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Abstract Extensive research has been devoted to the multi-mode resource constrained project

scheduling problem (MRCPSP). However, little attention has been paid to problems where preemp-

tion is allowed. This paper involves the preemptive multi-mode resource constrained project

scheduling problem (P-MRCPSP) to minimize the project makespan subject to mode changeability

after preemption. This problem is a more realistic model and extended case of multi-mode resource

constrained project scheduling problem. A binary integer programing formulation is proposed for

the problem. The problem formed in this way is an NP-hard one forcing us to use the Simulated

Annealing (SA) algorithm to obtain a global optimum solution or at least a satisfying one. The per-

formance of the proposed algorithm is evaluated on 480 test problems by statistically comparing in

term of the objective function and computational times. The obtained computational results indi-

cate that the proposed algorithm is efficient and effective. Also, it is concluded from the results that

mode change is very effective to improve the optimal makespan of the project.
� 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Resource constrained project scheduling problem (RCPSP) is
one of the most important problems in the context of project
scheduling which is an NP-hard problem [7]. The decision vari-

ables for the RCPSP are the starting times of activities while
the resources availabilities are considered given. The objective

is then to minimize the completion time of the project. In the
literature there are several algorithms that solve the RCPSP;
recent reviews about exact methods and heuristics can be

found in Kolisch and Hartmann [30], Hartmann and Kolisch
[19], Hartmann and Kolisch [20], Zhang et al. [48], Zhang
et al. [49], Jairo et al. [23], Hartmann and Briskorn [17], Agar-
wal et al. [3], Fang and Wang [15], Koné [31], Paraskevopoulos

et al. [38].
In RCPSP it is assumed that activities could only be per-

formed in one possible execution mode. In practice, however,

it often happens that multiple execution modes can be defined
for the project activities. Each activity may be executed in one
or more execution modes, each requiring a specific amount of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2014.02.003&domain=pdf
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resources consumption and resulting in different durations for
an activity completion. More exactly, each execution mode
defines as a trade-off between time/cost, time/resource,

speed/resource etc. The multi-mode problem (MRCPSP) is a
generalized version of the RCPSP, where each activity can
be performed in one out of a set of modes, with a specific activ-

ity duration and resource requirements. The standard multi-
mode resource constrained project scheduling problem
involves the selection of an execution mode for each activity

and the determination of the activity start or finish times such
that the precedence and resource constraints are met and the
project duration is minimized. As this problem is a generaliza-
tion of the RCPSP, the MRCPSP is also NP-hard. Several

algorithms that solve the MRCPSP have been proposed in
recent years: Hartmann and Drexl [18], Sprecher and Drexl
[43], Knotts et al. [28], Nonobe and Ibaraki [37], Jozefowska

et al. [25], Alcaraz et al. [4], Bouleimen and Lecocq [8], Heil-
mann [22], Zhu et al. [50], Zhang et al. [48], Zhang et al.
[49], Lova et al. [32], Jarboui et al. [24], Ranjbar et al. [42],

Lova et al. [33], Coelho and Vanhoucke [10], Ranjbar [41],
Barrios et al. [6], Afshar-Nadjafi et al. [2], Nabipoor Afruzi
et al. [36].

The basic RCPSP and MRCPSP assume that each activity,
once started, will be executed until its completion. This
assumption can be justified only for activities in which their
interruption essentially is inapplicable. For example, in order

to integrity of foundation, concrete placement cannot be pre-
empted. However, for activities in which their interruption is
applicable, the optimal makespan can be improved by allowing

preemption, because the solution space is extended as a result
of the constraint relaxation. Welding can be mentioned as a
preemptive activity. Preemptive multi-mode resource con-

strained project scheduling problem (P-MRCPSP) refers to a
generalization of the multi-mode resource constrained project
scheduling problem (MRCPSP) which allows activities to be

preempted at any time instance and restarted later on at no
additional cost. The literature on solution methods for the pre-
emptive resource constrained project scheduling problem is rel-
atively scant. For the single-mode case, one can refer to

Kaplan [26], Demeulemeester and Herroelen [13], Ballestin
et al. [5], Vanhoucke and Debels [46], Damay et al. [11]. For
the multi-mode case, Buddhakulsomsiri and Kim [9] proved

that preemption is very effective to improve the optimal pro-
ject makespan in the presence of resource vacations and tem-
porary resource unavailability and that the makespan

improvement is dependent on the parameters that impact
resource utilization. Van Peteghem and Vanhoucke [47] have
proposed a genetic algorithm for the multi-mode resource-
constrained project scheduling problem and its extension to

the preempted case.
The basic MRCPSP and P-MRCPSP assume that activities

assigned modes cannot change during the execution of the pro-

ject. This assumption is one of the classical MRCPSP and P-
MRCPSP shortcomings. This common assumption can be jus-
tified as long as essence and materials of modes are different

and mode change is inapplicable. However, if execution modes
of an activity have the same essence and materials, the optimal
makespan can be improved by allowing mode change. This is

probable especially in the presence of resource vacations and
temporary resource unavailability. However, it is likely that
in reality, execution mode of an activity is changed, especially
when an activity is preempted and it will be restarted at a later
time. In these cases, modeling and solving such a problem as a
classical MRCPSP, especially in the preemptive case may lead
to poor solutions. To the best of our knowledge, no research

has been performed on the P-MRCPSP with permitted mode
change.

Therefore, the contribution of this paper is fourfold: first, a

binary integer programing formulation is developed for the
preemptive multi-mode project scheduling problem of mini-
mizing the project makespan subject to resource constraints

and precedence relations, where execution mode of each activ-
ity can be changed after being preempted. This problem is
called P-MRCPSP-MC. This model is not considered in the
past literature. Second, an efficient meta-heuristic solution

procedure based on SA is developed for the problem due to
NP-hardness of the problem. In proposed SA, the activity list
representation is used to encode a project schedule and the

serial schedule generation scheme (SSGS) embedded with a
new dynamic heuristic to translate the schedule representation
to a schedule. Third, the effectiveness of proposed SA for the

P-MRCPSP-MC will be analyzed. Finally, the effect of mode
changeability on project makespan is analyzed.

The remainder of this paper is organized as follows: Sec-

tion 2 is devoted to the presentation of the problem. In Sec-
tion 3 the steps of our algorithm to solve the problem is
explained. Computational results are represented in Section 4.
Finally, Section 5 contains the conclusions.

2. Problem description

In continuation the project is represented by an activity on the

node (AON) network G(N, A) where the set of nodes, N, rep-
resents activities and the set of arcs, A, represents finish-start
precedence constraints with a time-lag of zero. The preempt-

able activities are numbered from the dummy start activity 1
to the dummy end activity n and are topologically ordered,
i.e., each successor of an activity has a larger activity number

than the activity itself. The set of activities is to be scheduled
on a set Rq of renewable and Rm of nonrenewable resource
types. For each activity i e N, instead of a fixed duration and

known resource requirements, a fixed work content Wi is given
which essentially indicates how much work has to be per-
formed. This work content can be performed in a mode mi,
which is chosen out of a set of Mi different execution modes,

i.e., with different speeds and resource requirements as long
as the required work content is met. The accomplishing of
an activity can be temporarily interrupted at discrete time

instants, and restarted at a later time with a same or different
mode. The progress of activity i during each time unit of its
execution in mode mi , is wimi

(measured by same unit of

Wi). Each activity i in mode mi requires rqimik
renewable

resource units (k e Rq) during each time unit of its execution.

For each renewable resourcek e Rq, the availability aqk is con-

stant throughout the project horizon. Activity i, executed in
mode mi, will also use rmimil

nonrenewable resource units (l e Rm)

of the total available nonrenewable resource aml . Logically, it is

assumed that mode mi with higher wimi
requires more renew-

able rqimik
and nonrenewable resources rmimil

.

The objective of the P-MRCPSP-MC is to find a feasible
schedule in order to minimize the makespan of the project.

However, changeable execution modes mi for activities and
preemption plan for activities have to be determined. A sched-
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ule is defined as a sequence of start (finish) times for the pro-
ject’s activities. A schedule which satisfies the specified prece-
dence and resource constraints is called feasible schedule.

Also, a feasible schedule which meets as much as possible
the objectives set forward by project management is called
optimal. The following notation is used for P-MRCPSP-MC:
A
 Set of arcs of acyclic digraph representing the project
N
 Set of nodes of acyclic digraph representing the project,

|N| = n
n
 Number of activities, index by i
Rq
 Set of renewable resource(s), |Rq| = K
K
 Number of renewable resource(s), index by k
Rm
 Set of nonrenewable resource(s), |Rm| = L
L
 Number of nonrenewable resource(s), index by l
Mi
 Number of execution modes for activity i , index by mi
Wi
 Total work content of activity i, i e N
wimi

Progress of activity i during each time unit of its execution

in mode mi , i e N, mi = 1,. . .,Mi
rqimik

Renewable resource type k requirement of activity i in mode

mi , i e N, k e Rq, mi = 1,. . .,Mi
rmimil

Nonrenewable resource type l requirement of activity i in

mode mi, i e N, l e Rm, mi = 1,. . .,Mi
aqk
 Constant availability of renewable resource type k

throughout the project horizon, k e Rq
aml
 Total availability of nonrenewable resource type l, l e Rm
ESTi
 Earliest start time of activity i
LFTi
 Latest finish time of activity i
sn
 Deadline of the project
Z
 Objective function (project makespan)
ximit
 1, if activity i in mode mi is in progress in period t, 0,

otherwise (binary decision variable)
In our formulation, 0–1 variables ximit are defined, which

specify whether an activity i in mode mi is in progress in period
t or not. These variables can only be defined over the time
interval of the activity in question t e [ESTi + 1, LFTi]. These

limits are determined using the traditional forward and back-
ward pass calculations considering duration of activity i based
on high speed mode as follows:

di ¼ Wi

max
mi

wimi

2
4

3
5 ð1Þ

The backward pass calculation is started from a fixed pro-
ject deadline sn. In this paper, earliest finish time of dummy

end activity, EFTn, is considered as project deadline. EFTn is
computed using the traditional forward calculations consider-
ing duration of activity i based on low speed mode as follows:

di ¼ Wi

min
mi

wimi

2
666

3
777 ð2Þ

It is clear that an activity with work content of 0 is never in
progress and thus does not have a corresponding decision vari-

able which is set to 1. This problem, however, can be easily
overcome: the dummy start and end activity are assigned a
dummy mode with work content of 1. Also, the parameters

rmimil
, rqimik

and wimi
for dummy modes are assumed as 1. All

other activities with zero work content can be eliminated, pro-
vided that the corresponding precedence relations are adjusted
appropriately. The resulting schedule may be transferred into a
schedule for the original problem by removing the dummy
start and end activity, and one time unit left shifting.

Using the above notation, P-MRCPSP-MC can be mathe-
matically formulated as follows:

minZ ¼
XLFTn

t¼ESTnþ1

t:xnmnt ð3Þ

Subject to:

XLFTi

t¼ESTiþ1

XMi

mi¼1

wimi
:ximit � Wi 8i 2 N ð4Þ

XMi

mi¼1

ximit � 1 8i 2 N; 8t 2 ½ESTi þ 1;LFTi� ð5Þ

ximit þ xim0
i
ðtþ1Þ � 1 8i 2 N;

8t 2 ½ESTi þ 1;LFTi � 1�; 8mi–m0
i ð6Þ

Xt

s¼1

XMi

mi¼1

wimi
:ximis � Wi

XMj

mj¼1

xjmjðtþ1Þ 8ði; jÞ 2 A;

8t 2 ½ESTi þ 1;LFTj � 1� ð7Þ

Xn
i¼1

XMi

mi¼1

rqimik
:ximit � aqk 8k 2 Rq; t ¼ 1; . . . ; sn ð8Þ

Xn
i¼1

XMi

mi¼1

XEFTi

t¼ESTiþ1

rmimil
:ximit � aml 8l 2 Rm ð9Þ

ximit ¼ 0; 1 8i 2 N; 8t 2 ½ESTi þ 1;LFTi�;
mi ¼ 1; . . . ;Mi ð10Þ

The objective function in Eq. (3) minimizes the project
duration. Remember, however, that this value exceeds the
optimal project length because of the unit duration of both

the dummy start and dummy end activity. The constraints in
inequality (4) assure that work content of each activity is
met. The constraints in Eq. (5) assure that each activity is

not assigned more than one mode for each time period. The
assumption that mode change is not allowed without preemp-
tion is modeled in Eq. (6). Eq. (7) denotes the precedence
relations-constraints. Constraints (8) and (9) take care of the

renewable and nonrenewable resource limitations, respectively.
Finally, Eq. (10) imposes binary values on the decision vari-
ables. This formulation requires the definition of at most n*

max(Mi)
* sn binary decision variables. Also, the number of

constraints of the formulation amounts to at most n+ n sn
[1 + max(Mi)(max(Mi)-1)/2]+ sn (|A|+K)+L.

Fig. 1 shows an example of P-MRCPSP-MC with 7 activi-
ties where 1 and 7 are dummy activities.

Each activity has two execution modes. For each mode, 1

renewable resource and 1 nonrenewable resource is indicated.
The availability for the renewable (nonrenewable) resource is
5 (132). Problem instance parameters are given in Table 1.

Fig. 2(a) depicts a schedule with a makespan of 8 days. This

schedule is feasible because it uses exactly 130 nonrenewable
resource units. Also, precedence relations are met and renew-
able resource availability (5) is not violated. Fig. 2(b) shows



Table 1 Problem instance information.

Activity i Wi Mode mi wimi rqimik
rmimil

1 1 1 1 0 0

2 14 1 6 5 10

2 4 4 7

3 8 1 5 2 13

2 3 1 6

4 11 1 8 4 23

2 5 2 10

5 14 1 7 3 7

2 5 2 5

6 6 1 6 2 22

2 3 1 11

7 1 1 1 0 0

1

2

4

5

3

6

7

Fig. 1 An example network.
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a feasible schedule with a makespan of 7 days, in which pre-
emption is allowed. If the problem is relaxed to the P-

MRCPSP-MC, a feasible schedule as shown in Fig. 2(c) can
be generated.

3. Proposed SA to solve P-MRCPSP-MC

Simulated Annealing (SA) algorithm has been successfully
applied to a noticeable number of project scheduling problems
Fig. 2 Schedules for
[1,8,21,25,35,40]. In this section an SA algorithm is proposed
to solve P-MRCPSP-MC. In order to increase quality of the
proposed SA, an efficient dynamic heuristic algorithm is imple-

mented to construct a schedule. Also exact solutions obtained
from Lingo 11 are considered to provide comparable computa-
tional efforts for SA.

3.1. Basic Simulated Annealing

Simulated Annealing (SA) which has been successfully applied

to various difficult combinatorial optimization problems is a
random search method that is based on Monte Carlo iterative
strategy. The origins of SA are in statistical mechanics (Metro-

polis algorithm) and it initially was presented as a search algo-
rithm for combinatorial optimization by Kirkpatrick et al.
[27]. SA is useful for problems with a very large discrete search
space, which is too large for an enumeration search method.

SA algorithm starts by generating an initial solution and by
initializing the so-called temperature parameter T. Then, at
each iteration a solution s0 is randomly created in the neighbor-

hood of the current solution and if it is better than the current
solution, it replaces the current solution. If the new solution is
not an improvement upon the current solution, it replaces the

current solution with a probability generally computed follow-

ing the Boltzmann distribution expð� fðs0Þ�fðsÞ
T

Þ where T is the

current temperature and f(s0) - f(s) is the change in objective
function value obtained by moving from previous solution to
new solution. The temperature T is decreased during the search

process, thus at the beginning of the search the probability of
accepting uphill moves is high and it gradually decreases, con-
verging to a simple iterative improvement algorithm. Regard-
ing the search process, this means that the algorithm is the

result of two combined strategies: random walk and iterative
improvement. In the first phase of the search, the bias toward
improvements is low and it permits the exploration of the

search space; this erratic component is slowly decreased thus
problem instance.



Activity list
j1 j2 j3 j4 j5 j6 j7
1 2 4 3 5 6 7

Fig. 3 Solution representation.
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leading the search to converge to a (local) minimum. The prob-
ability of accepting uphill moves is controlled by two factors:
the difference of the objective functions f(s0) - f(s) and the tem-

perature T. On the one hand, at fixed temperature, the higher
the difference f(s0) - f(s), the lower the probability to accept a
move from s to s0. Whereas, the higher T, the higher the prob-

ability of uphill moves.
The choice of an appropriate cooling schedule is crucial for

the performance of the algorithm. One of the most used ones

follows a geometric law Tk+1 = aTk where a e (0, 1) which
corresponds to an exponential decay of the temperature. The
cooling rule may vary during the search, with the aim of tuning
the balance between diversification and intensification. For

example, at the beginning of the search, T might be constant
or linearly decreasing, in order to sample the search space;
then, T might follow a rule such as the geometric one, to con-

verge to a local minimum at the end of the search. The cooling
schedule and the initial temperature should be adapted to the
particular problem instance, since the cost of escaping from

local minima depends on the structure of the search landscape.
The description of SA indicates that a basic SA does not use
the history of the search process. This is one of the reasons

why SA is often outperformed by other meta-heuristics. How-
ever, due to its simplicity, it is generally very fast and it can be
successfully integrated into other search techniques.

3.2. Preprocessing

In order to reduce the search space, preprocessing is used
before the execution of SA. The data reduction procedure

has originally been proposed by Sprecher et al. [44] to increase
the speed of their branch and bound algorithm for the
MRCPSP. The idea behind this procedure is to omit all non-

executable and inefficient modes from the project data without
affecting the optimal makespan. An execution mode mj is
called non-executable if its execution would violate the renew-

able resource constraints in any schedule. Also, a mode is
called inefficient if there is another mode of the same activity
with the same or higher speed and no more requirements for
all resources. Hence, non-executable and inefficient modes

may be excluded from the project data without losing
optimality.

3.3. Solution representation

In the previous researches, various representations for sched-
ules in the construction of heuristics for the RCPSP are devel-

oped (Kolisch and Hartmann [30]). The two most important
ones are the random-key (RK) representation and the
activity-list (AL) representation. Hartmann and Kolisch [19]

deduced from experimental tests that procedures based on
AL representations outperform the other procedures. The
AL representation is used to encode a project schedule and
the serial schedule generation scheme (SSGS) to translate the

schedule representation to a schedule. Since the minimum pro-
ject makespan criterion is a regular performance measure, i.e.,
a measure which is non-decreasing in activity completion

times, one may use the serial SGS rule to construct the sched-
ule. As a result, there is no danger of omitting an optimal
schedule by using the serial SGS here. The serial SGS sequen-

tially adds activities to the schedule until a feasible complete
schedule is obtained. In each run, the first un-scheduled activ-
ity in the activity list is chosen and the first possible starting
time is assigned for that activity such that precedence or

resource constraints are preserved.
A feasible solution is represented by a vector which is a

precedence-feasible permutation of activities:

I ¼ ðjIi ; jI2; . . . ; jInÞ ð11Þ
Fig. 3 shows an example of solution representation related

to the mentioned instance in Fig. 1.
Having got a feasible solution represented by the vector

described above, the starting times of all activities (sub-
activities) are then defined by using the serial SGS. The SGS

determines how a feasible schedule is constructed by assigning
starting times to the activities. It sequentially adds activities in
the activity list to the schedule until a feasible complete sched-

ule is obtained such that no precedence or resource constraint
is violated. In this paper however, execution modes are deter-
mined using a dynamic heuristic embedded into serial SGS.

Our proposed heuristic is derived from part period lot sizing
heuristic (DeMatteis [12]); algorithm chooses the number of
periods covered by the replenishment order such that the total

holding costs are made as close as possible to the setup cost.
To solve P-MRCPSP-MC, an initial feasible activity list is

generated. Then, ratio of work to resource (RWR) is computed
as follows:

RWR ¼
Pn

i¼1WiPL
l¼1a

m
l þ T

PK
k¼1a

q
k

ð12Þ

RWR is a representation of work-resource balancing. In

our proposed SA, mode assignment is done by comparing real-
ized ratio of work to resources so far with RWR. For selected
activity i, mode mi with realized ratio of total completed work

content to the spent resources so far as close as to RWR is
assigned.

After obtaining an initial activity list I, the corresponding

schedule is computed by the following procedure:
Starting from time period 1, for each time period t, set of

activities that are executable at a certain time period t (i.e.,
all their predecessors have completed), is identified. This set

of activities is denoted by Ia which should consist of at least
one activity. Activities in Ia are arranged according their
sequence in I. In each iteration, first activity j is selected from

Ia and deleted from it. If activity j was in progress at period t-1,
same execution mode should be assigned to it if possible. Else,
procedure is continued by selecting first activity j from Ia
again.

If activity j was in progress at period t-1, all impossible and
dominated modes of activity j are considered inactive. A mode

mj is called impossible if its renewable resource requirement
exceeds remaining availability for at least one renewable
resource type. Also, A mode mj is dominated by another mode
m0

j if remaining work of activity j is less than or equal to wjm0
j

whereas wjmj
> wjm0

j
. Then, for remaining modes (if exist) of
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activity j, Pjmj
is computed as follows which is a representation

of realized ratio of work to resources, so far.

Pjmj
¼

P
i

P
mi

Pt
s¼1wimi

:ximisP
i

P
mi

P
l

Pt
s¼1r

m
imil

ximis þ t
PK

k¼1a
q
k

ð13Þ

Finally, the mode mj for which Pjmj
most nearly equals to

RWR is assigned to activity j and activity j set to be in progress
at period t . If there are no remaining modes for activity j, pro-
cedure continues by selecting first activity j is from Ia. Also, if

Ia is empty, algorithm restarts by setting t= t+ 1. Above
procedure is continued until dummy activity n be a scheduled
activity. The time complexity of this procedure is the same as

the basic serial SGS, O(n2K) (Pinson et al. [39]). The pseudo-
code for decoding a solution to a schedule is shown in Table 2.
For example, in Fig. 1 consider the following activity list:
j1 j2 j3 j4 j5 j6 j7

1 2 4 3 5 6 7
Decoding this schedule as follows results in the feasible sched-
ule shown in Fig. 2(c):

t= 1 activity 2 in mode m1

t= 2 activity 4 in mode m1

t= 2 activity 3 in mode m2

t= 3 activity 2 in mode m2

(activity 2 is preempted at time point t= 1)

t= 3 activity 3 in mode m2

t= 4 activity 2 in mode m2

t= 4 activity 3 in mode m2

t= 5 activity 4 in mode m1

(activity 4 is preempted at time point t= 2)
t= 5 activity 5 in mode m1

t= 6 activity 5 in mode m1

t= 6 activity 6 in mode m1

The number of requested nonrenewable resource units that

exceeds the capacity aml ; l 2 Rs, is defined as the excess of

resource request ERR(l) (Van Peteghem and Vanhoucke

[47]). An ERR(l) = 0 means that the solution is feasible. If
ERR(l) is larger than 0, the solution is infeasible with respect
to nonrenewable resources. The formula of the ERR(l) can be

adjusted in our problem as follows:

ERRðlÞ ¼
XL
l¼1

max 0;
Xn
j¼1

Xsn
t¼1

XMj

mj¼1

ðrmjmjl
:xjmjtÞ � aml

 ! !
ð14Þ
Table 2 Pseudo-code for decoding a solution to a schedule.

1) Let t = 1, compute RWR from Eq. (12)

2) Determine the list of uncompleted activities which are admissible to be

(Ia). Arrange activities in Ia according their sequence in I

3) If Ia is empty set t = t + 1 and go to step 2, else, select first activity j

4) If activity j was in progress at period t-1, assign the same execution m

5) Delete all impossible and dominated modes of activity j. If the remaini

6) For remaining modes of activity j compute Pjmj
from Eq. (13), assign t

7) Set activity j in assigned mode to be in progress at period t, go to step

8) Stop
For an infeasible generated schedule (ERR(l) > 0) the
local search procedure of Hartmann [16] is applied to trans-
form infeasible solutions into feasible ones. The procedure

chooses an activity randomly and for that activity, a different
mode is chosen. If the ERR(l) remains the same or decreases,
the mode for that activity is changed. This step is repeated

until the mode assignment is feasible (ERR(l) = 0) or until J
consecutive unsuccessful trials to improve the mode assign-
ment have been made. In this paper, J equals to four times

the number of activities in the project. This procedure acts only
on mode assignment and do not change the activity list. Also,
this procedure stops as soon as it reaches to a feasible solution;
i.e., resulting solution is close to the inner border of nonrenew-

able feasibility. So this procedure may not generate a feasible
solution that is very different from the original unfeasible one.

3.4. Starting solution

In the proposed SA an initial solution is created by setting all
activities on the activity list based on the latest finish time

(LFT) which is an efficient priority rule (Kolisch [29]). Then,
the procedure described in Section 4.2 is used to determine exe-
cution modes and execution time of activities.

3.5. Neighborhood generation structure

In order to generate a neighborhood of current solution the

following method is used. Let I ¼ ðjIi ; jI2; . . . ; jInÞ be the current

solution. Neighborhood generation mechanism is applied to

the activity list of the solution. For activity list of I, neighbor-
hood generation mechanism operates as follows: A random

activity jIa, is selected from the activity list with position a. Last

predecessor and first successor’s position of jIa is identified in

the activity list. Subsequently, a random position x between

the last predecessor and first successor’s position of jIa is

selected, and jIa is moved to position x. Finally, all activities

between position of jIa and position x are shifted to the left

or right depending on relative position of jIa and position x.

3.6. Cooling scheme

The cooling scheme is the main factor that needs to be orga-
nized when designing the Simulated Annealing algorithm.
The temperature is initially set at a large value and then grad-

ually decreased under the cooling schedule function until it
reaches the thermal equilibrium. After each move (neighbor-
hood generation), the temperature is reduced according to
in progress at period t with respect to the precedence constraints,

from Ia , Delete j from Ia , If j= n go to step 8

ode to it if possible and go step 7 else, go to step 3

ng mode list of activity j is empty go to step 3

he mode mj to activity for which Pjmj
is most nearly equal to RWR

2
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the cooling schedule suggested by Lundy and Mees [34] as fol-
lows where a is chosen close to zero.

Tkþ1 ¼ Tk

1þ aTk

ð15Þ
3.7. Stopping criterion

In theory the SA procedure should be continued until the final
temperature Tf is zero, but in practice other stopping criteria

are used. In this paper, the procedure is continued until a pre-
determined CPU time is reached.

4. Performance evaluation

4.1. The test problems

A set of 480 problems was generated by the project generator
ProGen/px developed by Drexl et al. [14] in order to validate
the proposed SA algorithm for the P-MRCPSP-MC. To do

this the parameters given in Table 3 are used. The indication
[x,y] means that the value is randomly generated on the inter-
val [x,y]. Renewable resource availability is constant over time.

For each combination of the parameter values, 4 instances
were generated. The resource factor RF reflects the average
portion of resource required per activity. The resource strength

RS reflects the scarceness of the resource. The problem set was
extended by generating project deadline sn in the same way as
described in Section 2.

4.2. Parameters setting

The values of parameters used in Simulated Annealing (SA)
algorithms must be carefully selected since parameter values

may have a significant influence on the performance of the
algorithm. In this paper, the Taguchi experimental design is
used to tune the parameters of SA. CPU-time limit was speci-

fied as a stopping criterion which is selected through the com-
putational experiments. We obtained good results by indexing
Table 3 The parameter settings for the problem set.

Control parameter Value

Number of activities (non-dummy) (n) 20, 30, 40, 60,

90

Number of execution modes 2, 3

Activity work contents [10,20]

Progress of activities (per period) [1,10]

Number of initial and terminal activities 3

Maximal number of predecessors and successors 3

Coefficient of network complexity (CNC) 1.5

Resource factor (RF) 0.5, 1

Renewable and nonrenewable resource strength

(RS)

0.25, 0.5

Number of renewable and nonrenewable resource

types

1, 2, 3

Constant availability of renewable resources n

Total availability of nonrenewable resource 25n

Activity renewable resource (per period) demand Integer[1,10]

Activity nonrenewable resource (per period)

demand

Integer[1,10]
the CPU-time limit to the size of the problem, i.e., use of the
low CPU-time for small problems and high CPU-time for lar-
ger problems. Taguchi [45] divides factors into controllable

and noise factors and offer a set of orthogonal arrays for
designing experiments of quality improvement. Although there
is no direct control of noise factors, the Taguchi method deter-

mines the optimal level of controllable factors and minimizes
the effect of noise. In the proposed SA, the factors that should
be tuned are temperature control parameter a, initial tempera-

ture and number of milliseconds per activity CPU. A set of 27
randomly generated problems with 40 non-dummy activities
are used for parameter tuning. Using MINITAB software ver-
sion 16, based on a L27 orthogonal array design the optimal

levels (in Bold) of the parameters are reported in Table 4.

4.3. Experimental results

The procedure has been programed in Borland C++ 5.02 and
executed on a personal computer with an Intel Core2Dou,
2.5 GHz processor and 3 GB memory. Since we could not find

any algorithm for P-MRCPSP-MC, the proposed SA is com-
pared with the optimal solution obtained by Lingo 11. Table 5
presents the computational results of the proposed algorithm

where it is compared with the optimal solution obtained by
Lingo 11 (or the best obtained solution by SA if Lingo is
not able to solve the problem). Proposed SA executed 10 times
for each problem to obtain more reliable data. The experimen-

tal results demonstrate that control parameter calibration pro-
vides high quality solutions. Following notations are used in
Table 5:

NPO: Number of problems for which Lingo was able to
find optimum solution in 1000 s.

NPM: Number of runs of problems for which SA was able
to find optimum solution.
ACNT-L: Average convergence time for Lingo (in

seconds).
ACNT-SA: Average convergence time for SA (in seconds).
ARD: Average relative deviation percentages.

Relative deviation (RD) percentage for each problem is
obtained by following formula:

RD ¼ Z� Z�

Z� ð16Þ

where Z is the value of objective function obtained by SA and
Z* is the optimal solution obtained by Lingo or the best

obtained solution by SA.
From Table 5 it can be observed that when the number of

activities is less than or equal to 30, all 192 problems can be
solved to optimality by Lingo within the allowed time limit.

Also, Table 5 shows that when number of activities is greater
Table 4 Factors levels and the tuned values for a, T0 and

CPU.

Factor Number of Levels Level 1 Level 2 Level 3

CPU 3 50 70 100

a 3 0.0045 0.0055 0.0065

T0 3 12 17 25



Table 5 Computational results of the SA and Lingo.

#Activities #Modes #Problems SA Lingo

NPM ARD (%) ACNT-SA NPO ACNT-L

20 2 48 480 0.00 0.014 48 3.96

20 3 48 480 0.00 0.023 48 5.62

30 2 48 480 0.00 0.079 48 37.19

30 3 48 392 0.34 0.053 48 68.27

40 2 48 480 0.00 0.069 16 107.30

40 3 48 381 0.39 0.074 10 132.61

60 2 48 354 0.42 0.189 9 265.78

60 3 48 335 0.56 0.274 2 324.43

90 2 48 351 0.50 0.190 0 –

90 3 48 321 0.55 0.329 0 –

Table 6 Computational results of the Lingo with and without mode change.

#Activities #Modes #Problems P-MRCPSP-MC vs. P-MRCPSP

Average improvement (%) Better Equal

20 2 48 4.32 46 2

20 3 48 5.76 48 0

30 2 48 5.11 45 3

30 3 48 6.85 47 1

40 2 16 7.64 15 1

40 3 10 9.46 10 0

60 2 9 8.39 9 0

60 3 2 9.82 2 0
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than 30, while there are many instances that the Lingo is
unable to solve, there is a solution by SA. However, Lingo

obtained optimum solutions for 229 out of 480 problems in
1000 s and SA algorithm solved all problems with low relative
deviation and in a very short time (70 ms per activity). Average

CPU-time for Lingo indicates that when the number of execu-
tion modes is increased the complexity of the problem is
increased. ARD for the algorithm shows that proposed SA

gives robust solutions. Also, NPM for the algorithm indicates
that too many executions of problems reach the optimum
solution.

To observe the statistical comparison of the differences

between the results of the Lingo and SA, a paired t-test is used
for 229 problems to which Lingo obtained optimum solutions
and the corresponding 95% confidence interval is calculated as

[�9.36, 7.82]. Since the lower confidence level is negative and
the upper level is positive, then the null hypothesis cannot be
rejected as the population mean of the differences could be

zero. This implies that the differences between the quality of
solutions obtained by Lingo and SA are not statistically
significant.

In order to evaluate the effect of changeability assumption,

for 229 problems which Lingo obtained optimum solutions,
each problem has been solved without mode changeability
assumption. Table 6 presents the computational results. From

Table 6 it can be observed that mode changeability obviously
leads to an overall average makespan improvement. Table 6
also reveals that mode changeability usually leads to better

solutions. Average Improvement (%) column shows that the
percent loss due to using the P-MRCPSP model instead of
the P-MRCPSP-MC is straightly relevant to number of activ-

ities and execution modes.
5. Summary and conclusions

The preemptive multi-mode resource constrained project

scheduling problem with permitted mode change (P-
MPRCPSP-MC), is investigated in this paper. The objective
of P-MPRCPSP-MC is to schedule the activities in order to

minimize the project makespan subject to the precedence con-
straints and resource constraints. In this problem setting, work
content concept is used instead of duration. This problem has
not been studied ever before. The problem described with an

integer programing model, and then the parameters tuned Sim-
ulated Annealing (SA) proposed to solve it. The performance
of the proposed algorithm on 480 test problems was compared

with the results of the Lingo 11. From the computation results,
one could clearly see that the SA algorithm could efficiently
solve the project scheduling problem. Also, one could find

out that mode changeability obviously leads to an average
makespan improvement. For further research, we recommend
the adapting mode change concept for other extensions of
multi-mode project scheduling problems.
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