITABILITY 2

VECTOR 2
LOCAL�

NETWORK
ADJACENT

8><
>:

COMPLEXITY 2
LOW�

MEDIUM
HIGH

8><
>:

AUTHENTICATION 2
NONE�

SINGLE
MULTIPLE

8><
>:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

The rationale for the impact and exploitability metrics relate to
different combinatory relationships between the different values
the metrics can take. For instance, it is probable that mass-scale
attacking tools target less complex vulnerabilities that can be
exploited through a network without performing authentication,
possibly regardless of the impact upon confidentiality, integrity,
and availability. There exists also some empirical evidence along
these lines [1]. However, the impact and exploitability dimensions
both relate to intrinsic characteristics of vulnerabilities; they are
constant across time and environments. For instance, EXPLOIT-
ABILITY cannot answer to a temporal question about whether
an exploit is known to exists for the vulnerability in
question [30,43]. The same point extends toward NVD in general
[8]. For these and other reasons, the new (v. 3) standard for CVSS
enlarges the dimensions toward temporal and environmental
metrics.

For the present purposes, however, the impact and exploitabil-
ity dimensions are sufficient for soliciting an answers to RQ2. This
choice is also necessitated by the paper’s focus on NVD, which does
not currently provide full CVSS v. 3 information [29]. Despite of
this limitation, a correlation between the six CVSS metrics and Di

could be expected due to the fairly detailed criteria used for the
manual classification. Complex vulnerabilities with severe impact
may require more evaluation work than trivial vulnerabilities; a
remote buffer overflow vulnerability is usually more difficult to
interpret compared to a trivial cross-site scripting vulnerability.
Also the reverse direction is theoretically possible; more effort
may be devoted for high-profile vulnerabilities [18]. Either way,
RQ2 seems like a sensible hypothesis worth asking.

With regard to statistical modeling, the three impact metrics
and the three exploitability metrics are included in the models as
so-called dummy variables. For each metric, the reference category
is marked with a star in the previous two diagrams. For instance,
INTEGRITY is expanded into two dummy variables, INTEGRITY
(PARTIAL) and INTEGRITY(COMPLETE), say, the effects of which
are compared against INTEGRITY(NONE), which cannot be
included in the models due to multicollinearity. The same strategy
applies to the metrics used for evaluating RQ1. Namely, the annual
effects are proxied through 18 dummy variables that record the
year at which a vulnerability was published according to sCVEai .
Because only five vulnerabilities were published in the 1980s and
a negiligle amount (about 1.8 %) in the 1990s, the reference cate-
gory for the annual dummy variables is formed by collapsing all
vulnerabilities published prior to 2000 into a single group. Given
the two CVSS dimensions and the dummy variable approximation
for the annual trend, three model matrices (X1; X2, and X3) are
used in the statistical computation:

M1 : X1 ¼ 1;XIMPACT½ �;
M2 : X2 ¼ X1;XEXPLOITABILITY½ �;
M3 : X3 ¼ X2;XANNUAL½ �:

8><
>: ð3Þ



Fig. 4. Annual time delays (based on sCVEai ).
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The first model M1 regresses D ¼ ½D1; . . . ;Dn�0 against a constant
represented by a n-length vector of ones, 1, and the six impact
dummy variables present in the ðn� 6Þ matrix XIMPACT. The second
model is identical except that further six dummy variables are
included for measuring the exploitability dimension. The third
and final model includes all information used.

Despite of the growing number of CVEs processed from the circa
mid-2000s onward [32], the time delays for CVSS processing have
steadily decreased over the years. As can be seen from Fig. 4, there
have been no extreme outliers in recent years, meaning that most
of the right tail in Fig. 2 is attributable to older CVEs. A possible but
speculative explanation is that the work done to update old CVEs
with CVSS (v. 2) information has mostly been completed.

The strong decreasing trend is likely to support a positive
answer to the research question RQ1. Given this prior expectation,
the main interest in the forthcoming analysis relates to the statis-
tical effect of the impact and exploitability metrics when also the
annual trend is modeled. One strategy for evaluating the research
question RQ3 is to compare the models M1 and M2 against the full
information model M3. If the CVSS metrics provide statistical
power for predicting D, this power should be visible also when
the decreasing annual trend is controlled for.
Fig. 5. Coefficients from the OLS and NBM regressions (M3).
3. Results

The response D represents a count data vector; each observation
in the vector counts the days between CVE and CVSS publications
in NVD. Thus, a Poisson regression model provides a natural start-
ing point for modeling the time delays. The expected value of the
response thus is

E D j Xj
� � ¼ eXjb; ð4Þ

where Xj is a given model matrix from (3) and b a k-length vector of
regression coefficients, including the intercept b1. This conditional
mean is always positive.

However, the model assumes that D is distributed from the
Poisson distribution, which, in turn, implies that the mean of the
time delays should equal the variance of the delays. As can be con-
cluded from the numbers shown in Fig. 2, this assumption is
clearly problematic in the current setting. While b is still consis-
tently estimated, the apparent overdispersion, VarðDÞ > EðDÞ,
affects the standard errors of the regression coefficients, and,
hence, the statistical significance of the coefficients. A common
solution to tackle the overdispersion problem is to estimate a so-
called negative binomial model (NBM) instead, although the
conventional ordinary least squares (OLS) regression often
works well in applied problems when the response is suitably
transformed [15]. Thus, instead of (4), consider that the conditional
mean is given by an OLS regression.

Eðln½Dþ 1� j XjÞ ¼ Eð~D j XjÞ ¼ Xjb; ð5Þ

such that

b̂a ¼ min
b

ð~D� XjbÞ0ð~D� XjbÞ ð6Þ

When applied to the full model matrix X3, the adjusted coeffi-
cient of determination is 0.64 for this OLS regression. In other
words, the general model performance is quite decent, given the
limited amount of information used to model the severity assign-
ment timelines. Moreover, only three coefficients in b̂a are not sig-
nificant at the conventional p < 0:05 threshold. By further testing
the joint significance of the dummy variable groups with a F-test,
all groups are significant at a p < 0:001 level. Also the combined
forward-stepwise and backward-stepwise algorithm (as imple-
mented in the step function for R) retains all coefficients in b̂a.
As is common in applied problems [35], the ~D ¼ lnðDþ 1Þ transfor-
mation does not account for the high positive skew; therefore,
another test can be computed by using an R implementation [44]
for a consistent covariance matrix estimator [42]. However, the
results do not diverge much from the plain OLS estimates; only
one additional coefficient is insignificant at a p < 0:05 threshold.
Finally, analogous conclusions can be reached by estimating
a negative binomial regression model with the assumption

that VarðDÞ ¼ EðDÞ þ /½EðDÞ�2, where / is a parameter to be
estimated [19,41]. By again using an R implementation [20], only
two coefficients attain p P 0:05.

Thus, based on statistical significance, positive answers would
be given to all three research questions. This conclusion would
be unwarranted, however. Most of the coefficients in the M3 model
are close to zero, irrespective of the estimation strategy. Since all
covariates are dummy variables (and, hence, have the same scale),
this observation can be illustrated in the form of Fig. 5, which plots
the OLS coefficients (y-axis) against the corresponding NBM coeffi-
cients (x-axis), omitting the constant b̂1. As can be seen, there are
some differences between the two regression coefficient vectors,
but these differences apply mostly to the annual effects. In partic-
ular, the coefficients for the impact and exploitability dimensions
are very close to zero without notable differences between the
OLS and NBM estimates. The largest absolute coefficient values
are obtained for the annual effects from 2005 to 2017. These coef-
ficients exhibit also the largest differences between the OLS and
the negative binomial estimates.

To examine these observations further, the so-called least abso-
lute shrinkage and selection operator (LASSO) provides a good tool.
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The LASSOmethod is a regression model that uses regularization in
order to improve prediction accuracy and feature selection. When
compared to other regularized regression models, such as the so-
called Ridge regression, LASSO can shrink some coefficients exactly
to zero. Although the feature selection properties are not entirely
ideal for hypothesis testing [21], this property is desirable for fur-
ther examining whether regularization pushes the coefficients for
all of the CVSS metrics toward zero. It should be noted that drop-
ping individual dummy variables based on feature selection is usu-
ally unwarranted because interpretation of the coefficients
changes—but if all of the impact and exploitability dummy vari-
ables are regularized toward zero, there is not much to interpret.
Fig. 6. Gaussian LASSO estimates (b̂b).
If this is the case, there is also no particular reason to consider
more complex estimation strategies, such as the so-called group
LASSO method [39]. A brief elaboration is required also about the
more classical LASSO regressions.

Instead of minimizing the residual sum of squares in (6), LASSO
minimizes penalized sum of squares given by

b̂b ¼ min
b

1
2n

Xn
i¼1

ð~Di � x0
jibÞ

2 þ k
Xk

s¼2

j bs j
( )

; ð7Þ

where k P 0 is known as the shrinkage factor, and the scaling
by ð1=2nÞ is done to ease comparisons with different sample
Fig. 7. Poisson LASSO estimates (b̂c).
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sizes [12]. The penalty is given by the L1 norm, that is, the sum of
the absolute coefficient values, omitting the constant present in
Xj. If k is zero, the solution reduces to the OLS estimates, and when

k ! 1, all coefficients in b̂b tend to zero. Despite of the overdisper-
sion, the Gaussian LASSO in (7) can be accompanied with a Poisson
LASSO as an additional robustness check.

The so-called quasi log-likelihood for Poisson regression can be
obtained by left-multiplying the logarithm of the expected values
in (4) by D and subtracting E D j Xj

� �
from the result [23]. Given this

quasi log-likelihood, for the Poisson regression [12].

L b j D;Xj
� � ¼ DXjb� expðXjbÞ; ð8Þ

LASSO optimizes

b̂c ¼ min
b

� L b j D;Xj
� �

n
þ k

Xk

s¼2

j bs j
( )

; ð9Þ

By again using an R implementation [11], the results from the
LASSO computations are shown in Figures 6 and 7 for the Gaussian
and Poisson specifications. The coefficient magnitudes are shown in
the y-axes, the lower x-axes represent different values of k in loga-
rithm scale, and the upper x-axes denote the number of coefficients
not regularized to zero. The shaded region is based on a 10-fold
cross-validation: in each plot, the left endpoint of the region corre-
sponds with the value of k that gives the minimum cross-validation
error, while the right endpoint is one standard error from this
minimum.

In both figures, the models M1 and M2 yield large absolute coef-
ficient magnitudes for the CVSS metrics. Furthermore, the coeffi-
cients retain their magnitudes rather long as the shrinkage factor
increases. For instance, the upper-left plot indicates that none of
the impact metrics are regularized to zero in the Gaussian specifi-
cation until about k ¼ expð�6Þ. However, when the annual affects
are included in M3, all of the CVSS metrics are very close to zero
particularly with respect to b̂b. Although a couple of exploitability
metrics retain their magnitudes within the cross-validation region
shown in the lower-right plot in Fig. 7, the same conclusion applies
more or less also to the Poisson LASSO model. Furthermore, within
the cross-validation regions, both b̂b and b̂c compare well to the
OLS and NBM coefficient vectors illustrated in Fig. 5. To conclude:
when predicting the time delay from CVE publications to CVSS
assignments, the actual CVSS content is largely noise; the most rel-
evant readily available information comes with the decreasing
annual trend.

4. Discussion

This short empirical paper examined the time delays that affect
CVSS scoring work in the context of NVD. Three research questions
were presented for guiding the empirical analysis based on regres-
sion methods. The results are easy to summarize. The CVSS content
is correlated with the time delays (RQ2), but the correlations are
spurious; the decreasing annual trend affecting the time delays
(RQ1) also makes the effects of the CVSS content negiligle (RQ3).
Three points are worthwhile to raise about the significance of these
empirical findings.

First, the negative answers to RQ2 and RQ3 are positive findings
in terms of practical applications using CVSS information. Whether
the application context is governmental security intelligence sys-
tems or commercial security assessment tools, there is currently
no particular reason to worry that a NVD data feed would show
significant delays for the CVSS information. Likewise, in 2017,
there is no reason to suspect that information for severe vulnera-
bilities would tend to arrive later (or earlier) than information
for mundane vulnerabilities. However, this conclusion does not
apply to historical contexts, and, moreover, the historically long
delays affect also academic research.

Second, the positive answer to RQ1 is a negative finding in terms
of existing academic research; the historically long time delays
presumably translate into selection biases in some existing empir-
ical studies using CVSS information. Without naming any particu-
lar academic study, consider that a hypothetical article published
in the late 2000s used a NVD-based dataset of CVE-referenced vul-
nerabilities published between 2000 and 2007, say. The long time
delays during this period imply that a lot of the vulnerabilities in
the dataset could not have had CVSS information. Consequently,
some existing academic studies are exposed to difficult questions
related to sample selection and missing values, among other
issues. This concern is particularly pronounced regarding studies
that examine time-sensitive topics such as vulnerability disclosure.

Third, the results echo the recently raised concern about the
misuse of statistical significance in the software vulnerability con-
text [22]. It seems that the size of archival material stored to vul-
nerability databases has surpassed a point after which statistical
significance starts to lose its usefulness for inference in applied
research. The current rate of new vulnerabilities archived—about
17 per day in 2016—implies that the problem with statistical sig-
nificance is only going to get worse. The point is particularly
important in case CVEs are referenced with other datasets, includ-
ing big data outputted by intrusion detection and related systems.
The regularized regression models used in this paper offer one
solution to consider in further applications, but more research is
required to assess the existing biases and the potential means for
moving forward.
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