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This paper presents a clinical decision support system using Artificial Neural Networks (ANN). The system
uses Multilayer Perceptron (MLP) feed forward neural network to predict the risk of developing Venous
Thromboembolism (VTE) in hospitalized patients. The developed system classifies the risk of VTE into five
risk levels ranging from low to high. The input layer of the system consists of 35 input variables grouped
into six categories representing the risk factors of VTE according to Caprini model. The output layer con-
sists of one node indicating a value representing the level of VTE risk. The number of hidden nodes and
layers is determined through an iterative process. The system is trained using Resilient Backpropagation
algorithm (Rprop). The dataset used for training and testing the system consists of 150 medical records
obtained from Jordan University Hospital (JUH). Stratified ten-fold cross validation scheme is applied to
assess the generalization of the proposed system. The results of the experiment show that the accuracy of
the system is 81%.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Venous thromboembolism (VTE) is a serious and potentially
fatal disorder, and it often complicates the course of hospitalized
medical patients. Although it can be fatal, this disorder can be pre-
vented by screening patients based on the potential risks of devel-
oping this condition. Many risk factors for VTE have been well
recognized [1], and some basic and clinically relevant risk assess-
ment models are available to facilitate VTE risk assessment in hos-
pitalized medical patients [2,3]. However, as reported in our
previous research [4], many researchers have found that a large
number of high risk VTE patients go undetected and consequently
do not get the proper treatment [5–7].

In this paper we present a clinical decision support system to
predict the risk of developing VTE for hospitalized patients. Based
on the patient’s medical record, the system can classify the risk
level of developing VTE into five levels ranging from low to high.
The proposed system uses Artificial Neural Networks which are
perfect fit for Medicine, the science of uncertainty. Neural Net-
works are especially effective when the nature of the problem is
fuzzy and requires complex decision making process. Indeed, VTE
is multifactorial with more than 35 different identified cumulative
factors. This makes the decision making process for identifying
patient’s risk levels of developing VTE very complex [35].

The proposed system uses Multilayer Perceptron (MLP) feed
forward neural network using Resilient Backpropagation algorithm
(Rprop) to train the system. The system receives as inputs all of the
35 risk factors identified by Caprini model [8]. The MLP network is
trained using 150 medical records collected from Jordan University
Hospital (JUH) with the consent of the patients.

To implement the system, an experimental study was per-
formed to choose the best structure of the neural network used
in the proposed decision support system. The network was then
trained, tested, and validated. Stratified ten-fold cross validation
scheme was applied to assess the generalization of the proposed
system. The results of the experiment showed that the accuracy
of the system was 81%.

The remaining of this paper is organized as follows: Section 2
introduces the background and related work. Section 3 presents
the methodology followed to design the system and it introduces

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2017.09.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aci.2017.09.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:almasri.n@gust.edu.kw
http://dx.doi.org/10.1016/j.aci.2017.09.003
http://www.sciencedirect.com/science/journal/22108327
http://www.sciencedirect.com


Z. Qatawneh et al. / Applied Computing and Informatics 15 (2019) 12–18 13
the specification and architecture of the system. Section 4 presents
the experiment study which was conducted to train different neu-
ral network designs in order to choose the best performing model.
In addition, it presents and discusses the results obtained when
applying ten-fold cross validation on the selected network design.
Finally, Section 5 provides the conclusion and future work.

2. Background and related work

2.1. Venous thromboembolism (VTE)

Venous Thromboembolism (VTE) is a major cause of morbidity
and mortality and it is a serious health issue which often compli-
cates the course of hospitalized medical patients. It results when
a thrombus forms in a vessel and obstructs the blood flow. Many
risk factors for VTE have been well recognized [1] and a review
of 1231 consecutive patients treated for VTE, showed that 96% of
the patients had at least one recognized risk factor [9,10].

There is convincing evidence that VTE risk increases in propor-
tion to the number of predisposing factors [1,35]. These risk factors
are generally cumulative [11] and may include old age, cancer, sur-
gery, prolonged immobilization, hip and knee surgery, multi-
trauma, puerperium, spinal cord injuries, paralysis, heart failure,
chronic lung conditions, acute myocardial infarction, sepsis, obe-
sity, use of oral contraceptives, the antiphospholipid antibody syn-
drome, and inherited thrombophilic conditions [1,8,12].

A previous study performed by our research team [4] addresses
risk factors for VTE assessment and the use of heparin in Jordan
University Hospital (JUH) in the Middle East as a prevention/treat-
ment measure. It concludes with the importance of implementing
strategies such as educational sessions and standardized methods
for identifying high-risk patients to ensure appropriate treatment.

2.2. Feedforward multilayer-perceptron (MLP) neural network

Artificial Neural Network (ANN) is a network of processing units
designed in a way that imitates the biological neural networks of
the human brain. They represent a powerful approach to process
tasks that involve approximation or classification based on a large
set of data, and they perform very well on these tasks [13]. Multi-
Layer Perceptron (MLP) is one of the most popular networks used
for predications in different scientific research [31–33] as well as in
medical applications [14,29]. In this network, the processing units
(perceptron; or commonly known as neurons) are arranged into
multiple layers. The input layer contains the processing units that
receive the input to the network. The output layer consists of the
processing units that trigger the output of the network, e.g. the
appropriate classification of the case entered as input. Between
the input and output layers, there can be any number of interme-
diate layers; commonly called hidden layers. In MLP, data flows
from input layer to the hidden layers and finally to the output layer
in one direction only, and this is why this type of neural networks
is called feedforward. The output of each neuron i in the MLP is a
function of the sum of the weighted inputs in addition to the bias
value, h, as demonstrated in the following formula:

Yi ¼ f
Xn
j¼1

Wij � Xj þ hi

 !
ð1Þ

where Yi is the output of the ith neuron in the network, X1 to Xn are
the input values, and Wij is the weight of the j’s input at the i’s neu-
ron. This function f, through which the combined sum of the input is
passed to generate the output, is called the activation function.

Activation functions are mathematical functions which convert
the combined input into the expected output. Researchers have
used various mathematical functions, and the most common func-
tions are: Linear, Logistic and Tangent. In this paper, we use the
Hyperbolic Tangent function; TANH.

Backpropagation is the common training algorithm used in
MLPs. The concept of the algorithm it to calculate the error in
the output (the difference between the output result obtained by
the network and the desired output), and pass it backwards to
the network so that the weights of the inputs are updated in order
to minimize the error. Resilient backpropagation, Rprop, is an
enhanced algorithm overcoming some of the major issues with
the standard Backpropagation algorithm [15].

Finally, to estimate the performance of a prediction model, e.g.
MLP, in terms of its accuracy, and in order to improve its general-
ization, cross-validation is commonly applied. A common practice
is to divide the data set into three sets: training set, validation set
and testing set [16]. The training dataset is used to train the net-
work by adjusting the input weights for neurons in the neural net-
work. The validation dataset is used to minimize overfitting,
ensuring that any increase in accuracy over the training dataset
actually yields an increase in accuracy over a dataset that the net-
work has not seen previously. Finally, the testing dataset is used
when the model design is iterated many times. In this case, after
selecting the model having the best performance on the validation
set, the training set is used to assess the generalization of the
selected model on unseen data.
2.3. Application of clinical decision support systems in medical domain

Artificial intelligence (AI) in medicine has been an active
research domain since the early 1970s. Different AI methods are
used as the core concepts of clinical applications; this includes
but is not limited to: diagnosis, treatment, and prediction of clini-
cal outcome [27–30,34,36]. Many researchers proposed clinical
decision support system (CDSS) to improve the ability of the physi-
cians and the medical staff to diagnose diseases accurately. Kawa-
moto et al. [17] studied seventy CDSS and found that these systems
significantly improved clinical practice in 68% of the systems. A
large number of CDSS use artificial neural networks (ANN) as their
main processing concept [18].

Hawamdeha et al. [19] suggested the use of a multilayer Per-
ceptron (MLP) feed forward neural network to predict the rehabil-
itation protocol for patients with knee osteoarthritis. The result of
their study showed that 87% of the system’s output were accu-
rately predicted.

Ho et al. [20] compared between three prediction models to
predict disease-free survival in hepatocellular carcinoma (HCC)
patients who have received hepatic resection. The three prediction
models considered were artificial neural networks (ANN), logistic
regression (LR), and decision tree (DT). They concluded that ANN
model gave the best prediction accuracy.

Zecchin et al. [21] found that ANN improved the accuracy of
short time prediction of glucose concentration. They proposed an
approach for short time glucose prediction using past CGM sensor
readings and information on carbohydrate intake. The approach
combined a neural network (NN) model and first-order polynomial
extrapolation algorithm, used in parallel to describe, respectively,
the nonlinear and the linear components of glucose dynamics.

Yan et al. [14] used MLP for heart disease diagnosis. Based on 40
variables, the patient was diagnosed with one of five heart dis-
eases. The system’s accuracy was found to be more than 90%.

Durieux et al. [22] studied the effect of a knowledge based CDSS
on physicians’ behavior when treating patients with a potential
risk of VTE. The system collects patient’s information as well as
the physician’s prescription. The system can then show a warning
message if it finds discrepancies between the current case and past
cases in the knowledge base.
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Kucher et al. [23] as well as Piazza et al. [24] reported that the
use of a computerized alert system identifying consecutive hospi-
talized patients at risk of VTE has reduced the rates of VTE among
hospitalized patients. The system considers only eight common
VTE risk factors. Determining the risk of VTE is encoded in the sys-
tem based on the expertise of the physicians who developed the
study. The system thus does not take into consideration the past
cases of VTE, instead it looks at each patient’s medical record in
isolation, and it generates an electronic alert to the treating physi-
cian in case the patient is identified with high risk of VTE.

Roy et al. [25] assessed the effectiveness of the use of handheld
clinical decision support system to enhance the diagnostic work-
up for emergency patients suspected with pulmonary embolism
(PE). The software asks the physician to enter his/her own estimate
of the patient’s PE risk, then it suggests appropriate and inappro-
priate diagnostic tests, and it marks the least invasive test as
‘‘recommended”. The recommendations of the system are based
on the expertise of the physicians who participated in the design
of the study.
Table 1
VTE risk factors.

Category Factor Input
score

Age >75 3
60–74 2
41–70 1

Obesity BMI > 50 3
BMI > 40 2
BMI > 0 1

Surgery Major surgery (over 3 h) 5
Major surgery (2–3 h) 3
Laparoscopic surgery (>60 min) 2
Major surgery (>60 min) 2
Arthroscopic surgery (>60 min) 2
History of prior major surgery 1
Minor surgery planned 1

Disease Multiple trauma (<1 month) 5
Acute spinal cord injury (paralysis) (<1 month) 5
Stroke (<1 month) 5
Elective major lower extremity arthroplasty 5
History of DVT/PE 3
Central venous access 2
Malignancy (present or previous) 2
Abnormal pulmonary function (COPD) 1
Medical patient currently at bed rest 1
Leg plaster cast or brace 1
Varicose veins 1
History of inflammatory bowel disease 1
Swollen leg (current) 1
Acute myocardial infarction (<1 month) 1
Congestive heart failure (<1 month) 1
Series lung disease incl pneumonia (<1 month) 1
Sepsis (<1 month) 1

Women
related

Oral contraceptives or hormone replacement
therapy

1

Pregnancy or postpartum (<1 month) 1
� History of unexplained stillborn infant, or
� Recurrent spontaneous abortion (>3), or
� Premature birth with toxemia or growth-
restricted infant

1

Genetics &
drugs

Positive Factor V Leiden 3
Elevated serum homocysteine 3
Heparin-induced thrombocytopenia (HIT) 3
Positive prothrombin 20210A 3
Positive Lupus anticoagulant 3
Elevated anticardiolipin antibodies 3
3. Data encoding and system architecture

In order to design an affective medical decision support system
assessing the patient’s risk level of VTE, all risk factors for VTE as
identified by domain experts [2,3,8] were considered. In our previ-
ous work [4], VTE risk factors were investigated, and this work is
based on the findings of our previous work. We hence use Caprini
model to assess risk factors of VTE.

Our proposed clinical decision support system is designed with
two main components: Data entry and encoding, and risk assess-
ment engine. The data entry and encoding component allows
entering patient’s data and encoding them according to the encod-
ing scheme explained in Section 3.1. For initial system training,
Patients’ personal and medical data were collected from Jordan
University Hospital (JUH). Experts from the domain assessed the
cases according to the Caprini model [4,8], and they classified
patients into five risk levels: low, lower-mild, higher-mild, moder-
ate, and high; where the probabilities of developing VTE in these
risk levels are 10%, 20%, 30%, 40%, and 50% respectively. The col-
lected dataset was used for training, validating, and testing the
neural network used in the risk assessment engine. The risk assess-
ment engine is the main processing part of the system. It receives
the patient’s encoded data, and then it determines VTE risk level
for the patient. The risk assessment engine uses a neural network
which was trained with 150 patient’s records. The optimal struc-
ture of the neural network (presented in Section 3.2) was deter-
mined experimentally as explained in Section 4.

In the next subsections we discuss the process of data collection
for the dataset used to train and test the system along with the
encoding scheme used to represent patient’s data, and then we
introduce the MLP-based architecture of the risk assessment
engine used in the proposed decision support system.

3.1. Data encoding scheme

Patients’ data were collected from JUH, which is a busy tertiary
care medical center. The data set used to train and test the system
was based on a sample of 150 complete medical records. The sam-
ple was selected so that it contains 30 records from each risk level.
Only patients who are above the age of 40 were considered for this
study.

The sample data set was collected from medical records for
both walk-in patients and admitted patients. An informed consent
formwas obtained from all study subjects. The study was approved
by the hospital IRB as part of quality monitoring focused study to
generate hospital guidelines concerning VTE prophylaxis.

From each medical record, the values of thirty-five risk factors
were extracted. These risk factors were categorized into six cate-
gories as follows: Age, Obesity, Surgery, Disease, Women related,
Genetic & Drugs, where:

� Age: has only one risk factor. Its value considers 3 intervals of
age for patients over 40. Each interval gets a different risk score.

� Obesity: has only one risk factor. Its values considers 3 BMI
intervals with different score of risk.

� Surgery: has 7 risk factors in total with different risk scores.
� Disease: has 17 risk factors in total with different risk scores.
� For Women: has 3 risk factors in total with different risk scores.
� Genetics &Drugs: has 6 risk factors in total with different risk
scores.

As demonstrated in Table 1, each risk factor is encoded as a risk
score ranging from 1 to 5.
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3.2. System architecture

The risk assessment engine uses a feedforward MLP neural net-
work using resilient backpropagation algorithm (Rprop).

The structure of the network; and particularly the number of
hidden layers and the number of neurons in each hidden layer; is
chosen based on an experimental iterative process to determine
the best structure with the highest accuracy as demonstrated in
Section 5. As demonstrated in Fig. 1, the adopted network structure
consists of:

� 35-input neurons in the input layer.
� Three hidden layers having 19 neurons in the first layer, 10 in
the second layer, and 5 in the third.

� One output neuron in the output layer.

TANH activation function was used for all hidden layers as well
as the output layer. The values 0.08, 0.0000001, and 6 were used
for the initial delta, the performance goal error, and the number
of validation checks to avoid overfitting of the network
respectively.

The details of the network architecture are further explained in
the following subsections.

3.2.1. Input layer
The input layer is designed with 35 neurons for the 35 risk fac-

tors identified in Section 3.1. Each risk factor is encoded as a risk
score ranging from 1 to 5 as demonstrated in Table 1.

3.2.2. Hidden layers
Since the process of determining the best number of hidden lay-

ers and neurons in each layer is very complex as it depends on: the
number of input and output neurons, the number of training cases,
and the complexity of the classification problem to be learned [31];
we applied an experimental iterative approach to determine the
best number of hidden layers and neurons within each layer. Based
Fig. 1. MLP structure used for t
on the experimental study, it was found that in order to obtain the
best accuracy, the system should consist of three hidden layers,
with 19, 10, and 5 neurons respectively. Consequently, we adopted
this architecture for the system. The experimental methodology
that was followed to find the best performing network is discussed
in Section 4.
3.2.3. Output layer
The output layer consists of one neuron. It displays the output

variable, with a value normalized into five possible levels of risk
of VTE: low, lower-mild, higher-mild, moderate, and high.
4. Experimental study and system evaluation

An experimental study was conducted to choose the best archi-
tecture for the system. The network with the best classification
accuracy was then validated with ten-fold cross validation method.
4.1. Model building

In the experimental study, we train several network models and
then we compare them based on their classification accuracy. The
cross validation method was used to estimate the accuracy which
is determined by the overall number of correct classifications
divided by the total number of instances in the dataset. A percent-
age of 80%, 10%, and 10% data split of the complete data samples
was applied to represent the training, validation, and test subsets
respectively. Consequently, we obtained a total of 120, 15, and
15, sample cases for the training, validation and testing subsets
respectively.

The whole process works as follows:

(1) Set initial number of hidden layers NHL to 1
(2) Calculate the initial number of neurons (Nf) in the hidden

layer according to Eq. (2)
he risk assessment engine.
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Nf ¼ Nprev þ No

2

����
����: ð2Þ

(a) Train and calculate the accuracy of the network with the
hidden layer having Nf neurons

(b) Train and calculate the accuracy of the network with the
hidden layer having Nf � 1 neurons

(c) Train and calculate the accuracy of the network with the
hidden layer having Nf + 1 neurons

(3) Add a new hidden layer and repeat step 2 until Nf = 2

Where Nf is the number of neurons in the hidden layer, Nprev is
the number of neurons in the previous layer (when considering the
first hidden layer, Nprev is the number of neurons in the input
layer), and No is the number of the neurons in the output layer.

All network models trained in this experiment share the follow-
ing characteristics:

� A Feedforward Backpropagation neural network was used.
� The number of neurons in the input layer was 35.
� The number of neurons in the output layer was 1.
� The training algorithm that was used for training was the Rprop.
� Each model was tested with TANH activation function.
� The following values were used 0.08, 0.0000001, and 6 for the
initial delta, the performance goal error and the number of val-
idation checks to avoid the overfitting of the network
respectively.

Table 2 lists the best performing network architectures based
on their classification accuracy as obtained from the experimental
study.

4.2. Stratified ten-fold cross validation

To ensure higher robustness of the evaluation, stratified 10-fold
cross validation was applied as suggested by [26]. Consequently,
the data set was stratified into 10 folds, where each fold consisted
of 15 sample cases having 3 low risk cases, 3 lower-mild risk cases,
3 higher-mild risk cases, 3 medium risk cases, and 3 high risk cases.

The validation process went through 10 different runs of the
model, where each run used 9 folds for training and one fold for
testing. Each run used a testing fold that was not picked in any
of the previous runs. This guarantees that each fold would be con-
sidered as a testing fold in one of the runs.

In order to find the classification accuracy for the model, we cal-
culated the classification accuracy of the test fold in each run. The
overall accuracy of the model was calculated as the average accu-
racy of all 10 runs. The overall accuracy was calculated as follows:

� First, the classification accuracy for each fold is computed. The
classification accuracy Afi of an individual fold fi depends on
the number of samples correctly classified and is evaluated by
the formula:

Af i ¼
t
n
� 100% ð3Þ
Table 2
Best performing network architecture.

Number of hidden
layers

Number of neurons within
each layer

Best classification
accuracy %

1 35–17–1 93.3
2 35–17–9–1 98
3 35–19–10–5–1 100
4 35–17–9–3–2–1 80
5 35–19–9–5–3–2–1 86.66
where t is the number of sample cases correctly classified, and n
is the total number of sample cases.

� Then, the overall model classification accuracy is calculated as
follows:

Average Classification Accuracy ¼ 1
10

X10
i¼1

Af i ð4Þ

To summarize the results of the 10 test folds, Table 3 illustrates
the classification accuracy for all runs. The average accuracy classi-
fication obtained for all folds is 81%. We notice that the highest
classification accuracy was obtained in run 5 and run 10 with an
accuracy of 100% and the lowest accuracy was obtained in run 7
with an accuracy of 33.34%. Looking further at the testing fold of
run 7, we noticed that most sample cases were border cases
between two risk classes, which led to their misclassification into
either the class which is directly below the actual class or the class
which is directly above it. Looking at each class of risk, the overall
classification accuracy is 90%, 80%, 70%, 76.7%, and 86.7% for low
risk, lower-mild risk, higher-mild risk, moderate risk, and high risk
classes respectively.

To further analyze the performance of the classification model,
we provide the confusion matrix in Table 4.

The confusion matrix helps visualizing the performance of the
model within each class of VTE risk by looking at the actual versus
the predicted class of risk for each class. The rows represent the
predicted classes for the sample cases from a specific class of risk.
For example, the first row shows that out of 30 actual low risk
cases, the model correctly predicted 27 cases within the low risk
class, while it incorrectly classified the remaining three low risk
cases as lower-mild risk class. The columns show the actual classi-
fication of the cases that were predicted within a specific class of
risk. For example, the first column show that the model predicted
a total of 31 low risk cases, while actually only 27 out of themwere
actually low risk cases, and the other 4 were incorrectly classified
as low risk while they were actually lower-mild risk cases. Conse-
quently, the rate 27/30 shows the measure of the procedure accu-
racy of the classification for the low risk class (which is also called
the Recall measure), while the rate 27/31 shows the user accuracy
of the classification model for low risk class (which is also called
the Precision measure).

Table 5 summarizes procedure accuracy and user accuracy for
each VTE risk class.
4.3. Observations and discussion

The results presented in the previous section show that the sys-
tem provide very good accuracy values for both low and high risk
levels of VTE, while it provides modest accuracy values for the
classes in between. Since in a medical setting, what is important
is to safely discharge patients with low risk of VTE while directly
treating patients with high risk of VTE, we can clearly see that
the system achieves this objective.

For high risk VTE, the user accuracy shows that all cases (100%)
that are predicated as high risk of VTE are actually high risk of VTE.
The procedure accuracy, on the hand, shows that the probability
that the system will accurately classify a high risk case into its
proper class is 90%. Based on the confusion matrix, we know the
percentage of misclassified high risk cases (10%) are classified by
the system as moderate risk; which is the adjacent class directly
below the high risk class.

In general, according to the confusion matrix, we can clearly see
that when a case is misclassified, it is incorrectly classified by only
one adjacent risk level (directly below or directly above) the actual
class. This is an indication that the range of classification errors is
±1 adjacent class.



Table 3
Classification accuracy for 10 folds.

Run set Folds Low risk 10% Mild Risk Moderate risk 40% High risk 50% Average accuracy
For each fold

Lower-mild20% Higher-mild30%

1 F1 100% 66.7% 66.7% 66.7% 100% 80.02%
2 F2 100% 33.3% 0% 66.7% 66.7% 53.34%
3 F3 100% 100% 100% 100% 66.7% 93.34%
4 F4 100% 100% 100% 66.7% 100% 93.34%
5 F5 100% 100% 100% 100% 100% 100%
6 F6 100% 66.7% 100% 33.3% 100% 80%
7 F7 0% 66.7% 0% 33.3% 66.7% 33.34%
8 F8 100% 66.7% 33.3% 100% 100% 80%
9 F9 100% 66.7% 100% 100% 100% 93.34%
10 F10 100% 100% 100% 100% 100% 100%

Average folder accuracy (80.67)%

Average accuracy for
each level of risk

90% 76.7% 70% 76.7% 90% �(81)%

Table 4
Confusion matrix.

Original level Predicted low
risk 10%

Predicted mild risk Predicted moderate
risk 40%

Predicted high
risk 50%

Sum of
actual cases

Lower-mild 20% Higher-mild 30%

Actual low risk 10% 27 3 0 0 0 30
Actual mild risk 20% 4 23 3 0 0 30

30% 0 5 21 4 0 30
Actual moderate risk 40% 0 0 7 23 0 30
Actual high risk 50% 0 0 0 3 27 30
Sum of predicted cases 31 31 31 30 27 150

Table 5
Procedure and user accuracy.

Risk level of VTE Procedure accuracy %
(recall)

User accuracy %
(precision)

Low risk 10% 27/30 = 90% 27/31 = 87.1%
Mild risk Lower-mild 20% 23/30 = 76.7% 23/31 = 74.2%

Higher-mild 30% 21/30 = 70% 21/31 = 67.8%
Moderate risk 40% 23/30 = 76.7% 23/30 = 76.7%
High risk 50% 27/90 = 90% 27/27 = 100%
Average accuracy 80.7% 81.2%

Z. Qatawneh et al. / Applied Computing and Informatics 15 (2019) 12–18 17
Consequently, we recommend the use of this system for screen-
ing low/high risk levels of VTE. Additionally, we recommend that
the physician manually checks cases identified as moderate risks
since there is a 10% probability that it can actually be a high risk
case.
5. Conclusion and future work

Venous thromboembolism (VTE) is a very common health issue
with complications that carry a high morbidity and mortality rates.
Although VTE is a common disease, it is a preventable cause of hos-
pital death if it is quickly identified by the treating physician.

In this paper we propose a clinical decision system to automate
and accurately predict the risk of VTE. This work represents a pre-
liminary step in developing a methodology to predict VTE and clas-
sify it into five levels of risk based on predisposing factors which
are chosen from Caprini score of VTE model as used in Jordan
University Hospital.

The proposed system uses Artificial Neural Networks (ANN) in
evaluating multifactorial health issue. Developing the system
passed through several steps starting from determining the factors,
collecting and stratifying the data set, normalizing the data input,
training and choosing the most accurate system model, and finally
validating the system.

The system was developed using one of the most widespread
machine learning techniques; MLP feed forward neural network.
It was trained using the Rprop training algorithm, and it consisted
of: an input layer with 35 neurons (representing the input vari-
ables for each patient such as, age, gender, etc.), 3 hidden layers
(where the number of neurons in the first, second and third hidden
layer were 19, 10 and 5 respectively) and an output layer (that pro-
duced the type of the disease the patient suffered from).

Stratified ten-fold cross validation was applied, and it showed
that the system had an overall user accuracy of 81.2% and an over-
all procedure accuracy of 80.7%. It is worth noting that the system
accuracy is very high for both extreme classes of risk: low risk and
high risk. For the high risk class, the user accuracy obtained from
the experiment is 100% and the procedure accuracy is 90%. For
the low risk class, the user accuracy is 87.5% while the procedure
accuracy is 90%. When misclassification occur, the system usually
misclassifies a case in either the class directly below the actual
classification class or the one directly above it.

Finally, in a future research we will consider comparing the per-
formance of our system using different classifiers such as Naïve
Bayes (NB), Support Vector Machine (SVM), and Decision Tree
(DT). Additionally, we will consider classifying VTE into its two
major types: Deep Venous Thrombosis (DVT) and Pulmonary
Embolism (PE).
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