
Applied Computing and Informatics (2018) 14, 127–133
Saudi Computer Society, King Saud University

Applied Computing and Informatics

(http://computer.org.sa)
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Hierarchical simultaneous vertical fragmentation

and allocation using modified Bond Energy

Algorithm in distributed databases
* Corresponding author. Tel.: +98 2188713160.

E-mail addresses: s.rahimi@atu.ac.ir (H. Rahimi), parand@atu.ac.ir

(F.-A. Parand), d.riahi@atu.ac.ir (D. Riahi).
q Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.aci.2015.03.001
2210-8327 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Hossein Rahimi, Fereshteh-Azadi Parand *, Davoud Riahi
Math and Computer Science Department, Allameh Tabataba’i University, Ahmad Ghasir St., Beheshti Av., Tehran, Iran
Received 31 December 2014; revised 2 March 2015; accepted 3 March 2015
Available online 23 April 2015
KEYWORDS

Bond Energy Algorithm;

Distributed database system;

Data allocation and frag-

mentation;

Clustering
Abstract Designing an efficient Distributed Database System (DDBS) is considered as one of the

most challenging problems because of multiple interdependent factors which are affecting its perfor-

mance. Allocation and fragmentation are two processes which their efficiency and correctness influ-

ence the performance of DDBS. Therefore, efficient data fragmentation and allocation of fragments

across the network sites are considered as an important research area in distributed database design.

This paper presents an approach which simultaneously fragments data vertically and allocates the

fragments to appropriate sites across the network. Bond Energy Algorithm (BEA) is applied with a

better affinity measure that improves the generated clusters of attributes. The algorithm simultane-

ously generates clusters of attributes, calculates the cost of allocating each cluster to each site and

allocates each cluster to the most appropriate site. Results show more efficient clustering and allo-

cation which gives better performance.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Distributed databases reduce cost and increase performance

and availability, but the design of Distribute Database Man-
agement Systems (DDBMS) is complicated. To make this pro-
cess feasible it is divided into two steps: Fragmentation and
Allocation. Fragmentation tries to split data into fragments,
which should be allocated to sites over the network in the allo-

cation stage. The process of fragmentation falls into two cate-
gories: Vertical Fragmentation and Horizontal
Fragmentation. Vertical Fragmentation (VF) is partitioning

relation R into disjoint sets of smaller relations while Horizon-
tal Fragmentation (HF) is partitioning relation R into disjoint
tuples. The allocation problem involves finding the optimal
distribution of fragmentation to set F on site set S. There are

four data allocation strategies applicable in a distributed rela-
tional database: centralized, fragmentation (partition), full
replication, and partial replication (selective) [10]. When data

is allocated, it might either be replicated or maintained as a
single copy. So, fragment allocation can be either non-
redundant or redundant. Under a non-redundant allocation

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2015.03.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.rahimi@atu.ac.ir
mailto:parand@atu.ac.ir
mailto:d.riahi@atu.ac.ir
http://dx.doi.org/10.1016/j.aci.2015.03.001
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2015.03.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1 Model notations.

AFF Attribute Affinity matrix

QA Query Access matrix

CA Clustered Affinity matrix

DM Distance Matrix

AU Attribute Usage matrix

TSC Total Storage Cost

V Volume of data allocation measured in characters

SCij Storage cost of fragment i in site j

affðAi;AjÞ The affinity of attributes Ai and Aj

freqlðqkÞ Access frequency of a query k on site l

acclðqkÞ Access per execution of query k on site l

Sij Similarity measure between Ai and Aj

MQA Minimized Query Access

SC Storage Cost

IIC Iteration Input Cluster(is fed to next iteration)

LC Leaf Cluster

128 H. Rahimi et al.
scheme, exactly one copy of each fragment will exist across all
the sites, while under redundant allocation schema, more than
one copy of each fragment will exist across all the sites [12]. In

this work, we combine fragmentation with partial replication
of some clusters of attributes.

Allocation and fragmentation are interdependent and effi-

cient data fragment allocation requires considering allocation
constraints in the process of fragmentation, but in the most
previous works these two steps are separated.

There are two general approaches toward solving the parti-
tioning problem. One is to find the efficient solution by consid-
ering some of the constraints. In Hoffer [13] the storage
capacity and retrieval cost constraints are the role factors.

Each of these factors is weighted based on their amount of
effect. The objective was to minimize the value of overall cost.
The weights are calculated using linear programming approach

so that the sum of the weights is equal to 1.

minðc1 � storage costþ c2 � retrieval costÞ ð1Þ

Another good example of first set of approaches is proposed in
Schkolnick [21]. The method tries to cluster records within an

Information Management System (IMS) type hierarchical
structure. The generated hierarchical tree is linear in the num-
ber of nodes. Heuristic grouping is used by the method pre-
sented in Hammer and Niamir [3]. It starts by assigning

attributes to different positions. All potential types of grouping
are considered and the one which represents the greatest
improvement over the current grouping candidate becomes

the new candidate. Grouping and regrouping are iterated until
no further improvement is likely. The main issue is the direc-
tion of movement, which has a dominant effect on the effi-

ciency of the algorithm. Another heuristic approach is
presented in Ma et al. [5] uses a cost model and targets at glob-
ally minimizing these costs. The major objective is to fragment

based on efficiency of the most frequent queries. In Hoffer and
Severance [14] clusters of similar attributes are generated using
the affinity measure between pairs of attributes in conjunction
with Bond Energy Algorithm (BEA). One of the major weak-

nesses is that the number of attributes in clusters are not decid-
able, and since it only considers pairwise attribute similarity, it
is improper for larger numbers of attributes. Vertical fragmen-

tation could also be done in more than one phase. This method
is presented in Navathe et al. [23]. A two-phased approach sep-
arates fragments into overlapping and non-overlapping frag-

ments. The first phase is based on empirical objective
function and then it performs cost optimization by incorporat-
ing the knowledge of a specific application environment in the
second phase. The method presented in Latiful and Shahidul

[6] is a methodology for the design of distributed object data-
bases that includes an analysis phase to indicate the most ade-
quate fragmentation technique, a horizontal class

fragmentation algorithm, and a vertical class fragmentation
algorithm. The analysis phase is responsible for driving the
choice between the horizontal and the vertical partitioning

techniques, or even the combination of both, in order to assist
distribution designers in the fragmentation phase of object
databases. Baiao et al. [8] presents a three phased methodology

for the design of distributed database that contains analysis
phase, horizontal fragmentation algorithm phase, and vertical
class fragmentation phase. The method illustrated in Abuelya-
man [7] experimentally shows that moving an attribute that is
loosely coupled in a partition improves hit ratio of attribute in

partition.
A method for synchronized horizontal fragmentation and

allocation is proposed in Abdalla [4]. This method introduces

a heuristic cost model to find optimal fragment and allocation.
Fragmentation is based on a set of simple predicates, and opti-
mal allocation is the one which minimizes the cost function.
An adaptable vertical partitioning method is presented in Jin

and Myoung [15]. This article reviews Binary Vertical Parti-
tioning (BVP) [18] and compares its results with the presented
adaptable vertical partitioning (AVP) which uses a hierarchical

method of fragmentation, creates a tree of partitions and
finally selects the best result. A heuristic method is imple-
mented in Adrian Runceanu [1]. It applies the approach of for-

mulating an objective function, named Partition Evaluator [2],
before developing (heuristic) algorithms for the partitioning
problem. This approach enables studying the properties of
algorithms with respect to an agreed upon objective function,

and also to compare different algorithms for goodness using
the same criteria for distributed database vertical fragmenta-
tion. A new heuristic algorithm which is based on a decompo-

sition technique is developed in Mahmoud and Roirdon [16]
that greatly reduces the computational complexity of the prob-
lem of file allocation and capacity assignment in a fixed topol-

ogy distributed network. Although using a partial replication
scheme increases database efficiency, this benefit comes with
some costs. This cost, which could potentially be high, consists

of total storage cost, cost of local processing, and communica-
tion cost [19]. Some fragmentation methods along with query
optimization , distribution optimization, and join optimization
are covered in Haroun Rababaah, Hakimzadeh [9]. Here we

take into account communication and local processing costs
in combination with query access and calculate total storage
cost separately.

Fragmentation and allocation are usually performed sepa-
rately while these two steps of Distributed DBMS design are
closely related to each other. The reason for separating the dis-

tribution design into two steps is to better deal with the com-
plexity of the problem [17].

Here we present a method for VF, which applies BEA hier-
archically with a modified similarity measure and simultane-

ously allocates the fragments to the most appropriate site.
The model notations are listed in Table 1.

Hierarchical simultaneous VF and allocation in distributed databases 129
The rest of this article is organized as follows. Methods and
different influencing factors are discussed in Section 2. The
algorithm is described in details in Section 3. Section 4 draws

comparative results of applying both the classic BEA and the
presented method on one database. Finally, conclusion and
future work are discussed in Section 5.

2. Methods

Allocation and fragmentation are interdependent problems

where solving them simultaneously is difficult but results in bet-
ter performance of applications. To the best of our knowledge,
BEA is not applied to simultaneous fragmentation and alloca-

tion. Since in vertical partitioning attributes which are usually
accessed together are placed in one fragment, defining a precise
measure of togetherness is critical. BEA uses affinity of attri-

butes to create clusters of attributes, which are the most similar.
It starts with Attribute Usage (AU) and Query Access (QA)
matrices generates Attribute Affinity matrix (AFF) and finally
creates Clustered Affinity matrix (CA) by positioning and re-

positioning columns and rows of attributes. The affinity mea-
sure is too simple. The proposed affinitymeasure in BEA is basi-
cally based on simultaneous access of attribute Ai and attribute

Aj of relation RðA1;A2; . . . ;AnÞ by query qk for every query in

Q ¼ ðq1; q2; . . . ; qqÞ. In other words, Two attributes are consid-

ered similar if they are accessed by the same query. This is indi-
cated in AU by Aij ¼ 1 and Aik ¼ 1 simultaneously for

attributes j and k accessed by query i Considering the affinity
of attributesAi andAj as affðAi;AjÞ, access frequency of a query
k on site l as freqlðqkÞ, and access per execution of query k on site
l as acclðqkÞ, the equation for affinity presented is as below [14].

affðAi;AjÞ ¼
X

kjuseðqk ;AiÞ¼1^useðqk;AjÞ¼1

X

8Sl
freqlðqkÞ � acclðqkÞ ð2Þ

After generating AFF using the described affinity measure,
clusters of attributes are created using the split function. The

SplitðAFFÞ takes as input the AFF matrix, permutes its rows
and columns, and generates a CA matrix. The permutation
is done in such a way to maximize the following global

measure.

Xn

i¼1

Xn

j¼1
affij½affi;j�1 þ affi;jþ1 þ affi�1;j þ affiþ1;j� ð3Þ

where

affi;0 ¼ aff0;j ¼ affi;nþ1 ¼ affnþ1;j ¼ 0 ð4Þ
The last set of conditions takes care of the cases where an

attribute is being placed in CA to the left of the leftmost attri-
bute or to the right of the rightmost attribute during column

permutations, and prior to the topmost row and following
the last row during row permutations. In the process of split-
ting the bond between two attributes i and j and the net con-

tribution to the global affinity measure of placing the
attribute k between i and j play key roles. The bond between
attributes i and j is defined as

bondðAi;AjÞ ¼
Xn

k¼1
affðAk;AiÞaffðAkAjÞ ð5Þ

The net contribution of placing the attribute k between i
and j is defined as
contðAi;Ak;AjÞ ¼ 2bondðAi;AkÞ þ 2bondðAk;AjÞ
�2bondðAi;AjÞ

ð6Þ

The split function generates the Clustered Affinity Matrix in
two steps:

Algorithm 1. Simultaneous VF and allocation
Require:

Communication Cost Matrix

Attribute Usage Matrix (AU)

Query Access Matrix (QA)

Number of attributes

Output:

Clustered Attribute Matrices as a Tree

Allocated clusters to sites

1: Optimizing Communication Cost Matrix and generating DM

2: Generating Minimized Query Access matrix (MQA)

MQA ¼P
i

P
kDM �QA

3: IIC AU

4: while Number of attributes in IIC > 3 do

Run Modified BEA Algorithm (IIC,MQA)

Add LC and IIC to Tree

5: end while

6: Calculate Storage CostPm
i¼1Xij � SCij � V

7: Allocate each cluster to site with minimum cost
� Initialization: Place and fix one of the columns of AFF

matrix arbitrarily into CA matrix.
� Iteration: Pick each of the remaining n� i columns where i
is the number of columns already placed in CA and try to
place them in the remaining iþ 1 positions in the CA.

Choose the placement that makes the greatest contribution
to the global affinity measure described above. Continue
this until no more columns remain to be placed.

Since the clustering result of BEA is the split border
between two sets of attributes, BEA does not work efficiently

for larger databases. Therefore, we need a better approach to
identify more partitioning candidates. As we infer similarity
of two attributes when they have concurrent occurrence in a
query, concurrent absence of them for the same query could

also be considered as a weighted measure of similarity. Fur-
thermore, single occurrence of each attribute could be consid-
ered as a weighted measure of dissimilarity. Consider n00; n11,
and n01 and n10 be the number of simultaneous absence of attri-
butes, presence of attributes, and single occurrence of each
attribute for one query in the Affinity Usage (AU) matrix,

respectively. Similarity measure Sij which is described in Xu

and Wunsch [20] uses n11 and n00 in the nominator of the frac-

tion to show similarity and n10 and n01 in the denominator to
indicate dissimilarity.

Sij ¼ n11 þ n00
n11 þ n00 þ w1ðn01 þ n10Þ ð7Þ

This measure computes the match between two objects
directly. Unmatched pairs are weighted based on their contri-

bution to the similarity. If one considers simple matching sim-
ilarity w1 equals to one. In constrained-means clustering [24]
the coefficient is considered equal to 2. Gower [11] suggests
w1 to be equal to 1=2. It can be concluded, choosing an appro-

130 H. Rahimi et al.
priate value for the weight w1 depends the approach and also

on the structure and definition of the database itself.
Each one of queries can be accessed different times on each

site. The frequency of query access on each site is described in

the Query Access (QA) matrix. The entry QAij indicates the

number of times in which query i is accessed in site j. On the
other hand communication costs between sites of a distributed
database play a key role in the performance of a distributed

DB. Distance Matrix (DM) is the asymmetric square matrix
that reflects these costs which can be minimized using the
method described in Bentley and Dittman [25]. Multiplying
DM in QA generates a new matrix in which the influence of

communication costs between sites and query access per site
is considered simultaneously and since DM is minimized dis-
tance matrix then the resulted matrix will be the Minimized

Query Access (MQA) matrix.

MQA ¼
X

i

X

k

DM �QA ð8Þ

The Total Storage Cost (TSC) of each attribute in each site

depends on storage cost for one item and the total volume of
that site.

TSC ¼
Xm

i¼1
Xij � SCij � V ð9Þ

where

Xij ¼ 1 if fragment i is allocated to site j ð10Þ
The attribute with minimum storage cost for each site will

be allocated to that site. Eq. 9 is also applied to the remaining
attributes and sites with minimum cost value allocate the
attributes.

3. Algorithm

The algorithm (Algorithm 1) works with communication cost

between network sites, QA matrix, AU matrix, and attributes
count as inputs and generates the tree of clustered attributes
along with allocating them to sites.

The Algorithm works hierarchically and gradually creates a
cluster tree. In each iteration it generates two sets of attributes.
The larger set of more similar attributes which we call it Iter-

ation Input Cluster (IIC) is used as input for the next iteration.
The other smaller set is called Leaf Cluster (LC) since it is sep-
arated and placed as leaf node in the tree. In the first step DM
is generated by optimizing Communication Cost matrix using

Whitten et al. [25]. Then MQA is generated by multiplying QA
in DM matrix. The next step is to initialize IIC by AU matrix.
The algorithm continues with iterating on the modified

BEA algorithm, which will be explained later, until attribute
count in IIC is equal to 3. Since in each iteration the most sim-
ilar attributes group in one IIC, we assume after this number

of iterations, the resulted IIC contains the most similar attri-
butes of all therefore there is no need to go further. Next,
the storage cost for each attribute on each site is calculated

and finally based on these costs, each cluster of attributes is
allocated to the most appropriate site. The last IIC is allocated
to all sites.

The modified BEA algorithm is actually modifies the affin-

ity measure in the original BEA. As it is mentioned before
BEA is simply using the concurrent occurrence of attributes
to create AFF matrix. In the modified BEA presented here,
other possibilities are considered. With Sij borrowed from

Xu and Wunsch [20], taking co-absence into account, and cal-
culating n00; n01, and n10 the new affinity measure Sij is

Sij ¼ n11 þ w1n00
n11 þ w1n00 þ coef

ð11Þ

The weights of w1 and w2 are between 0 and 1 since n00; n01,
and n10 have less positive effect on similarity in comparison
to n11. Furthermore, it can be inferred that w1 should be
greater than w2. The approaches to calculate the value of each

weight are dependent on the structure and definition of the
table and their relations in the database. Gower and Legendre
measure [11] and Rogers and Tanimoto measure [22] are some
methods to calculate values of weights. Each of the weights is

calculated considering the structure and definition of the data-
base and queries. The structure of the database gives us some
information regarding to the relations of different attributes.

Therefore, by considering the queries, initial values of the
weights are inferred and after generating the elementary
results, the weights are slightly changed in such a way that

results reflect the true expected relations between attributes
with consideration to the structure of the database.

As we mentioned earlier simultaneous absence of attributes

can give us some sense of similarity of

Algorithm 2. Modified BEA algorithm

Require:

Attribute Query Matrix

Query Access Matrix

Result:

AFF Matrix

1: S MQA

2: for each attribute number i do

3: QSi sumðSijÞ
4: end for

5: for each attribute number i do

6: for each attribute number j do

7: initialize n00; n11; n01; n10 by 0

8: if ði ¼¼ jÞ then
9: AFFij sumðAjÞ �QS

10: else

11: for each query number k do

12: calculating n00; n11; n01; n10
13: if ðn01 ¼¼ 0 and n10 > 0Þ or ðn10 ¼¼ 0 and n01 > 0Þ
then

14: coef ð�1Þðn01 þ n10Þ � w1

15: else

16: coef ðjn01 � n10jÞ � w1

17: end if

18: Sij ðn11 þ w2 � n00Þ=ðn11 þ w2 � n00Þ þ coef

19: end for

20: end if

21: AFFij Si �QSi

22: end for

23: end for

24: call Function SplitðAFFÞ

the attributes. On the other hand, since this effect is marginal
in comparison to the effect of simultaneous presence, n00 has
some weighted effect on the affinity measure and therefore
w1 have a value between 0 and 1.

Fig. 1 Query Access matrix (QA) for seven sites.

Fig. 2 Communcation Cost Distance Matrix (DM) for seven

sites.

Fig. 3 Attribute Usage matrix (AU) for 8 queries.

Hierarchical simultaneous VF and allocation in distributed databases 131
The variable coef in the denominator is reflecting the effect
of n01 and n10. There are four different possibilities. When

n01 > 0 and n10 ¼ 0, it indicates that for two attributes of Ai

and Aj, all queries which access Ai do not access Aj. This

means that these attributes have some level of similarity. As
a result the Sij should get greater values so the weighted mea-

sure in the denominator, w2, should be negative. This is shown
in Lines 12 and 13 of Algorithm 2. The same is for the case in

which n10 > 0 and n01 ¼ 0. Other possibility is that both n01
and n10 are greater than 0. This condition means Ai and Aj

do not have the same behavior upon different queries which
are accessing them. This has negative effect on the similarity,
so the weighted measure in the denominator, w2, should be

positive. This is shown in Line 15. After calculating the AFF
matrix, the algorithm calls the split function which we
described in Section 2 and creates clusters of attribute.
4. Case study

In order to estimate the amount of improvement and correct-
ness of our algorithm, we applied both the classic BEA and our

algorithm on database of Terminal Management System
(TMS). TMS is a server which is connected to stores’ (or super-
markets’) terminal with a unique serial number. Depending on

the terminal it can download or update terminal information
or operating system. Since stores are located in different
places, TMS can obviously work better with distributed data-
base. Each terminal has a unique serial number, one task is

defined for each terminal group. These tasks contain one or
more files which can be associated to a group of terminals.
Each Terminal, group of terminal and task has one table. A

simple schema of tables and their relations is illustrated in
Fig. 4. After reviewing the transactions, eight most frequent
transactions and considering the relations of tables in TMS,

eight attributes (illustrated in Table 2) for distributing in seven
sites were selected.

The AU, QA, and DM matrices are as shown in Figs. 1–3.

The query access input for both algorithms were MQA. The
weights w1 and w2 in our algorithm were set to 0.7 and 0.3,
respectively. The resulted clustering tree for each algorithm is
shown in Fig. 5. As it can be observed, both algorithms behave

the same until the fourth iteration. The classic BEA separates
attribute number 2 and puts attributes number 3, 4, 1, and 7 in
a cluster. On the other hand the modified algorithm separates

attribute number 4 and clusters attributes number 2, 1, 3, and
7. Considering the conditions applied in our algorithm, the
coef and Sij are calculated and illustrated in Table 3. It is obvi-

ous that A4 is less similar to other attributes than A2 therefore
it has been separated correctly. We can conclude that the new

algorithm considers better measure and clusters the attributes
much better.

5. Conclusion

Distributed databases reduce cost of update and retrieval of
information and increase performance and availability, but

the design of DDBMS is more complicated than designing cen-
tralized database. One of the major challenges which greatly
affects DDBS performance is fragmentation and allocation

of fragments to sites. Allocation and fragmentation can logi-
cally be merged and done simultaneously. In this paper we
proposed a method that merges vertical fragmentation and
allocation. To achieve this goal we applied Bond Energy Algo-

rithm with a modified affinity measure in a hierarchical process
and simultaneously calculated the cost of data allocation for
each site and assigned fragment to the appropriate site. The

use of the hierarchical process resulted in clustering sets of
more similar attributes and better data fragmentation. On
the other hand, by performing simultaneous cost calculation

we took interdependency of data fragmentation and allocation
into account.

An extension to the work could cover optimizing the cost

function for data allocation considering the retrieval and
update frequency for each attribute and applying better
approach to calculate weights for similarity measure.

Fig. 4 Table relations in TMS.

Table 2 List of attributes and their related tables.

No. List of attributes Related table

1 model� name terminal� category

2 term� fid terminal

3 hw� version terminal

4 pinpad� version terminal

5 flash� size terminal

6 app� name download� time

7 interval� date download� time

8 start� time download� plan

Fig. 5 Hierarchical attribute clustering tree.

Table 3 The Similarity of attributes.

Attributes n11 n00 n10 n01 coef Sij

A2 and A1 4 0 2 2 0 1

A2 and A3 4 0 2 2 0 1

A2 and A7 4 0 2 2 0 1

A4 and A1 4 1 2 1 0.35 0.93

A4 and A3 4 1 2 1 0.35 0.93

A4 and A7 4 1 2 1 0.35 0.93

A1 and A3 4 0 2 2 0 1

A1 and A7 6 2 0 0 0 1

A3 and A7 4 0 2 2 0 1

132 H. Rahimi et al.

Hierarchical simultaneous VF and allocation in distributed databases 133
References

[1] Adrian Runceanu, Fragmentation in distributed databases,

Innovations and Advanced Techniques in Systems, Computing

Sciences and Software Engineering, 2008, pp. 57–62.

[2] G.S. Chinchwadkar, A. Goh, An overview of vertical

partitioning in object oriented databases, Comput. J. 42 (1)

(1999).

[3] M. Hammer, B. Niamir, A heuristic approach to attribute

partitioning, in: Proceedings ACM SZGMOD International

Conference on Management of Data, Boston, Mass., ACM,

New York, 1979.

[4] Hassan I. Abdalla, A synchronized design technique for efficient

data distribution, Comput. Human Behav. 30 (2014) 427–435.

[5] H. Ma, K.D. Schewe, M. Kirchberg, A heuristic approach to

vertical fragmentation incorporating query information, in:

Proc. 7th International Baltic Conference on Databases and

Information Systems (DB and IS), 2006, pp. 69–76.

[6] Latiful A.S.M. Hoque, Shahidul Islam Khan, A New Technique

for Database Fragmentation in Distributed Systems,

International Journal of Computer Applications 5(9):2024,

August 2010. Published By Foundation of Computer Science.

[7] E.S. Abuelyaman, An optimized scheme for vertical partitioning

of a distributed database, Int. J. Comput. Sci. Netw. Sec. 8 (1)

(2008).

[8] F. Baiao, M. Mattoso, G. Zaverucha, A distribution design

methodology for object DBMS, Distrib. Parallel Databases 16

(1) (2004) 4590.

[9] Haroun Rababaah, H. Hakimzadeh, Distributed Databases:

Fundamentals and research, Advanced Database B561, Spring

2005.

[10] N. Iacob, Data replication in distributed environments, Annals

of the Constantin Brncusi, University of Trgu Jiu, Economy

Series, Issue 4, 2010.

[11] J. Gower, A general coefficient of similarity and some of its

properties, Biometrics 27 (1971) 857872.
[12] J.O. Hauglid, N.H. Ryeng, DYFRAM: dynamic fragmentation

and replica management in distributed database systems,

Distrib. Parallel Databases 28 (2010) 157185.

[13] J.A. Hoffer, An integer programming formulation of computer

database design problems, Znf. Sci. 11 (July 1976) 29–48.

[14] J.A. Hoffer, D.G. Severance, The use of cluster analysis in

physical database design, in: Proceedings 1st International

Conference onVery LargeDatabases, Framingham,Mass., 1975.

[15] Jin Hyun Son, Myoung Ho Kim, An adaptable vertical

partitioning method in distributed systems, J. Syst. Softw. 73

(2004) 551–561.

[16] S. Mahmoud, J.S. Roirdon, Optimal allocation of resources in

distributed information networks, ACM Trans. Database Syst.

1 (1976) 1.

[17] M.T. Ozsu, P. Valduriez, Principles of Distributed Database

Systems, Alan Apt, New Jersey, 1999.

[18] S. Navathe, S. Ceri, G. Wiederhold, J. Dou, Vertical

partitioning algorithms for database design, ACM Trans.

Database Syst. 9 (4) (1984) 680710.

[19] S.K. Rahimi, F.S. Haug, Distributed Database Management

Systems, A John Wiley and Sons Inc. Publication, IEEE

Computer Society, 2010.

[20] Rui Xu, Donald Wunsch II, Survey of clustering algorithms,

IEEE Trans. Neural Netw. 16 (3) (2005).

[21] M. Schkolnick, A clustering algorithm for hierarchical structure,

ACM Trans. Database Syst. 2 (1977) 1.

[22] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction

to Data Mining, 2005, ISBN: 0-321-32136-7.

[23] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, Jinglie Dou,

Vertical partitioning algorithms for database design, ACM

Trans. Database Syst. 9 (4) (December 1984).

[24] K. Wagstaff, S. Rogers, S. Schroedl, Constrained -means

clustering with background knowledge, in: Proc. 8th Int. Conf.

Machine Learning, 2001, pp. 577–584.

[25] J. Whitten, L. Bentley, K. Dittman, Systems Analysis and

Design Methods, sixth ed., McGraw-Hill, 2004.

http://refhub.elsevier.com/S2210-8327(15)00005-8/h0010
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0010
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0010
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0015
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0015
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0015
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0015
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0015
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0020
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0020
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0035
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0035
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0035
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0040
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0040
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0040
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0055
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0055
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0060
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0060
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0060
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0065
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0065
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0075
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0075
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0075
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0080
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0080
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0080
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0090
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0090
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0090
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0095
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0095
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0095
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0100
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0100
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0100
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0100
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0110
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0110
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0115
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0115
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0125
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0125
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0125
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0135
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0135
http://refhub.elsevier.com/S2210-8327(15)00005-8/h0135

	Hierarchical simultaneous vertical fragmentation and allocation using modified Bond Energy Algorithm in distributed databases
	1 Introduction
	2 Methods
	3 Algorithm
	4 Case study
	5 Conclusion
	References

