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Cuckoo search is one of many nature-inspired algorithms used extensively to solve optimisation prob-
lems in different fields of engineering. It is a very effective in solving global optimisation because it is able
to maintain balance between local and global random walks using switching parameter. The switching
parameter for the original Cuckoo search algorithm is fixed at 25% and not enough studies have been
done to assess the impact of dynamic switching parameter on the performance of Cuckoo search algo-
rithm. This paper’s contribution is the development of three new Cuckoo search algorithms based on
dynamically increasing switching parameters. The three new Cuckoo search algorithms are validated
on ten mathematical test functions and their results compared to those of Cuckoo search algorithms with
constant and dynamically decreasing switching parameters respectively. Finally, the simulations in this
study indicate that, the Cuckoo search algorithm with exponentially increasing switching parameter out-
performed the other Cuckoo search algorithms.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Optimisation plays an important role in solving different engi-
neering problems. The goal of optimisation process is to determine
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either a maximum or a minimum value of the problem being
solved, generally known as the objective function [1]. These prob-
lems include but not limited to systems design, electricity network
operation, electricity generation, wireless communications routing
and minimisation of energy losses during electricity transmission.
Proper validations of optimisation algorithms require assessment
of computational time and convergence rate in addition to the
accuracy to determine the minimum or maximum values [2–8].

Some researchers have innovated optimisation algorithms
based on nature observations, these algorithms are known as
nature-inspired algorithms. In [9] a bat-inspired algorithm was
developed based on echolocation to sense distance between a bat
and its surroundings. Particle swarm optimisation (PSO) was inno-
vated after observing behaviour of fish and birds schooling [10].
Differential evolution (DE) algorithm was created by Storm and
Prince [11] based on population evolution using mutation, cross-
over and selection operations. Ant and bee algorithms were devel-
oped based on the foraging behaviour of ants and bees that use
pheromone as a chemical messenger and the concentration of
pheromone is regarded as indication of quality solutions to the
problem being solved [12]. Simulated annealing (SA) is based on
the characteristics of the metal annealing process [13].

Cuckoo search (CS) algorithm is also a nature-inspired algo-
rithm, based on brood reproductive strategy of cuckoo birds to
increase their population [14]. However, CS is more effective than
other nature-inspired algorithms. In fact, DE, SA and PSO are spe-
cial cases of CS algorithm, hence it is no surprising why CS algo-
rithm outperforms them [14]. In [15] CS algorithm outperformed
DE algorithm in terms of convergence speed to reach optimum
solution. In addition, CS algorithm was reported as being more
computationally efficient than the PSO [16].

Baskan [17] used CS algorithm to minimise traffic congestion by
improving the performance of transportation road networks. The
objective function was defined as a total of travel time and
invested cost of 16 link capacity expansions. Cuckoo search pro-
duced best results when compared to other methods found in
the literature. In [18] CS algorithm was used to maintain fault level
and the voltage fluctuations within acceptable level, thus minimise
real power losses in a smart grid.

The aim of this paper, is to develop and assess the performance
of Cuckoo search algorithms with increasing switching parameter
between local and global random walks as the number of iteration
increases. The first CS algorithm has linearly increasing switching
parameter. The second CS algorithm implements exponentially
increasing switching parameter, and the third CS algorithm uses
increasing power switching parameter.

The rest of this paper is organised as follows: Section 2 dis-
cusses the Cuckoo bird’s breeding behaviour, Lévy flights and CS
algorithm and some of CS algorithm improvements carried out
by other scholars to make CS algorithm even more effective. Three
new CS algorithms are proposed in Section 3. Simulation results
and their interpretations are discussed in Section 4. Finally, the
paper conclusions are presented in Section 5.
Table 1
Local and Global random walk parameters.

Parameter Description

xti and xtk Current positions selected by random permutation.
a Positive step size scaling factor.
xtþ1
i

Next position.

s Step size.
� Entry-wise product of two vectors.
H Heavy-side function.
pa Used to switch between local and global random walks.
e Random number from uniform distribution.
Lðs;kÞ Lévy distribution, used to define the step size of random walk
2. Cuckoo search

2.1. Cuckoo breeding behaviour

Cuckoos are a family of birds with unique reproductive strategy
more aggressive compared to other bird’s species. Some of cuckoo
bird’s species like Ani and Guira lay eggs in communal nests; how-
ever, they may remove others’ eggs to increase the hatching prob-
ability of their own eggs. Other species use brood parasitism
method of laying their eggs in the nests of other birds or host nests
[19].
The parasitic cuckoos are good in sporting nests where eggs
have just been laid and their timing of laying eggs is very precise.
They lay one egg in the host nest which will normally hatch
quicker than the other eggs. When this happens, the foreign cuckoo
would remove the non-hatched eggs from the nest by pushing the
eggs out of the nest. This behaviour is aimed at reducing the prob-
ability of the legitimate eggs from hatching. Furthermore, the for-
eign cuckoo chick can gain access to more food by mimicking the
call of the host chicks. There are times when the host cuckoo dis-
covers that one of the eggs is foreign. In that case the cuckoo either
gets rid of the egg or abandon the nest altogether and moves to
build a new nest somewhere else [19].

2.2. Lévy flights

Lévy flights are randomwalks whose directions are random and
their step lengths are derived from the Lévy distribution. These
Lévy flights are performed by animals and insects and it is charac-

terised by series of straight flights followed by sudden 90degree
turns. Compared to normal random walks, Lévy flights are more
efficient in exploring large–scale search areas. That is mainly due
to Lévy flights variances increases much faster than that of the nor-
mal random walk. Lévy flights can reduce the number of optimisa-
tion algorithms iterations by about 4 orders compared to normal
random walk [14].

2.3. Cuckoo search algorithm

Cuckoo search algorithm is a nature-inspired algorithm devel-
oped based on reproduction of cuckoo birds [14]. While working
with CS algorithms, it is important to associate potential solutions
with cuckoo eggs. Cuckoos normally lay their fertilised eggs in
other cuckoos’ nests with the hope of their off-springs being raised
by proxy parents. There are times when the cuckoos discover that
the eggs in their nests do not belong to them, in those cases the for-
eign eggs are either thrown out of the nests or the whole nests are
abandoned. The CS optimisation algorithm is basically based on the
following three rules:

� Each cuckoo selects a nest randomly and lays one egg in it.
� The best nests with high quality of eggs will be carried over to
the next generation.

� For a fixed number of nests, a host cuckoo can discover a foreign
egg with a probability pa є [0,1]. In this case, the host cuckoo can
either throw the egg away or abandon the nest and build a new
one somewhere else.

The last rule can be approximated by replacing a fraction pa of
the n host nests with new nests (with new random solutions).
The quality or fitness of a solution can simply be proportional to
the value of the objective function. From the implementation point
of view, the representation that is followed is that each egg in a



Objective function  ( ), = ( 1, 2 …… . )

Generate initial population of n host nests (i = 1, 2...n)

While (t < Max Generation) or (stop criteria)

Get a cuckoo (say i) randomly by Lévy distribution;

Evaluate its quality/fitness ;

Choose a nest among n (say j) randomly;

Evaluate its quality/fitness ;

If ( > )

Replace j by the new solution;

End

A fraction of ( ) of worse nests are abandoned and

new ones are built at new locations via Lévy flights;

Keep the best solutions (or nests with quality solutions);

Rank the solutions and find the current best;

End while

Post processing

Fig. 1. Lévy based Cuckoo search pseudo code for a global optimisation.

Table 2
Dynamic Switching parameter definition.

Parameter Description

paCi Switching parameter for the current iteration.
paMax Maximum value of switching parameter.
Ci Current iteration.
Ti Set total number of iteration.
Exp Mathematical exponential function
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nest represents a solution, and each cuckoo can lay only one egg
(thus representing one solution). We can safely make no deference
between an egg, a nest or a cuckoo. The aim is to use the new and
potentially better solution (cuckoo egg) to replace a bad solution in
the nest.

Cuckoo search algorithm is very effective for global optimisa-
tion problems since it maintains a balance between local random
walk and the global random walk. The balance between local and
global random walks is controlled by a switching parameter
pa�½0;1�. The local and global random walks are defined by Eqs.
(1) and (2), respectively. Their parameters are defined in Table 1.

xtþ1
i ¼ xt

i þ as�Hðpa � eÞ � xt
j � xt

k

� �
ð1Þ

xtþ1
i ¼ xt

i þ aLðs;kÞ ð2Þ
The basic steps of the Cuckoo search algorithm based on three

rules can be summarised as pseudo code shown in Fig. 1.

2.4. Some Cuckoo search algorithm improvements

2.4.1. Step size improvements
This section discusses research studies done to improve the effi-

ciency of Cuckoo search, these studies apply different probability
distributions to determine the Cuckoo search random walk step
sizes.

The first study was done by Zheng and Zhou [20], they used
Gauss distribution instead of original Lévy distribution to deter-
mine the random walk step size. When applied to find global min-
imum values of 6 mathematics test functions, the Gauss CS
performed better than the Lévy CS for all cases. Furthermore, the
Gauss and Lévy CS algorithms were used to solve engineering
design optimisation problem. The results further confirmed that
Gauss CS is better than the Lévy CS in terms of higher convergence
rate and the average generation was reduced from 20.15 to 13.95
for Gauss CS.

The rapid growing rate of documentation in the Internet space
posed some challenges especially in the documentation retrievals
process. Zaw and Mon [21], solved this web document clustering
by using a Gauss based CS algorithm. The algorithm was tested
on 3 clusters and 300 documents. The results confirmed that Gauss
CS algorithm outperformed Lévy CS algorithm. More specifically,
the convergence rate of Gauss CS and Lévy CS are 120 and 160 iter-
ations, respectively. The quality of clustering was determined by a
combination of Precision and Recall, called F-measure where high
F-measure indicated high accuracy. The Gauss CS algorithm and
Lévy CS algorithm produced F-measure of 0.626 and 0.619,
respectively.

Ho et al. [22] proposed CS algorithm using Gaussian and Cauchy
distributions and applied them to solve economic emission load
dispatch problem with multiple fuel options. The new versions of
CS algorithms resulted in fewer parameters, fewer equations and
shorter computational processes when compared to Lévy CS. In
addition, the Gauss CS performed better than the Cauchy CS algo-
rithm. The application of Gauss CS and Cauchy CS to short term
hydrothermal scheduling with reservoir volume constraint was
done by Nguyen et al. [23]. In this study, however, Lévy CS pro-
duced the best results with lowest minimum compared to Gauss
and Cauchy CS algorithms. Furthermore, the Gauss CS algorithm
average time was 1.47% more than the Lévy CS algorithm average
time. While the Cauchy CS algorithm average time was 4.83% more
than that of Lévy CS algorithm.

Roy et al. managed to improve CS by using Gamma distribution
instead of original Lévy distribution. When tested on 6 mathemat-
ical test functions, the Gamma based CS proved to be more accu-
rate and efficient than the Lévy CS algorithm [24]. The best
performance was recorded for the Ackley test function for 1000
iterations where Lévy and Gamma CS algorithms produced average
minimum valves of 1.0923exp (�15) and 2.22507exp (�308),
respectively.
2.4.2. Other improvements
In the original cuckoo search algorithm, switching parameter

between local and global random walks is keep constant at 0.25
as Cuckoo search algorithm searches for global minima. There is
limited research studies in CS algorithm efficiency improvement
by dynamically changing the value of switching parameter. In
[25] the value of switching parameter was linearly decreased as
CS algorithm was searching for global minimum value of the test
function. Another CS improvement was achieved by selecting suit-
able nest by using sorting function instead on permutation func-
tion [26].
3. Proposed Cuckoo search

In the previous Section 2, CS efficiency improvements were
accomplished by determining the CS random step size using other
probability distribution functions other than the original Lévy dis-
tribution. In this section three CS algorithms are proposed based on
dynamic increasing switching parameter as the number of CS iter-
ations increases. The new CS algorithms are defined as per Eqs. (3)–
(5) and their parameters are summarised in Table 2.



Table 3
Different Cuckoo search algorithms based on changing switching parameter.

Cuckoo
search

Description

CSCo This Cuckoo search uses constant switching parameter.
CSLD Cuckoo search using linear decreasing switching parameter.
CSLI Cuckoo search using linear increasing switching parameter.
CSEI Cuckoo search using exponential increasing switching

parameter.
CSPI Cuckoo search using power increasing switching parameter.

Table 4
Test functions modality and global minimum values.

Function Modality Global minimum value References

Ackley Multimodal 0 [29]
Griewank Multimodal 0 [27]
Bohachevsky Multimodal 0 [14]
De Jong Unimodal 0 [30]
Matyas Unimodal 0 [14]
Zakharov Unimodal 0 [14]
Goldstein-Prices Multimodal 3 [14]
Rosenbrock Unimodal 0 [31]
Easom Unimodal �1 [14]
Michalewicz Multimodal �9.66 [32]

Table 6
CSLD results.

Test Function Global minimum value

Ackley 9.67E-08
Griewank 1.97E-06
Bohachevsky 0
De Jong 6.44E-18
Matyas 6.75E-46
Zakharov 2.90E-12
Goldstein-Prices 3
Rosenbrock 1.31E-01
Easom �1
Michalewicz �7.39

Table 7
CSLI results.

Test Function Minimum value

Ackley 3.35E-08
Griewank 3.72E-08
Bohachevsky 0
De Jong 7.26E-18
Matyas 1.22E-46
Zakharov 1.17–13
Goldstein-Prices 3
Rosenbrock 1.97E-01
Easom �1
Michalewicz �7.01

Table 8
CSEI results.

Test Function Minimum value

Ackley 5.94E-07
Griewank 2.83E-07
Bohachevsky 0
De Jong 5.83E-17
Matyas 1.04E-33
Zakharov 1.69E-07
Goldstein-Prices 3
Rosenbrock 2.19
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The first proposed CS algorithm uses switching parameter
whose value is linearly increased as the number of CS iterations
increases. The switching parameter is defined by Eq. (3).

paCi ¼ ðpaMaxÞ � ðCi=TiÞ ð3Þ
Eq. (4) corresponds to switching parameter that is exponen-

tially increased as iterations increases.

paCi ¼ ðpaMaxÞ � ExpðCi=TiÞ ð4Þ
Eq. (5) represents switching parameter that is increased in a

power of three as iterations increases.

paCi ¼ ðpaMaxÞ � ðCi=TiÞ3 ð5Þ

Easom �1
Michalewicz �8.87

Table 9
CSPI results.

Test Function Minimum value

Ackley 2.55E-08
Griewank 1.13E-07
Bohachevsky 0
De Jong 5.90E-18
Matyas 6.75E-50
Zakharov 4.00E-16
Goldstein-Prices 3
4. Results and discussions

4.1. Simulation setup

Five Cuckoo search algorithms tabulated in Table 3 were inves-
tigated in MATLAB version 7.10.0.499 (R201a). The test environ-
ment was FUJITSU laptop with the following specifications; RAM
of 3.0 GB, CPU is Intel Celeron 900@2.2 Ghz and 32 bit windows
7 home Basic operating system.

The number of nests, n was set to 25 for all CS algorithms since
any number between 15 and 40 is sufficient for most optimisation
Table 5
CSCo results.

Test Function Global minimum value

Ackley 1.10E-07
Griewank 1.47E-06
Bohachevsky 0
De Jong 1.31E-17
Matyas 6.60E-42
Zakharov 9.79E-10
Goldstein-Prices 3
Rosenbrock 8.12E-01
Easom �1
Michalewicz �7.82

Rosenbrock 5.58E-01
Easom �1
Michalewicz �6.93

Table 10
95% Confidence Interval (CI).

CS CI CI Length

CSCo �2.48495 < m < 1.48495 3.9699
CSLD �2.401378 < m < 1.349378 3.750756
CSLI �2.279265 < m < 1.316665 3.59593
CSEI �2.695006 < m < 1.81006 4.505066
CSPI �2.2280448 < m < 1.3540448 3.5820896
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problems [27]. The step size scaling factor was set to 0.01 while the
total of iterations was 1000 and the value of paMax was 0.25.

Due to the stochastic nature of CS algorithms, the start points
for the algorithms are not the same and the paths followed are also
different. To address these differences, each CS algorithm was run
twenty times for each of the ten test functions and the results were
saved in Microsoft excel file. Using Microsoft Excel, statistical anal-
ysis was performed to determine mean, standard deviation. Then
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Table 11
CS convergence.

CS Version Plot Number of leading

CSLI 3, 6 and 10 3
CSEI 4, 9 and 11 3
CSCo 5 and 8 2
CSPI 7 1
CSLD 2 1
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95% confidence interval (CI) for each CS algorithm was determined
and the CS algorithm with larger CI is deemed as more efficient
than the one with smaller CI interval.
4.2. Characteristics of test functions

The benchmark test functions used to validate the performance
of each CS are tabulated in Table 4. Test functions modality is
defined as the number of peaks encountered in the function land-
scape. These peaks can negatively impact the optimisation process
when the optimisation algorithm gets trapped in the peaks [28].
Some test functions are unimodal while others are multimodal.
4.3. Simulations results and discussions

The obtained global minimum values for each of CS algorithm
tested are tabulated in Tables 5–9. The corresponding 95% confi-
dence intervals were calculated and tabulated in Table 10.

From Table 10, the CSEI has the longest confidence interval
(4.505066) as per CI Length column. That means that CSEI is more
effective in finding global minimum values of the sample to test
functions used. The second most effective algorithm is CSCo with
confidence interval of 3.9699, the original CS with constant switch-
ing parameter. The least effective algorithm is CSLI with lowest
confidence interval of 3.59593.

Cuckoo search convergence results depicted in Figs. 2–11. Some
iteration axis have been resized to reveal details.

The convergence results for Figs. 2–11 are summarised in
Table 10. This is more of an indication as to how different CS algo-
rithms converge to the global minimal point for each test function
used (see Table 11).
5. Conclusions

This paper introduced nature-inspired optimisation algorithms
and highlighted that CS algorithm is a more general and efficient
algorithm when compared to PSO, DE and SA. Then some studies
carried out to improve the CS efficiency were reviewed. It was
found that most CS efficiency improvements were based on apply-
ing different probability distribution functions (Cauchy, Gauss and
Gamma) to determine the random walk step sizes. The contribu-
tion of this paper is the investigation of dynamically increasing
switching parameter in CS algorithms performance. Three CS algo-
rithms using linear, exponential and power increasing switching
parameters were developed and tested against the constant and
linearly decreasing CS algorithms. The CS using exponential
increasing (CSEI) switching parameter was found to be more effi-
cient than other CS algorithms.
Acknowledgements

This work is supported by the Institute for Intelligent Systems
at the University of Johannesburg in South Africa. We are very
thankful of Prof Xin-She Yang for providing demo CS algorithm
in the book Nature-Inspired Optimisation Algorithms. We would
like to thank also anonymous reviewers for their valuable
comments.
References

[1] S. Noureddine, An optimization approach for the satisfiability problem, Appl.
Comput. Inform. 11 (1) (2015) 47–59.

[2] E. Belic, N. Lukac, K. Dezelak, B. Zalik, G. Stumberger, GPU-based online
optimization of low voltage distribution network operation, IEEE Trans. Smart
Grid 8 (3) (2017) 1460–1468.

[3] A. Koppel, B.M. Sadler, A. Ribeiro, Proximity without consensus in online
multiagent optimization, IEEE Trans. Signal Process. 65 (12) (2017) 3062–
3077.

[4] A. Platonov, Information theory and optimization of analog feedback
communication systems, in: 2016 IEEE International Black Sea Conference on
Communicatios and Networking, 2016.

[5] M. Tang, L. Gao, H. Pang, J. Huang, L. Sun, Optimizations and economics of
crowdsourced mobile streaming, Fog Comput. Netw. (2017) 21–27.

[6] S. Das, J.R. Doppa, P.P. Pande, K. Chakrabarty, Design-space exploration and
optimization of an energy-efficient and reliable 3-D small-world network-on-
chip, IEEE Trans. Comp.-Aided Des. Integr. Circ. Syst. 36 (5) (2017) 719–732.

[7] Z. Yan, J. Fan, J. Wang, A collective neurodynamic approach to constrained
global optimization, IEEE Trans. Neural Learn. Syst. 28 (5) (2017) 1206–1215.

http://refhub.elsevier.com/S2210-8327(17)30167-9/h0005
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0005
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0010
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0010
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0010
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0015
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0015
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0015
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0025
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0025
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0030
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0030
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0030
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0035
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0035


M. Mareli, B. Twala / Applied Computing and Informatics 14 (2018) 107–115 115
[8] A.R. Parkinson, R.J. Balling, J.D. Hedengren, Optimization Methods for
Engineering Design: Applications and Theory, fifth ed., Brigham Young
University, 2013.

[9] X.S. Yang, A new metaheuristic bat-inspired algorithm, in: J.R. Gonzalez, D.A.
Pelta, C. Cruz, G. Terrazas, N. Krasnogor (Eds.), Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), vol. 284, Springer, Berlin, 2010, pp.
65–74.

[10] D.P. Rini, S.M. Shamsuddin, S.S. Yuhaniz, Particle swarm optimization:
technique, system and challanges, Int. J. Comput. Appl. 14 (1) (2011) 19–27.

[11] R. Storm, K. Prince, Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (4) (1997)
341–359.

[12] M. Kefayat, A.L. Ara, S.N. Niaki, A hybrid of ant colony optimization and
artificial bee colony algorithm for probabilistic optimial placement and sizing
of distributed energy resources, Energy Convers. Manage. 92 (2015) 149–161.

[13] S. Kirkpatric, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 670–680.

[14] X.-S. Yang, Nature-Inspired Optimization Algorithms, first ed., Elsevier,
London, 2014.

[15] M.I. Solihin, M.F. Zanil, Performance comparison of Cuckoo search and
differential evolution algorithm for constrained optimization, in: Intrnational
Enginering Research and Innovation Symposium (IRIS), vol. 160(1), 2016, pp.
1–7.

[16] M.A. Adnan, M.A. Razzaque, A comparative study of particle swarm
optimization and Cuckoo search techniques through problem – specific
distance function, in: 2013 International Conference on Information and
Communication Technology (ICoICT), Bandung, Indonesia, 2013.

[17] O. Baskan, Determining optimal link capacity expansions in road networks
using Cuckoo search algorithm with Levy flights, J. Appl. Math. 2013 (2013) 1–
11.

[18] W. Buaklee, K. Hongesombut, Optimal DG allocation in a smart distribution
grid using Cuckoo search algorithm, ECTI Trans. Electr. Eng. Electron. Commun.
11 (2) (2013) 16–22.

[19] X.S. Yang, S. Deb, Engeering optimization by Cuckoo search, Int. J. Math.
Modell. Neumeric Opt. 1 (4) (2010) 330–343.

[20] H. Zheng, Y. Zhou, A novel cuckoo search algorithm based on Gauss
distribution, J. Comput. Inf. Syst. 8 (10) (2012) 4193–4200.
[21] M.M. Zaw, E.E. Mon, Web document clustring using Gauss distribution based
cuckoo search clustring algorithm, Int. J. Sci. Eng. Technol. Res. 3 (13) (2014)
2945–2949.

[22] S.D. Ho, V.S. Vo, T.M. Le, T.T. Nguyen, Economic emission load dispatch with
multiple fuel optings using cuckoo search algorithm with Gaussian and
Cauchy distributions, Int. J. Energy, Inf. Commun. 5 (5) (2014) 39–54.

[23] T.T. Nguyen, D.N. Vo, B.H. Dinh, Cuckoo search algorithm using different
distributions for short term hydrothermal scheduling with reservoir volume
constraint, Int. J. Electr. Eng. Inf. 8 (1) (2016) 76–92.

[24] S. Roy, A. Mallick, S.S. Chowdhury, S. Roy, A novel approach on cuckoo search
algorithm using Gamma distribution,” in: Second International Conference on
Electronics and Communication Systems, 2015.

[25] S.I. Tusiy, N. Shawkat, M.A. Ahmed, B. Panday, N. Sakib, Comparative analysis
on improved Cuckoo search algorithm and artificial Bee colony algorithm on
continouos optimization problems, Int. J. Adv. Res. Artif. Intell. 4 (2) (2015) 14–
19.

[26] M. Tuba, M. Subotic, N. Stanarevic, Modified Cucko search algorithm for
unconstrained optimization problems,” in: Proceedings of the European
Computing Conference, 2011.

[27] X.-S. Yang, Test Problems in Optimization, in Engineering Optimization: An
Introduction with Metaheuristic Applications, John Wiley & Sons, 2010.

[28] M. Jamil, X.S. Yang, A literature survey of banchmark functions for global
optimization problems, Int. J. Math. Model. Numer. Opt. 4 (2) (2013) 150–194.

[29] J.M. Dieterich, B. Hartke, Empirical review of standard benchmark functions
using evolutionary glabal optimization, Appl. Math. 3 (10) (2012) 1552–1564.

[30] N.A. Al-Madi, A.T. Khader, De Jong’s sphere model test for a Social-Based
Genetic Algorithm (SBGA), Int. J. Comp. Sci. Netw. Security (IJCSNS) 8 (3)
(2008) 179–185.

[31] N. Chase, M. Rademacher, E. Goodman, R. Averill and R. Siodhu, 2016. [Online].
Available: http://www.yumpu.com/en/document/view/46603781/a-
benchmark-study-of-optimization-search-algorithms-red-cedar-/7. (Accessed
04 November 2016).

[32] M. Molga, C. Smutnicki, ‘‘Robert Marks,” Robert Marks, 2005. [Online].
Available: http://www.robertmarks.orgClassespapers. (Accessed 29 April
2017).

http://refhub.elsevier.com/S2210-8327(17)30167-9/h0040
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0040
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0040
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0040
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0045
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0050
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0050
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0055
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0055
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0055
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0060
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0060
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0060
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0065
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0065
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0070
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0070
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0070
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0085
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0085
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0085
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0090
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0090
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0090
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0095
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0095
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0100
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0100
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0105
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0105
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0105
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0110
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0110
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0110
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0115
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0115
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0115
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0125
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0125
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0125
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0125
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0135
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0135
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0135
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0140
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0140
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0145
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0145
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0150
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0150
http://refhub.elsevier.com/S2210-8327(17)30167-9/h0150
http://www.yumpu.com/en/document/view/46603781/a-benchmark-study-of-optimization-search-algorithms-red-cedar-/7
http://www.yumpu.com/en/document/view/46603781/a-benchmark-study-of-optimization-search-algorithms-red-cedar-/7
http://www.robertmarks.orgClassespapers

	An adaptive Cuckoo search algorithm for optimisation
	1 Introduction
	2 Cuckoo search
	2.1 Cuckoo breeding behaviour
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