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One of the most promising approaches for complex technical systems analysis employs ensemble meth-
ods of classification. Ensemble methods enable a reliable decision rules construction for feature space
classification in the presence of many possible states of the system. In this paper the novel techniques
based on decision trees are used to evaluate power system reliability. In this work a hybrid approach
based on random forests models and boosting model is proposed. Such techniques can be applied to pre-
dict the interaction of increasing renewable power, storage devices and intelligent switching of smart
loads from intelligent domestic appliances, storage heaters and air-conditioning units and electric vehi-
cles with grid to enhance decision making. This ensemble classification method was tested on the mod-
ified 118-bus IEEE power system to examine whether the power system is secured under steady-state
operating conditions.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Assessment of security of bulk electric power systems is
expected to become an issue in modern power engineering due
to the continued growth in renewable energy generation and the
future decentralization and electrification of heating, transport
and smart domestic loads in the future smart grid. Trends towards
liberalization and the need to expand electricity transmission due
to increasing energy demand and generation expansion will result
in power grid operating electrical networks at critical conditions,
close to admissible security limits [1–8].
In such conditions unforeseen excess disturbances, weak con-
nections, hidden defects of the relay protection system and auto-
mated devices, human factors as well as a great amount of other
factors can cause a drop in the system security or even the catas-
trophic accidents.

An analysis of methods for the assessment of security and volt-
age stability of electric power system shows that the existing tra-
ditional approaches cannot be effectively applied online and real
time conditions because of their computation complexity. For
example, load flow calculation for the assessment of the aftermath
of a system component fault, which underlie the classical approach
to the assessment of security in electric power systems does not
seem to be fully implemented due to complex modeling of the cor-
responding protections.

Most energy management systems (EMS), for example Siemens,
ABB, AREVA etc., use one or more security assessment predictors
such as sensitivity matrix, security indicators, distribution factors,
fast decoupled load flows etc to reduce the computational effort of
the security assessment. These analytical techniques are also usu-
ally time consuming and therefore are not always suitable for real-
time applications. Moreover, these methods can suffer from the
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problem of misclassification or/and false alarm, for example in the
case of ‘‘bad data” problem, cyberattacks, serious system topology
changes etc. Despite the EMSs wide development, the decision
making and onus is usually still with the expertise of the grid oper-
ators. However, as the number of market participants, renewable
power sources, storage devices and smart loads increase in the
power system both at the transmission (and distribution) level
the decision making will become ever more complex [9,10].

One of the effective solutions to this problem is the use of a
combination of traditional approaches on the basis of security
indices and machine learning algorithms, such as artificial neural
networks (ANNs), support vector machine (SVM) and decision
trees (DTs) [11–14,10]. The main idea here lies in an intelligent
model learning to independently determine the current value of
an assumed indicator on the basis of input data, thus identifying
the current state of power system. As studies by Wehenkel [15]
and Diao [16] show such a modified approach makes it possible
to neutralize the drawbacks of traditional algorithmic approaches
owing to the original properties of the machine learning technolo-
gies [17].

Among machine learning algorithms, some DT algorithms [18],
especially those of the ‘‘white box” nature, have gained increasing
interest because not only do they provide the results of security
assessment but they also reveal the principles learned by DTs for
security assessment. These principles provide useful decision-
making information required to make remedial action against rec-
ognized insecure conditions. Moreover, ensemble methods based
on DT, such as random forest, boosting-based models, enable reli-
able decision rules for feature space classification in the presence
of many possible states of the power system. This research
employs the ensemble methods based on DT. The calculations
involved modifications of bagging models (Random Forest, Bagged
CART) and boosting models (Stochastic Gradient Boosting,
AdaBoost).

The paper is organized in 6 sections. Section 1 introduces. Sec-
tion 2 presents the problem statement of security assessment. Sec-
tion 3 introduces the applications of ensemble DT-based learning
for the security assessment in power systems. Section 4 describes
database preparation with due considerations to power systems
with high penetration of wind power generation and other dis-
tributed generation (DG). Section 6 demonstrates the feasibility
of the ensemble DT-based approach using an IEEE 118 test power
system. Section 6 concludes.
1 The European Network of Transmission System Operators.
2. Problem statement

Security is the ability of an electric power system to withstand
sudden disturbances without unforeseen effects on the consumers.
It is provided by the control capabilities of power systems. During
operation the required level of security can be achieved by preven-
tive control actions (before a disturbance) and emergency control
actions (after disturbance). Control in the pre-emergency condition
is mainly responsibility of the Operator in dispatch control. Natu-
rally there can be situations where decision-making by the dis-
patch personnel can be insufficient to avoid dangerous situations.
The complexity of the problem lies in the fact that most dangerous
(pre-emergency) states of electric power system which lead to
large-scale blackouts are unique and there is no single algorithm
(for solving) to effectively reveal such conditions at the time. The
problem gets complicated by the fact that the security limit of elec-
tric power system constantly changes. Therefore fast methods for
real time security monitoring are required to analyze the current
level of security and accurately trace the limit and detect the most
vulnerable regions in a power system.
The key idea of the ‘‘pre-emergency” control concept is that the
voltage instability following an emergency disturbance which
accompanies many system emergencies does not develop as fast
as the dynamic instability of the power system [6]. Thus, when a
phase of slow emergency development occurs, the balance
between generation and consumption is maintained for a long
time making it possible to detect potentially dangerous states,
which appear after the disturbance in order to make the appropri-
ate preventive control actions [1].

To monitor if a power system is within its limit, primary mea-
surement tools such as are SCADA systems and post processing
by a state estimator as used [19]. The ENTSO-E 1 network code on
operational security requires each transmission system operator
(TSO) to classify its system according to the system operating states
[20]. Fig. 1 shows the different operating states of a power system as
identified by Liacco [21] and adopted in this work. Kundur et al. [22]
describes power system stability concisely, details a precise method
of classification and explains the real world implications to security
and reliability.
3. Ensemble learning for the security assessment in power
systems

3.1. Ensembles methods of classifications

A great many studies show that the effective solution to this
problem can be found on the basis of machine learning methods
which normally include artificial neural networks, decision trees,
ensemble (committee) models, etc. These studies are summarised
and discussed in Zhou et al. [23].

The ability to solve the problem is related to the capability of
the method to fast detect images, patterns (i.e. typical samples)
and learning/generalization, which is important to identify insta-
bility boundaries at high speed.

One of the advanced approaches to analyze complex technical
systems is ensemble methods of classification. This method makes
it possible to form reliable decision rules of classification for a set
of potential system states. In this approach the key idea is to build
a universal classifier of power system states, which is capable of
tracing dangerous pre-emergency conditions and predicting emer-
gency situations based on certain system security indices. In this
case the detection of dangerous operation patterns is not effective
without considering probable disturbance/faults, whose calcula-
tion lead to a considerable increase in the computational complex-
ity and a potential decrease in the accuracy for basic algorithms.
This leads to need to find a way to improve the accuracy of the
classifier of power system states. One of such methods is the cre-
ation of ensembles of the classification models and their training.

One of the first most general theory of algorithmic ensembles
was proposed in the algebraic approach by Zhuravlev [24]. Accord-
ing to Zhuravlev [24] the composition of N basic algorithms
ht ¼ CðatðxÞÞ; t ¼ 1; . . . ;N is taken to mean a superposition of algo-
rithmic operators at : X ! R, of a correction operation F : RN ! R

and decision rule C : R ! Y such as HðxÞ ¼ C Fða1ðxÞ; . . . ; aNðxÞÞð Þ,
where x 2 X;X is a space of objects, Y is a set of answers, and R

is a space of estimates.
Later Valiant and Kearns [25] were the first question whether or

not a weak learning algorithm can be strengthened to an arbitrary
accurate learning algorithm. This process was called boosting.
Schapire [26] developed the first provable polynomial-time boost-
ing algorithm. It was intended to convert weak models into strong
model by constructing an ensemble of classifiers. The main idea of
the boosting algorithm is a step-by-step enhancement of the algo-



Fig. 1. Operating states and transitions.

A. Zhukov et al. / Applied Computing and Informatics 15 (2019) 45–53 47
rithm ensemble. One of the popular implementations of this idea is
Schapire’s AdaBoost algorithm, which involves an ensemble of
decision trees [27].

Another approach to the classification and regression problems
using the ensembles was suggested by Breiman [28]. This approach
is an extension of the bagging idea. According to this idea, a collec-
tive decision can be obtained by using an elementary committee
method which classifies an object according to a decision of most
of the algorithms. Unlike the boosting method bagging is based
on parallel learning of base classifiers. One of the progressive
bagging-based approaches is the method called Random Forest
[29]. Later there appeared the most effective modifications of both
Random forests and boosting algorithms such as Extremely Ran-
domized Trees [30], Oblique Random Forests [31] and Stochastic
Gradient Boosting [32].

In the studies on security assessment there are many
approaches oriented to the construction of models on the basis
of decision trees. These studies are described by Panasetsky et al.
[1]. These models use both off-line (periodically updated) and
on-line methods. Single trees are easily interpretable, yet do not
always result in the required accuracy when approximating com-
plex target relationships. Therefore, it is considered reasonable to
use compositions.

3.2. Applications in power system security assessment

Several applications involving ensemble DTs have been
addressed in real-time transient stability prediction and assess-
ment, voltage security monitoring and estimation, loss of synchro-
nism detection and timing of controlled separation in power
systems [15,16,18,33]. A recent approach has combined DT with
another data mining tool for prediction performance improvement
in the field of dynamic security controls [34]. Vittal et al. [16] pre-
sented an online voltage security assessment scheme using PMUs
and periodically updated DTs. The proposed tree-based model
are trained offline using detailed voltage security analysis con-
ducted and updated every hour by including newly predicted sys-
tem conditions for robustness improvement. Sadeghi et al. [13]
proposed the AdaBoost algorithm as a new approach in security
assessment by classifying pre-fault data of power system. The main
benefits of using AdaBoost are a higher accuracy compared to other
machine learning approaches and the ability to display effects of
different features in the security assessment problem.

Liu et al. [35] proposed a random forest-based approach for
online power system security assessment. The results are showed
high accuracy in the presence of variance and uncertainties due
to wind power generation and other dispersed generation units.
The performance of this approach was demonstrated on the oper-
ational model of western Danish power system with the scale of
around 200 lines and 400 buses. Kamwa et al. [36] demonstrated
the effectiveness of the random forest-based approach in a PMU
predictive assessment of catastrophic power system events. To
demonstrate the greatest generalization capability of the method-
ology, a single Random Forest is shown to have a 99.9% reliability
on a large data set containing a mix of 90% instances from the
Hydro-Quebec grid and 10% instances from a nine-area test
system.

3.3. The problem of confirmation bias

Optimizing a machine learning-based model for security assess-
ment often requires experimentation and tuning. Often, research-
ers compare their own favorite algorithm, for which they are
presumably expert, with a set of ‘‘competing” methods, which they
discover while doing the comparative study. For this reason, the
compared algorithms often represent the state of the art only for
the favorite method, and under such conditions highly biased con-
clusions may be reached. The analysis of many studies showed that
we could not suggest that one particular kind of predictive model
would be more appropriate than others [37].
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Since the best security model depends on the problem and the
data, the engineer must search a very large set of feasible options
to find the best model. In operational dispatch management, how-
ever, the time is strictly limited. Strict time constraints do not per-
mit much time for experimentation. Researchers tend to deal with
this problem by settling for sub-optimal models, arguing that
obtained models need only be ‘‘good enough,” or defending use
of one technique above all others. As power grids grow more com-
plex, realizations of power system parameters more quickly chang-
ing, these tactics become ineffective.

The key to overcoming these challenges is to use automated
modeling techniques. To find the best security assessment model,
we need to be able to search across techniques and to tune param-
eters within techniques. Potentially, this can mean a massive num-
ber of model train-and-test cycles to run; we can use heuristics to
limit the scope of techniques to be evaluated based on characteris-
tics of the response measure and the predictors.

Therefore, we started from the premise that almost every
method (model) may be useful within some restricted context,
and summarize the respective strengths and limitations of the var-
ious methods so as to highlight their complementary possibilities.
Therefore, the power system security assessment tool was devel-
oped based on the multi-model machine learning-based approach.
In the paper, we propose an automated security assessment tech-
nique in order to predict alarm states in power systems based on
the caret package in open source R.
4. An automated ensemble DT-based technique for security
assessment

Ensemble methods enable a reliable decision rules for feature
space classification in the presence of many possible states of the
system to be build. In this paper, an automated technique based
on ensemble DTs learning is proposed for online power system
security assessment (Fig. 2).
4.1. Test pattern

Specifically, ensemble DT models are first trained off-line using
the cross-validation. For each candidate tuning parameter combi-
nation, an ensemble DT model is fit to each resampled data set
and is used to predict the corresponding held out samples. The
resampling performance is estimated by aggregating the results
of each hold-out sample set. Resampling methods try to inject vari-
ation into the system to approximate the model’s performance on
future samples. These performance estimates are used to evaluate,
which combination(s) of the tuning parameters are appropriate.
Once the final tuning values are assigned, the final model is refit
using the entire training set. The ‘‘optimal” model from each
ensemble DT technique is selected to be the candidate model with
the largest accuracy or the lowest misclassification cost.

The primary principle of the approach lies in the ensemble DT
method of classification to automatically make a sufficiently accu-
rate assessment of the power system conditions according to the
criterion secure/insecure based on the significant classification
attributes of a power system state, for example active and reactive
power flows, bus voltage, etc. A great amount of such attributes are
obtained from randomly generated data samples consisting of a set
of really possible states of the electric power system. Depending on
the ensemble method applied each decision rule will be trained by
its subsampling according to the bagging and boosting principles.
The final decision on the classification of any power system state
is made by the generalized classifier according to different princi-
ples of simple majority voting, weighted voting or by choosing the
most competent decision rule (see Fig. 3).
4.2. The Use of L-index in the problem of security assessment

In this study L-index is used because it is one of the effective
indices from this group, as a target indicator of system stability
when training an ensemble DT model. The L-index is proposed
by Kessel and Glavitsch in [38] as an indicator of impeding voltage
stability. Starting from the subsequent analysis of a power line
equivalent model, a voltage stability index based on the solution
to power flow equations is developed. The L-index is a quantitative
measure for the estimation of the distance of the actual state of the
system to the stability limit. The L-index describes the stability of
the entire system with the expression:

L ¼ max
j2aL

Lj
� � ð1Þ

where aL is a set of load nodes. Lj is a local indicator that determines
the buses which can be sources of collapse. The L-index varies in a
range between 0 (no load) and 1 (voltage collapse) and is used to
provide meaningful voltage instability information during the
dynamic disturbances in the system.

Kessel and Glavitsch reformulate the local indicator Lj in terms
of the power as:
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jj are the off-diagonal elements and leading elements of

impedance matrix.
Evaluating the L-index as given by (2) each pattern is labeled as

belonging to one of the four classes shown in Table 1.
The obtained labeling of L-index is based on modeling of many

test power systems schemes with expert evaluation different
obtained states as normal, dangerous and emergency conditions.
The criteria for the system states are briefly described as follows:

� Normal state implies that all parameters of the power system
are maintained within specified normal operation limits.

� Alarm state implies that some of the system parameters exceed
the specified normal limits (for example, bus voltage can exceed
5%, but remain within 10%). Depending on the operation rules,
actions can take place to bring the system to the normal state.

� Emergency correctable state implies the system is still intact.
However, some system constraints are violated. The system
can be restored to the normal state (or at least to the alarm
state), if suitable corrective actions are taken.

� Emergency non-correctable state implies that the current situa-
tion cannot be corrected and will lead to major emergency. Con-
trol actions, like load shedding or controlled system separation
are used for saving as much of the system as possible from a
widespread blackout.

The performance indices can communicate contingency sever-
ity and thus the power system security degree by means of indica-
tive colors [39]. These need to be carefully selected in order to
deliver a suggestive message; if remedial actions are needed, for
example. As illustrated in Fig. 4 smoothly changing color scale is
suitable for that purpose. In this way, the reporting is simple but
indicative, suggesting the alarm level and the expected magnitude
of remedial actions for improvement of the condition. In the case
where the values of the indices exceed the specified limits on secu-



Fig. 2. The basic method of the proposed idea.

Fig. 3. A general scheme of the assessment of potential power system security, using compositional models.

Table 1
Class labels for power security analysis.

Security Index Class Category/System State

0 < L� index 6 0:3 Normal state
0:3 < L� index 6 0:6 Alarm state
0:6 < L� index 6 0:8 Emergency correctable state

L� index > 0:8 Emergency non-correctable state
Fig. 4. Visualization of power system security degree based on the L-index.
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Fig. 5. The relationship between the number of Random Forest technique components and the resampled estimate of the area under the cross-validation.
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rity and the high probability of emergency situations that corre-
spond to these values, respective preventive or emergency control
measures can be formed.

5. Case study

The feasibility of this approach in a proof-of-concept has been
demonstrated on the IEEE 118 power system consisting of more
than 118 buses, 54 generators, and 186 transmission lines.2 The
base load of this system is about 4242 MW and 1438 MVar. An
open-source environment R [40] with caret package [41] is used
as the computing environment for the proposed models’ design
and testing.

5.1. Data base generation

In the analysis a list of potential power system states for the
model learning is formed using quasi-dynamic modeling with a
special program in the MATLAB environment (Power System Anal-
ysis Toolkit) [42]. The load model was represented by static char-
acteristics depending on voltage. When critical values of voltage
are achieved the load is automatically transferred to shunts. The
method of a proportional increase in load at all nodes of the test
system was optimized for the security analysis in such a way that
the initial condition for each emergency disturbance is a stable
condition closest to it, from those calculated. Thus, at each stage
of an increase in the test scheme load the emergency events (pri-
mary disturbances) are randomly modeled by the N � 1 reliability
principle. The disturbances included losses of generation and con-
nection of a large consumer at specified nodes. As a result, the
database including a set of various pre-emergency and emergency
states of the test scheme is built.

The database contains not only the data as predictor values, but
also the target values. A set of the obtained system states was used
to calculate the values of global L-index, and on the basis of local
indices Lj. As result, we computed the attribute values and pre-
classified based on the L-index the obtained states as ‘‘normal”,
‘‘alarm”, ‘‘emergency correctable” and ‘‘emergency non-
2 URL: http://icseg.iti.illinois.edu/ieee-118-bus-system/.
correctable”. These characteristics were applied as class marks
for training and testing the models.
5.2. Estimating performance for classification

In this analysis proper performance measurement metrics for
classification problems are used. The following metrics are used:

� The overall accuracy of a model indicates how well the model
predicts the actual data.

� The Kappa statistic k, takes into account the expected error rate:
k ¼ O� E
1� E

ð3Þ

where O is the observed accuracy and E is the expected accuracy
under chance agreement.

5.3. Ensemble DT training and performance

All 3000 cases in the created database were treated equally and
1000 cases (33%) are randomly selected to form a test set. The
remaining 2000 ones (66%) were used to form the learning set.
Namely, the following DT-based techniques were tested: boosting
models - Stochastic Gradient Boosting (SGB), AdaBoost (AB) and
bagging models - Random Forest (RF),3 and Bagged CART.4 DT mod-
els were trained using the cross-validation. For comparison purposes
with other learning techniques, such as Extreme Learning Machine
(MLP), Support Vector Machine (SVM), were also trained and tested
using the same approach.

As already discussed, the ‘‘optimal” model from each technique
is selected to be the candidate model with the largest accuracy. If
more than one tuning parameter is ‘‘optimal” then the function
will try to choose the combination that corresponds to the least
complex model. For example, for the Random Forest,mtrywas esti-
mated to be 124 and numRandomCuts = 1 appears to be optimal
(Fig. 5).
3 Random Forest by Randomization (Extremely Randomized Trees).
4 Conventional Breiman’s non-parametric decision tree learning technique.

http://icseg.iti.illinois.edu/ieee-118-bus-system/
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Table 2 shows comparison of accuracy achieved by the classifi-
cation learning techniques. From Table 2, the comparison indicates
that ensemble models produce more accuracy than the simple
ones. For this case study, Random Forest and AdaBoost models
are the ‘‘best” performance techniques to detect dangerous states
in the IEEE 118 test system.

Compared with single DT, an ensemble DT model has the
advantage that it gives each variable the chance to appear in a dif-
ferent context with different covariates, so as to better reflect its
potential effect on the response. The importance of variables in
Table 2
Classification accuracy comparison.

Metrics Ensemble Methods

RF BCART AB

Accuracy 99.91 99.74 99.88
Kappa 99.85 99.56 99.81

Fig. 6. Relative variable importance obtained by computing of mean gini index decrease

Fig. 7. Comparison results of testing different approaches to
ensemble modeling is computed to assess the contribution of the
variables to grow the ensemble model and the relevance of each
variable over all DTs in the ensemble model [35]. Fig. 6 shows
the relative variable importance.

5.4. Ensemble DT performance in the case of ‘‘Corrupted” data

For comparison purposes the following computational experi-
ments were carried out to compare the traditional and intelligent
approaches. By analogy with the previous case study, the steady-
Single Methods

SGB SVM MLP Kohonen

99.58 99.83 91.03 96.91
99.26 99.70 84.34 94.52

(where U - voltage of the load bus, P - active power flow, Q - reactive power flow).

IEEE 118 security assessment using ‘‘corrupted” test set.



Table 3
Accuracy of different approaches to IEEE 118 security assessment using ‘‘corrupted”
test set.

Method RMSE Parameters

Random Forest 0.0003 mtry = 27
Gradient Boosting 0.0008 n.trees = 150, interaction.depth = 18,

shrinkage = 0.1, n.minobsinnode = 10
Support Vector Machine 0.0856 sigma = 0.2751288, C = 0.25
Traditional method 0.0935

Table 4
Filling the gaps in data.

% of gaps time in sec. test error, %

10 0.0123 0.93
30 0.0411 0.93
50 0.0514 0.93
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states database were generated using quasi-dynamic modeling. All
3000 cases in the created database are treated equally and 1000
cases (33%) were randomly selected to form a test set. However,
the data of a test set were distorted such as 1% of the data was
replaced by uniformly distributed random values lying within
the limits of the changes of each particular system variables. Such
distortions can be caused by a number of reasons, including the
presence of ‘‘bad data” in telemetry information, cyberattacks,
etc. Based on a learning set, approximations of the L-index were
constructed using several machine learning methods, including
ensemble DT models. Machine learning models were trained using
cross-validation. After the trained models were tested using a ‘‘cor-
rupted” test set to determine the value of the L-index. For clarity,
the problem of regression recovery was solved.

As can be seen from Fig. 7, the traditional algorithmic approach
based on the direct calculation of the L-index (according the orig-
inal approach of Kessel and Glavitsch proposed in [38]) leads to a
significant distortion of the assessment. At the same time, as
shown in Table 3, all tested intelligent methods show high accu-
racy. The Random Forest method shows the best result.

The feasibility of dealing with missing data was also tested. Tak-
ing into consideration SCADA malfunctions the corrupted patterns
were used to train ensemble classification trees. The results
showed that the test error rate did not changed even with 50% gaps
(Table 4).

These test results clearly show faster, better fitting and more
efficient results if the test system model is adapted and updated
periodically with new cases rather than using offline cases as used
in Beiraghi and Ranjbar [43] and Diao et al. [16]. The database can
be periodically updated by the new cases together with the exist-
ing cases. Finally, a stronger ensemble model can be created imme-
diately with strengthened information of the updated database.
This theoretically means that not alone is less computational time
required to identify a feasible solution but a better optimal solu-
tion is also achieved enabling the TSO to respond better to power
system instability.
6. Conclusion

The ensemble classification methods were tested on the modi-
fied IEEE 118 power system showing that proposed technique can
be employed to examine whether the power system is secured
under steady-state operating conditions. The experimental studies
showed that the ensemble methods can identify key system
parameters as security indicators with high accuracy and, if
required, the obtained security tree-based model can produce an
alarm for triggering emergency control system. Hypothetically,
this outlier identification ensemble method is able to improve
the accuracy of power system security assessment to even 100%.

However, even in the case of retraining, the complete training of
the ensemble DT model is associated with additional time, which
excludes the retraining in real time. The next stage of this work
will involve development of an on-line ensemble DT method,
which updates the existing model, using new data without its total
restructuring.

A potential security ensemble a DT based system can operate in
two modes for control the power system states: (1) automatic con-
trol (closed loop) which automatically produces the optimal con-
trol actions (for example, control the reactive power sources)
when interacting with local automation (automatic undervoltage
protection, multi-agent automation, etc.) without checking the
operator’s actions and (2) advisor dispatcher (open loop) which
generates control actions that can then be implemented by the dis-
patcher (for example, change the protective relay settings by
decreasing the settings with respect to time, increasing sensitivity
of startup signals of the emergency control functions through the
selection of an appropriate group of settings, etc.). Overall this
ensemble DT based system approach shows potential real world
opportunities to enhance and optimize TSO power system stability
capabilities. Such an approach will be invaluable in a future power
system with increasing numbers of market participants, renewable
power sources, storage devices and smart loads both at the trans-
mission (and distribution) level.
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