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1. Introduction crete chaos behaviors of the fractionalized map. Some others
In the past decade, the discrete dynamic behavior and its appli-
cations has been given a lot of attention in various applied areas
owing to its potential applications in secure communication field
[1,2]. On the basis of the time scale theory [3], Atici et al. has pro-
posed the discrete fractional calculus (DFC) [4–6] to describe the
dynamics of the discrete time, some results have been reported.
The discrete memory effect of the system indicates that the
momentum xðnÞ depends on the past information
xð0Þ; . . . ; xðn� 1Þ. There are many methods designed for the frac-
tional difference models to prove that the DFC is an efficient tool
to discretize the chaotic systems with a memory effect [10–12].
Wu and Baleanu [13–15] focus on applications of the discrete frac-
tional calculus on an arbitrary time scale and utilized the theories
of delta difference equations to reveal the discrete chaos behavior.

In order to understand the background of the discrete dynamics
behaviors, our primary objective is to introduce applications of the
discrete fractional calculus on an arbitrary time scale [4–6] and uti-
lize the theories of delta difference equations to expose the dis-
refer to the applications of fractional fourier transform and frac-
tional differential equations [7–9].

Public key cryptography (asymmetric cryptography) is a famous
techniques for many years [16]. Strong public-key cryptography is
often considered to be too computationally expensive for small
devices if not accelerated by cryptographic hardware. Elliptic
curves are popular settings for building efficient public key cryp-
tosystems. Elliptic curve cryptography (ECC) is an popular effective
public key cryptography techniques. ECC has many advantages,
such as small storage capacity, faster computations and reduction
of the power consumption [17]. Menezes Vanstone Elliptic Curve
Cryptosystem (MVECC) was one of the famous techniques that
used ECC and gave security for the data [18]. We take use of this
technique in our paper and make it more adapted to image encryp-
tion and security.

There are many encryption methods proposed recently, such as
[19–24]. Some others make use of fractional differential equation,
like fractional logistic maps [25], fractional-order chaos systems
[26] and fractional form of hyperchaotic system[27]. In [28],
fractional-order difference has been proposed to apply in the
image encryption based on fractional chaotic time series, while
the new encryption method which utilizes two dimensional chao-
tic map based on fractional-order difference has seldom been
proposed.

Our main aim is to introduce a new two dimensional discrete
chaotic map on the basis of fractional-order difference and apply
the map to information security. The paper is organized as follows:
In Section 2, the definitions and the properties of the DFC are

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2017.07.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aci.2017.07.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liuzeyu_90@163.com
mailto:xiatc@t.shu.edu.cn
http://dx.doi.org/10.1016/j.aci.2017.07.002
http://www.sciencedirect.com/science/journal/22108327
http://www.sciencedirect.com


178 Z. Liu, T. Xia / Applied Computing and Informatics 14 (2018) 177–185
introduced. In Section 3, we provide the introduction of elliptic
curve in finite field. The working mechanism of the Menezes-
Vanstone Elliptic Curve Cryptosystem is described in Section 4.
Then, in the next section, we present fractional 2D-TFCDM and
standard map on time scales from the discrete integral expression.
The bifurcation diagrams, the largest Lyapunov exponent plot and
the phase portraits of the map are also displayed while the differ-
ence orders and the initial points are changed. In Section 6, we dis-
play the applications of fractional 2D-TFCDM with the Menezes-
Vanstone Elliptic Curve Cryptosystem in the image encryption. In
Section 7, the results of applications in part VI are analyzed. At last,
some conclusions are given.

2. Preliminaries

First, let us briefly revisit the definitions of the fractional sum
and difference. Considering the DFC, the function f ðtÞ is changed
as a sequence f ðnÞ. Let Na denotes the isolated time scale and
Na ¼ fa; aþ 1; aþ 2; . . .g (a 2 R fixed). The difference operator D
is defined as Df ðnÞ ¼ f ðnþ 1Þ � f ðnÞ.

Definition 2.1 (See [4]). Let u : NaR and 0 < m be given. Then the
fractional sum of m order is defined by
D�m
a uðtÞ :¼ 1

CðmÞ
Xt�m
s¼a

ðt � s� 1Þm�1uðsÞ; t 2 Naþm; ð1Þ

where a is the starting point, tðmÞ is the falling function defined as

tðmÞ ¼ Cðt þ 1Þ
Cðt þ 1� mÞ : ð2Þ
Definition 2.2 (See [29]). For 0 < m; m R N and uðtÞ defined on Na,
the Caputo-like delta difference is defined by

CDm
auðtÞ :¼ D�ðm�mÞ

a DmuðtÞ

¼ 1
Cðm� mÞ

Xt�ðm�mÞ
s¼a

ðt � s� 1Þðm�m�1ÞDmuðsÞ;

t 2 Naþm�m; m ¼ ½m� þ 1; ð3Þ
where m is the difference order.
Theorem 2.3 (See [30]). For the delta fractional difference equation

CDm
auðtÞ ¼ f ðt þ m� 1;uðt þ m� 1ÞÞ; DkuðaÞ ¼ uk;

m ¼ ½m� þ 1; k ¼ 0; . . . ;m� 1 ð4Þ
the equivalent discrete integral equation can be obtained as

xðnÞ ¼ u0ðtÞ þ 1
CðmÞ

Xt�m
s¼aþm�m

ðt � s� 1Þðm�1Þ

� f ðsþ m� 1;uðsþ m� 1ÞÞ; t 2 Naþm; ð5Þ

where the initial iteration reads

u0ðtÞ ¼
Xm�1

k¼0

ðt � aÞðkÞ
k!

DkuðaÞ: ð6Þ

The complex difference equation with long-term memory is obtained.
Set the difference order m = 1, it can reduce to the classical one, but
the integer one doesn’t hold the discrete memory. The domain is chan-
ged from Naþm�m to Naþm in Eqs. (6)–(8), and the function uðtÞ is pre-
served to define on the isolated time scale Na in the fractional sums.
Obviously, the discrete fractional calculus is a crucial tool in the initial-
ization of the fractional difference equations.
3. Introduction to elliptic curve

Definition 3.1. An elliptic curve E defined over a prime field Fp is

E : y2 � x3 þ axþ bðmod pÞ ð7Þ
where a; b 2 Fp;p– 2;3 for which 4a3 þ 27b2 – 0. The elliptic curve
group EðFpÞ denotes the set of points ðx; yÞ that satisfy the elliptic
curve Eq. (10) together with a special point O at infinity [31].
3.1. Elliptic curve operations

Assume P ¼ ðx1; y1Þ;Q ¼ ðx2; y2Þ 2 EðP – QÞ; E is defined in Eq.
(10). Then R ¼ ðx3; y3Þ ¼ P þ Q 2 E is defined as follows [16,31]:

P þ Q ¼ R ¼ ðx3; y3Þ; P – � Q ;

O; x1 ¼ x2ðmod pÞ; y1 þ y2 ¼ 0ðmod pÞ:

�
ð8Þ

where

x3 � ðk2 � 2x1Þðmod pÞ;
y3 � ðkðx1 � x3Þ � y1Þðmod pÞ: ð9Þ

and

k ¼
ðy2 � y1Þ
ðx2 � x1Þ ; P – Q ;

3x21 þ a
2y1

; P ¼ Q :

8>>><
>>>: ð10Þ

If k 2 Z and P ¼ ðx; yÞ 2 E. The scalar multiplication can be
defined by

kP ¼ P þ P þ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k�times

ð11Þ

Let P ¼ ðx; yÞ, then the negative of the point P is Q ¼ �P ¼ ðx;�yÞ
where P þ Q ¼ O [16,31].

Definition 3.2. The order of an elliptic curve is defined as the
number of points lies on the curve and denoted by #E [31].
Definition 3.3. Let P be an element of the elliptic curve group
EðFpÞ, then P is a generator point if ordðPÞ ¼ #E [31] (ordðPÞ is the
smallest positive integer n such that nP ¼ O).
4. Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC)

When user A wants to send a message x ¼ ðx1; x2Þ 2 Z�
p � Z�

p to
user B, they need firstly to reach an agreement in the elliptic curve
EðFpÞ and the base point a. Every party should choose a private key
randomly, d for user A and k for user B (05d; k < ordðaÞ), and com-
putes their public key b ¼ d � a and y0 ¼ k � a. User A computes the
secret key ðc1 � c2Þ by formula (15)

ðc1 � c2Þ ¼ d � y0 ¼ d � k � a ¼ k � b ð12Þ
Then the ciphered message is calculated by

y1 ¼ x1 � c1mod p

y2 ¼ x2 � c2mod p
ð13Þ

And the ciphertext fy0; ðy1; y2Þg is sent to user B. When user Bwants
to decrypt the ciphertext ðy1; y2Þ, he needs firstly to compute the
secret key by k � b ¼ k � d � a ¼ ðc1; c2Þ, then computes the following

x1 ¼ y1 � c�1
1 mod p

x2 ¼ y2 � c�1
2 mod p

ð14Þ

to get the original message x ¼ ðx1; x2Þ [18].
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Any adversary who knows b and y0 only without the private
keys d and k is very difficult to solve the ECDLP and get the mes-
sage x. Moreover, if #E have only one big prime divisor, solving
the ECDLP is more difficult [31]. So, MVECC is an efficient and
secure technique.
Fig. 2. The bifurcation diagram of the fractional first 2D-TFCDM of the variable a for
m = 0.8.

Fig. 3. The largest lyapunov exponent of the first 2D-TFCDM of the variable a.
5. Fractional 2D-TFCDM

From the fractional calculus, we notice the application of the
DFC to fractional generalizations of the discrete maps [13]. In
recent paper [32], Li introduce the following 1st 2D-TFCDM

xnþ1 ¼ acosðynÞ; a ¼ 1:4;
ynþ1 ¼ bxnsinðynÞ; b ¼ 4:

�
ð15Þ

In this paper, considering the fractional generalization of xðnÞ, we
modify the 1st 2D-TFCDM as a Caputo-like delta difference form

CDm
axðtÞ ¼ acosðyðt þ mÞÞ � xðt þ mÞ; 0 < m < 1; t 2 Naþ1�m;

ynþ1 ¼ bxnsinðynÞ; b ¼ 4:

(

ð16Þ

From Theorem 2.5, we can get the following equivalent discrete
numerical formula with 0 < m < 1

xðnÞ ¼ xð0Þ þ 1
CðmÞ

Xn
j¼1

Cðn�jþmÞ
Cðn�jþ1Þ ½a cosðyðj� 1ÞÞ � xðj� 1Þ�;

yðnÞ ¼ bxðn� 1Þ sinðyðn� 1ÞÞ; b ¼ 4:

8><
>: ð17Þ

Let m ¼ 1; xð0Þ ¼ 0:19; yð0Þ ¼ 0:06;n ¼ 200, we plot the bifurca-
tion diagram of Fig. 1, where the step size of the a is set as 0.005.
Fig. 2 is the bifurcation diagram while the difference order is
m ¼ 0:8. We can observe that the chaotic zones are clearly depen-
dent on the changing difference order m. In Fig. 3, for m ¼ 1, we
get the largest lyapunov exponent using the Jacobian matrix algo-
rithm. In somewhere, the largest lyapunov exponent LE1 is posi-
tive. It is corresponds to chaotic areas in Fig. 1.

We can also have the numerical formula for the variable b
ða ¼ 1:4Þ:

yðnÞ ¼ yð0Þ þ 1
CðmÞ

Xn
j¼1

Cðn� jþ mÞ
Cðn� jþ 1Þ ½bxðj� 1Þsinðyðj� 1ÞÞ � yðj� 1Þ�;

xðnÞ ¼ a cosðyðn� 1ÞÞ; a ¼ 1:4:

8><
>:

ð18Þ
Choose 401 different initial values and plot the yðnÞ versus the

xðnÞ in one figure. In Fig. 4, the phase portraits of the integer map is
Fig. 1. The bifurcation diagram of the first 2D-TFCDM of the variable a for m = 1.
derived. Then the cases with the fractional difference order m = 0.8
and m = 0.6 are considered in Figs. 5 and 6, respectively.

6. Applications

The fractionalized standard map can also be applied in informa-
tion security fields. We make use of formula (17) as a algorithm
and set the initial values x0; y0, the order m and the coefficients
a; b of chaotic system as keys for R, G, B components, respectively,
where R, G and B component represent the red, green and blue
color matrix of an plain image.

6.1. Generation of new keys based on elliptic curve in a finite field

Let elliptic curve E defined over F100927 with parameters
a ¼ 1; b ¼ 6 in (7). Since #E ¼ 100;829 is a prime, According to
[31], it is a safe elliptic curve. set x ¼ ðx1; x2Þ ¼ ð95;364;5113Þ;
a ¼ ð2;4Þ; d ¼ 91;338, then da ¼ ð54;157;1425Þ ¼ b, the secret
key k ¼ 63;236; ðc1; c2Þ ¼ kb ¼ ð84;416;20;597Þ ¼ dc; c ¼ ka ¼
ð20;607;18;966Þ. m ¼ 9:536405113

m001 ¼ c1 � m01mod p ¼ 84;416 � 95;364mod100;927 ¼ 7123mod100;927;
m002 ¼ c2 � m02mod p ¼ 20;597 � 5113mod100;927 ¼ 45;600mod100;927:

ð19Þ

Then, the ciphertext is ðð20;369;92;263Þ;7123;45;600Þ;
m0 ¼ m001

10;000 þ
m002
109

¼ 0:7123456 as the key of next step encryption.



Fig. 6. The phase portraits of the first 2D-TFCDM for a = 1.4, b = 4 and m = 0.6.

Fig. 5. The phase portraits of the first 2D-TFCDM for a = 1.4, b = 4 and m = 0.8.

Fig. 4. The phase portraits of the first 2D-TFCDM for a = 1.4, b = 4 and m = 1.
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x0 ¼ 4:0301; y0 ¼ 2:7955; k1 ¼ 6:8541; k2 ¼ 8:0623, set x01 ¼
x0 � 104; y01 ¼ y0 � 104; k01 ¼ k1 � 104; k02 ¼ k2 � 104, then
x001 ¼ c1 � x01mod100;927 ¼ 84;416 � 40;301mod100;927 ¼ 1900mod1
y001 ¼ c2 � y01mod100;927 ¼ 20;597 � 27;955mod100;927 ¼ 600mod10

k001 ¼ c1 � k01mod100;927 ¼ 84;416 � 68;541mod100;927 ¼ 14;000mo

k002 ¼ c2 � k02mod100;927 ¼ 20;597 � 80;623mod100;927 ¼ 40;000mo
set x00 ¼ x001
104

¼ 0:19; y00 ¼ y001
104

¼ 0:06; k01 ¼ k001
104

¼ 1:4; k02 ¼ k002
104

¼ 4, as
the keys of next step encryption.
00;927;
0;927;

d100;927;

d100;927:

ð20Þ
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6.2. Permutation procedure based on fractional 2D-TFCDM

The procedure of permutation can be divided into 4 steps:

1. Set xð1Þ equal to initial value x0, do iteration test for MN � 1
times by utilizing formula (17), here M and N are length and
width of the original picture V, respectively. Generate the one
dimensional real number chaotic sequences xðiÞ; i ¼
1;2; . . . ;MN.

2. Reorder xðkÞ by the bubble sort, then get x0ðkÞ and record the
change of the subscript of xðkÞ as zðkÞ.

3. Change M � N original picture V into 1�MN sequence vðkÞ,
here k ¼ Nðm� 1Þ þ n; ðm ¼ 1;2 . . . ;M;n ¼ 1;2 . . . ;NÞ, reorder
vðkÞ similarly to xðkÞ according to zðkÞ and get v 0ðkÞ.

4. Change v 0ðkÞ into m� n figure as V 0, where V 0 is the encrypted
figure we needed.

Reverse this process, we can get the original figure.

6.3. Encryption method based on fractional 2D-TFCDM

The procedure of encryption can be divided into 4 steps:

1. Generate chaotic sequence xðiÞ to permutate the original image
V into V 0 as described in Section 6.2. Change M � N original pic-
ture V 0 into 1�MN sequence uðiÞ, here i ¼ Nðm� 1Þ þ n; ðm ¼
1;2 . . . ;M;n ¼ 1;2 . . . ;NÞ. Another M � N image is used as a
key or cover image (K-image). Also change the K-image into
1�MN sequence wðiÞ.

2. Set i ¼ 0.
3. Retain only the integer part of xðiÞ � 108 as x1ðiÞ, do modulus

operation mod between x1ðiÞ and 256, then we get
x2

kði
ðiÞ ¼ modðx1ðiÞ;256Þ: ð21Þ

4. Consider the following formula:
u0ðiÞ ¼ uðiÞ �modðwðiÞ þ x2ðiÞ;256Þ: ð22Þ
where � is the xor operation, and u0ðiÞ is the encrypted pixel
value.
The inverse form of (22) is

uðiÞ ¼ u0ðiÞ �modðwðiÞ þ x2ðiÞ;256Þ: ð23Þ
5. Compute the number k according to the following formula:
Fig. 8. The S Box.
Þ ¼ 1þmodðu0ðiÞ;256Þ: ð24Þ
Fig. 7. The proposed en
then, iterate the formula (20) for kðiÞ times, to get the new
xðiþ 1Þ, return to step 3, until i ¼ MN.

6. Change u0ðiÞ into M � N figure as V 00, here V 00 is the finally
encrypted figure we needed.

The decryption procedure can be divided into the parts as follows:

1. Do the same step as in encryption unless the formula (22) is
changed to use formula (23).

2. Reverse the procedure in Section 6.2 to remove the permutation
effect.

Fig. 7 display the process of encryption of proposed algorithm,
the working principle of S box is illustrated in Fig. 8.

The original, encryption and decryption of a image are shown in
Fig. 9(a), (b) and (c) as Lena, the figure size is 512� 512. Another 4
cases are displayed in supplementary material.

In the process of encryption and decryption of Section 6.3, the
keys are the same. Moreover, owing to the coupling structure of
the algorithm, the chaotic sequences depend on each other. These
features strengthen the encryption algorithm security, and make
the encryption algorithm more robust.
cryption method.



Fig. 9. Lena.
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7. Analysis of results in applications

7.1. Key sensitivity

In this algorithm, the order, the initial values and the
coefficients of chaotic system can be utilized as the secret keys,
implying that there are five secret keys ðx0; y0; m; k1; k2Þ. If the
precision of x0 is 2� 10�17, the precision of y0; m; k1 and k2 are
4� 10�18;6� 10�17;1:2� 10�16 and 5� 10�16, respectively, then
the secret key’s space is ð2� 10�17 � 4� 10�18 � 6� 10�17

�1:2� 10�16 � 5� 10�16Þ�1 	 3:47� 1081 	 0:92� 2271. If the size
of original image is 512� 512, the key space of K-image is
512� 512� 28 ¼ 226. The total key space is 0:92� 2297.

7.2. Statistics analysis

The statistical property is significant to an encrypted image and
a good encryption method should be robust against any statistical
attacks.
7.2.1. Correlation of the plain and cipher images
In an ordinary image, the correlation coefficient of adjacent pix-

els is always high for the reason that the adjacent pixels values are
close. A good encryption algorithm should make the correlation of
Table 1
The results of correlation coefficients of image.

Image Original image

Horizontal Vertical

Lena
R 0.9387 0.9556
G 0.9325 0.9469
B 0.9217 0.9387

Fig. 10. Analysis of the c
adjacent pixels nearly equal to zero. The correlation coefficients are
calculated in vertical, horizontal and diagonal directions by Eq.
(25), then the results are displayed in Table 1. The correlation in
the original figure and the encrypted figure of Lena along the x
directions are shown in Fig. 10.

rxy ¼ jcovðx; yÞjffiffiffiffiffiffiffiffiffiffi
DðxÞp ffiffiffiffiffiffiffiffiffiffi

DðyÞp ð25Þ
covðx; yÞ ¼ 1
N

XN
i¼1

ðxi � EðxÞÞðyi � EðyÞÞ ð26Þ

EðxÞ ¼ 1
N

XN
i¼1

xi ð27Þ

DðxÞ ¼ 1
N

XN
i¼1

ðxi � EðxÞÞÞ2 ð28Þ

It is evident to see that the correlation of original image has a
linear relationship, while that of the encrypted image is stochastic.
Table 1 indicates that the correlation coefficients of encrypted
image are nearly 0, compared with the correlation coefficients of
original image are all bigger than 0.9, some one is nearly 1. It can
be concluded that the encryption process makes the pixels of the
image almost independent with each other.
Encrypted image

Diagonal Horizontal Vertical Diagonal

0.9168 0.0083 0.0063 �0.0037
0.9139 �0.0015 �0.0074 0.0053
0.8873 �0.0019 0.0013 �0.0014

orrelations of Lena.



Table 3
The results of information entropy.

Information entropy

Table 2
Comparison of correlation coefficients of image.

Algorithm Image Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Proposed Lena 0.9792 0.9888 0.9653 �0.0028 0.0081 0.0091
Lake 0.9657 0.9630 0.9401 0.0071 �0.0080 0.0060

[19] Lena 0.9503 0.9755 0.9275 �0.0226 0.0041 0.0368
[20] Lena 0.927970 0.926331 0.839072 �0.010889 �0.018110 �0.006104
[23] Lena 0.946 0.973 0.921 �0.0055 �0.0075 0.0026

Lake 0.958 0.958 0.929 �0.0025 0.00977 0.0127
[24] Lena 0.9569 0.9236 0.9019 0.0042 �0.0043 0.0163

Lake 0.9377 0.9403 0.9100 0.0231 0.0140 0.0097
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In Table 2, it can be observed from the statistical data that the
proposed scheme are better than the encryption method proposed
in other references.
Image Original image Encrypted image

Lena
R 7.2531 7.9993
G 7.5952 7.9993
B 6.9686 7.9992

Table 4
Comparison of information entropy.

Algorithm Image Original Encrypted

Proposed Lena 7.2531 7.9993
[19] Lena 7.2072 7.9973
[22] Lena Undefined 7.9972
7.2.2. Histogram
The distribution of colors inside the image is described by the

histogram. An ordinary image has the regular histogram and it
can provide the attackers with effective information. Consequently,
the colors inside the encrypted image should be uniformly dis-
tributed with a good image encryption method. Fig. 11 shows
the histogram of Airplane in original, encrypted and decrypted 3
stages.

Obviously, the histogram of encrypted image is nearly uni-
formly distributed compared with the histogram of original image,
so that the encryption method can resist statistical attack.
[25] Lena Undefined 7.987918
[26] Lena 7.447144 7.988847
7.2.3. Information entropy
Entropy is a measure of unpredictability of information content.

The information entropy is the most important characteristic of
randomness and it is used to indicate the degree of uncertainty
of a system. It is defined as:

HðmÞ ¼ 1
N

X2n�1

i¼0

pðmiÞlog2
1

pðmiÞ
ð29Þ

where pðmiÞ expresses the probability of symbol m. For the pixels,
values of the image are between 0 
 255. According to Eq. (29),
the ideal information entropy is 8 bits for an ideally random image.
Therefore, the closer to 8 bits the information entropy, the better
the encryption scheme. The information entropy of the encrypted
images are shown in Table 3.

Table 4 gives the comparison of information entropy. In con-
trast with other algorithms, the result implies that the encrypted
images of proposed algorithm are closer to the random images.
All the above is enough to prove that the proposed encryption
method has the ability to resist statistical attack.
Fig. 11. The histog
7.3. Sensitivity analysis

There are two different criteria for measuring the range
between two images: Number of pixels change rate (NPCR) and
unified average changing intensity (UACI), as defined by Eqs. (31)
and (32).

Dði; jÞ ¼ 0; T1ði; jÞ ¼ T2ði; jÞ
1; T1ði; jÞ – T2ði; jÞ:

�
ð30Þ

NPCR ¼
PW

i¼1

PH
j¼1Dði; jÞ

W � H
� 100% ð31Þ

UACI ¼
PW

i¼1

PH
j¼1jT1ði; jÞ � T2ði; jÞj
255W � H

� 100% ð32Þ

where W and H represent the width and the height of the image,
respectively. T1 and T2 represent two analyzed images.
ram of Lena.
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7.3.1. Key sensitivity
We encrypt the image by using the keys x0 ¼ 0:19; y0 ¼

0:06; m ¼ 0:7123456; k1 ¼ 1:4 and k2 ¼ 4. Fig. 12(a) represents the
decrypted image by the correct keys. Fig. 12(b) represents the
decrypted image under 2� 10�17 adding in x0 and other secret keys
unchanged. The decrypted image is quite different from the origi-
nal image. Similarly, the secret keys y0; m; k1; k2 are added
4� 10�18;6� 10�17;1:2� 10�16 and 5� 10�16 and shown in
Fig. 12(c)–(f), respectively. The NPCR and UACI between Fig. 12
(a) and (b)–(f) are calculated in Table 6, separately.
Table 5
Comparison of key spaces.

Algorithm Proposed [20] [22] [24]

Key spaces 2:33� 1089ð0:92� 2297Þ 2128 	 2273 2276

Table 6
NPCR and UACI between Fig. 12(a) and (b)–(f).

NPCR and UACI

Image NPCR(%) UACI(%)

12(b) 96.10 11.19
12(c) 99.49 40.23
12(d) 99.57 40.17
12(e) 99.60 40.12
12(f) 99.57 40.28

Table 7
NPCR and UACI between cipher-images with slightly different plain-images.

NPCR and UAC

Image NPCR (1-round%) UACI (1-r

Fig. 9(a) (30,30) 98.24 33.0
Fig. 9(a) (50,50) 94.09 31.6
Fig. 9(a) (80,80) 94.86 31.9

Fig. 9(a) (100,100) 98.02 32.9
Compared with other algorithms, the encryption method has
the ability to resist exhaustive attack. Table 5 present the result
of comparison of key spaces. In Table 6, It can be observed that
all NPCR are higher than 95% as well as near to the ideal value
99.61%, most of UACI are near to the ideal value 33.46%. We cannot
recognize the object inside Fig. 12(b)–(f), therefore the encryption
method is sensitive to the secret keys.
7.3.2. Plaintext sensitivity
A good encryption method should ensure that the two

encrypted images are completely different even if the two original
figures have only one pixel difference. Because of that the attackers
I of Lena

ound%) NPCR (2-round%) UACI (2-round%)

4 99.61 33.46
2 99.60 33.50
3 99.62 33.48
3 99.60 33.44

Table 8
Comparison of NPCR and UACI of image.

Algorithm Image NPCR (%) UACI (%)

Proposed Lena 99.61 33.47
Lake 99.61 33.47

[19] Lena 99.61 33.53
[20] Lena 99.6429 33.3935
[21] Lena 99.6304 33.5989
[23] Lena 99.932 39.520

Lake 99.85 40.303

[25] Lena 75.62561 34.84288
[26] Lena 99.6091 33.5038
[27] Lena 99.6330 34.1319
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can obtain informations by encrypting two original images of one
pixel difference and comparing the two encrypted images.

The results are shown in Table 7, Fig. 9(a) ðx; yÞ indicates that
the pixel value of coordinate ðx; yÞ is changed in Fig. 9(a) as the
original image and then encrypted by the proposed encryption
method, the NPCR and UACI are calculated with the formulas
(31) and (32).

From Table 7, the NPCR and UACI of encrypted images with 2
round encryption are all near to the ideal value 99:61% and
33:46%, respectively. As a consequence, the encryption method
has good property in plaintext sensitivity.

Table 8 compares the proposed encryption method with other
methods by computing the NPCR and UACI. It is obvious that our
method is more superior than other method.

7.4. Resistance to known-plaintext and chosen-plaintext attacks

In Section 6.3, the last round encrypted image pixel can deter-
mine the iteration times of the next round. In Eq. (22), x2ðiÞ, pro-
duced from the fractional 2D-TFCDM, dependent on the iteration
times kði� 1Þ, determines the iteration times kðiÞ. Therefore, the
corresponding keystream is not the same when different plaintext
are encrypted. By encrypting some special images, the attacker
cannot obtain useful information since the resultant information
is related to those chosen-images. In consequence, the attacks pro-
posed in Refs. [33–35] become ineffective on this new scheme. The
proposed scheme can primely resist the known-plaintext and the
chosen-plaintext attacks.

8. Conclusion

Fractional 2D-TFCDM is obtained from the 2D-TFCDM. Then,
new chaotic dynamics behaviors is found with the map. Further-
more, the map can be applied in encryption and decryption of
image transmission in information security. The results show that
the DFC is an efficient tool for fractional generations of the discrete
maps. We believe that the fractional calculus methods and frac-
tional discrete formula will give us a better description of discrete
fractional dynamics in future. From our research, we discovered
that no paper has been reported on information security of frac-
tional difference.
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