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The precision and accuracy of certain simulations in nanoscience, fluid dynamics and biotechnology in
the analyses of boundary conditions problems with real experimental results are in general related to
the characteristics of numerical approach used and subsequently to the morphological structure of lat-
tices used along these calculations. The more the lattice used approximates to the original boundary
or initial condition problem more precise the simulation would be. This work shows a simple algorithm
that can be used to build huge lattices containing the main geometrical structures statistically similar to
experimental 2D image data of ceramic grains by using some freeware software.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the area of nano-science, biotechnology, fluid dynamics and
other scientific research branches the investigation of the main
characteristics or nature of the interactions on each system can
be developed by means of computational simulations [1–7]. In
general, these approaches involve the solution of partial differen-
tial equations or ordinary differential equations and a big amount
of these set of equations are boundary value problems.

Particulary, the matching between solution of the Dirichlet and
Neumann boundary condition problems that emerge on these
analyses and the real system are strictly correlated to the right
choose of the lattice used to solve the differential equations [8–11].

Besides the numerical solution of differential equations there
are the stochastic models [12], classical molecular dynamics simu-
lations [13] and the cellular automata modeling [14,15] that are
strongly dependent on the lattice used to role the simulations.
Hence, the determination of geometrical structures of these lat-
tices are very important for the correct accuracy of the models
investigated.
One of the branches in applied physics research that requires
the accurate description of the lattice is the analyses of
superconductors junctions [16,17]. At these theoretical studies,
part of them developed using percolation theory [18–20], the
similarity between real grains morphology and the simulated ones
are suitable important. For example, the area of the grains and the
linear size of a junction can determine the behaviour of the current
density associated with the Cooper pairs [21–23].

The present article develops an algorithm based on freeware
software capable of characterize qualitatively the distributions of
area and linear length of a grain edge per site of a scanned elec-
tronic microscopy image of a ceramic material containing the
grains edges. Consequently, with all the statistical information
obtained a modified Voroni diagram algorithm is proposed to
reconstruct the original grain image with great similarity and
determine exactly the connectivity of the grains.
2. Thecnique and results

The algorithm here proposed here is similiar to the one devel-
oped by Tuan et al. [24], and is useful to deal with any kind of
source image, otherwise, a scanned electronic microscopy image
have a gray scale pattern of colors. Due to the quality of the original
image used at the example here shown, modifications on the color
contrast was performed in order to clarify the grain edges and the
resulting image is represented in Fig. 1. This previous processing of
the image can be performed using any manipulation software, here
GIMP [25] was used.
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Fig. 2. The black dots represents the pixels associated with specific black color.

Fig. 3. Dendritic formation near the ceramic grain edge that can generate some
virtual labels associated with the determination of element label. Black box
represents the grain edge and other color represents the grains areas.

Fig. 4. Determination of each grain associating to them a unique label, for the
picture of Fig. 3. Each color is related to a specific grain/label.

Fig. 1. Processed image is in gray scale format the original doped TiO2 SnO2 based
electronic ceramics micrography using GIMP v.2.8. The original image is the Fig. 6 of
Ref. [26].
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In order to scan the ceramic image the software Imagemagick
[27] was used to convert the :jpeg image file into a :txt file. The out-
put file obtained is a text file that contains the pixels coordinates as
integer numbers and the color associated with each pixel described
by a srgb color code presented in three formats being one of them
the corresponding hexadecimal format code for each kind of color.

The next step of the technique is a clean-up procedure. The pix-
els coordinates ði; jÞ and the hexadecimal color code must be
selected from the original text file, and all other symbols and infor-
mation removed. Now, is possible to scan the image inside in an
array A of integer numbers and associate a number to each color
code.

The most important color at this array is black because it was
the color associated with the ceramic grains edges. From the point
of view of array elements, we create a 2-D vector of integer values
called An;m with 0 to black pixels and 1 for all other kinds of colors.
Here, m;n are the size in pixels of the original picture (n�m) and
represent the dimensions of the vector A. Computing only the
black pixels the result obtained from the processing of Fig. 1 is
shown in Fig. 2.
As observed some pixels inside the ceramic grains are black, due
to the inhomogeneity of the original image. To remove part of
these black pixels that do not belong to grain edges, a line search
across the array considering it as a rectangular regular lattice
was performed a couple of times. Along the search, each black ele-
ment Ai;j surrounded by more than 3 white first nearest neighbors
was changed from 0 to 1. Given the huge number of pixels deter-
mining each grain edge, the boundary of the grains was not
affected by this process.

The most difficult step was to determine the region/area of the
array A that belongs to each ceramic grain. To perform it, the array
A containing only two kinds of elements 0 and 1 was scanned,
going from line 1 up to m and from column 1 up to n. Every time
that the forward element Ai;jþ1 – 0 and the instant element
Ai;j – 0 or 1, then the operation Ai;jþ1 ¼ Ai;j was evaluated. Doing
that, if Ai;jþ1 – 0 or 1 but Ai;j ¼ 0 then Ai;jþ1 ¼ k where k is an
integer number and is the label associated with the grain where
the proposed pixel belongs. The determination of k must be done



Fig. 5. (a) Picture with the red dots representing the centroid of each grain and the black dots representing the grain edge. (b) Picture with withe dots representing the
centroid of each grain.

Fig. 6. Voronoi diagram built by using the centroid indexes ð�il;�jlÞ associated with
the original ceramic. The black dots represent the centroid of each grain/Voronoi
cell.

Fig. 7. Voronoi like diagram built by using the centroid indexes ð�il;�jlÞ associated
with the original ceramic, and a weight factor wl associated with each site l. The
withe dots represent the centroid of each grain/Voronoi like cell.

Fig. 8. Superposition of Fig. 7 (diagram built by the proposed Voronoi like
algorithm) by the Fig. 5(a) (original diagram cells edges).

F.L. Braga / Applied Computing and Informatics 14 (2018) 159–165 161
partially looking all nearest neighbors of element Ai;jþ1 and by ana-
lyzing the storage array G (initially Gi ¼ 0) associated with the
labels of all the detected ceramic grains. If there is some element
around Ai;jþ1 – 0, or 1 then k must be the label associated with this
non-zero element. On the other hand, if every element are equal to
0 or 1, then k must be the smallest i index of the zero elements of
array G, and every time that search across G occur the element Gi

receive the correspondent index Gi ¼ i becoming a non-zero
element.

At the end of this scanning process, the array A has labels
0; 1; . . . ;M. Unfortunately, some labels explicitly split some grains
because of some dendritic formation of the grains edge similar to
the one presented in Fig. 3.

Generally,Mwas bigger than the real number of ceramic grains.
In other to reduceM for the real number of grainsMr � 1, firstly the
number of elements of A with each label was determined, then
another line search through A was performed and every time that
the first neighbours of Ai;j had more than two distinct labels (not
considering 1 or 0) the label of the smaller group was changed
by the label of the biggest group. The result obtained after this pro-
cedure, for the picture of Fig. 2 is shown in Fig. 4.
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Fig. 9. Histogram associated with the normalized number of sites per area, (a) for typical Voronoi diagram and (b) for the original ceramic produced by the algorithm. The red
curves are the non-linear fit for distributions, for (a) NðxÞ=Nmax ¼ 1:45ðxÞ0:1 exp �x=0:7ð Þ and (b) NðxÞ=Nmax ¼ 1:45ðxÞ0:1 exp �x=0:9ð Þ.
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Fig. 10. Histogram associated with the normalized number of sites per edge length, (a) for typical Voronoi diagram and (b) for the original ceramic produced by the algorithm
proposed. The red curves are the non linear fit of the histograms for (a) NðxÞ=Nmax ¼ exp �20ðx� 0:62Þ2

� �
and (b) NðxÞ=Nmax ¼ 0:5 1:4e�50ðx�0:21Þ2 þ 2e�64ðx�0:6Þ2

h
þe�1700ðx�0:42Þ2 �.
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At this stage of the algorithm, the array A has values 0, for the
grains edges and values ð2; . . . ; MrÞ for the elements belonging to
the grains. The area of a grain lwas determined as the total number
of elements Ai;j ¼ l. In order to determine the edge length between
two grains another line search through A was performed, going
from line i ¼ 1 to n and column j ¼ 1 up to m. During this line
search an auxiliary array L was used and the element Lp;k stored
the number of elements Ai;j at the edge between grains p and k
(2 < p; k < Mr and initially L ¼ 0). Along the line search the values
of Ai;j were stored in variables v1;2;3, representing the actual ele-
ment read v1, and the two predecessors read elements v2;3. Every
time that v1 ¼ 0, a grain edge is reached, so the value v2 is the label
of the grain original analyzing, so it was saved in variable p. After
this edge-event, the line search continous, but the values of the
labels of Ai;j were stored at variable v3, and when v3 – 0; k ¼ v3

was set, determining the other grain participating in the edge.
Hence, element Lp;k was up dated with a unit. At the end of the line
search only the elements Lpk – 0 indicates the conectivity (first
neighbors) for all grains and consequently the size of the edge
between grains fp; kg.

Knowing the label of each pixel, is possible to determine the
centroid of each ceramic grain, by calculating the media indexes
ð�il;�jlÞ, associated with label l by computing the equations
�il ¼ 1
q

Xq

s¼1

ils; ð1Þ

�jl ¼ 1
q

Xq

s¼1

jls; ð2Þ

where q is the total number of pixels with label l. Plotting the grain
edges and the grain picture is possible to clearly visualize these
media indexes as shown in Fig. 5.

In order to determine the morphology of a Voronoi diagram
[28] built using the same rectangular regular lattice Vor with
n�m elements and the centroids of the original ceramic the
region of influence of each centroid was determined calculating
the euclidian distance dl between the element Vorij and the
indexes ð�il;�jlÞ as

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði��ilÞ2 þ ðj��jlÞ2

q
ð3Þ

if dl is minimum, when compared to all the centroids, then
the element Vorij receive the label l and is part of the
corresponding Voronoi diagram cell. A typical Voronoi
Diagram obtained for the centroids of the analysed ceramic
can be observed in Fig. 6.
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Fig. 11. (a) The modified image of the experimental ceramical microstructure of the polycristalline UO2 pellet from Ref. [31]. (b) reconstructed Voronoi diagram build using
the procedure described before.
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Fig. 12. Correspondent distribution functions for the area and the boundary length,
for the original experimental ceramic image, and for the correspondent Voronoi
diagram. The green line represents the adjusted curve associated with the area of
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Comparing Figs. 6 and 5(b) is possible to observe that geomet-
rically the number of large sites (sites with more than 6% of the
total area of the image1) and small sites (sites with less than 2%
of the total image area) are not matching each other.

In order to reproduce the same behavior of the original ceramic
was proposed to build a new diagram based on the Voronoi algo-
rithm, but instead of calculating the euclidean distance between
two elements of Vor a weight factor wl was introduced at the cal-
culation of de distance dl as

d0
l ¼

1
wl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði��ilÞ2 þ ðj��jlÞ2

q
ð4Þ

with wl been the number of pixels associated with site l. On other
words, it was related to the original area of the ceramic grain. This
weigth factor can be interpreted as a form to compute the non-
linear influence of each grain at the ceramic processing
manufacturing.

The result obtained by this algorithm can be observed on Fig. 7.
Coupling the diagram of Fig. 7 and the original contours associated
with each site as depicted in Fig. 8, is possible to observe that the
proposed weigth factor imposes an agreement between the origi-
nal ceramic geometrical features and the built one.

In order to quantitatively compare the results obtained for the
original ceramic and the typical Voronoi Diagram using the cen-
troids of each grain previously determined the normalized his-
tograms for the number of sites as a function of the site’s area
was calculated, as shown in Fig. 9(a) and (b), where a distribution
function can be casted in format of a gamma functions as proposed.

At the same way the normalized histograms for the number of
sites per edge length, presented a continuous behaviour of gaus-
sian functions, as observed on Figs. 10 (a) and (b).

These calculations related to the distribution of areas and
lengths of edges for the grains, can be used as a source probability
distribution function (p.d.f.) to build a large diagram that recover
the same statistical behaviour of the original ceramic. To evaluate
this one may use some Markov chain Monte Carlo algorithm as
Metropolis-Hastings [29], in order to determine the weight factor
(area related) for each Voronoi like diagram cell, and at indirectly
determine the position center of each grain cell.

A procedure that evaluate the proposed mechanism to deter-
mine large diagramns, can be depicted as the following five step
algorithm:
the experimental microstructure image. the associated function is
NðxÞ=Nmax ¼ A0 �

ffiffiffi
x

p
exp A1 � x� A2ð Þ2

h i
, been A0 ¼ 481:32;A1 ¼ �1:0855� 10�5

and A2 ¼ �834:47.1 Calculated in termos of pixels.
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Fig. 13. Statistical comparision between the original lattice produced based on the original ceramic microstructure of UO2 from Fig. 1 of Ref. [31] (lattice with Ns ¼ 171 sites),
and the correspondent Voronoi diagram (Voronoi lattice) with Ns ¼ 104 sites.
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1. Determine the areas As of Ns sites using the p.d.f. function for
the areas, vai Metropolis-Hasting algorithm.

2. Determine appoximateley the center position of the Ns sites, on
a similar way as proposed for the construction of the Voronoi
Diagram.

3. Determine the area of influence of each Voronoi Cell.

The third step can be held on the same one way as depicted
before. The second step can be determined by using an auxiliar
square lattice of specific length L, where the Ns sites, topologically
considered as spheres of radius rs, 2 associated with the area As

must be set up covering the square lattice on a way to minimize
the vacancies between each one of the Ns sites, on a similar proce-
dure as proposed in the rearragment of containers as proposed in
Ref. [30].

In order to validade the previous algorithm for the caracteriza-
tion of ceramic samples, we analyze the main features of the uran
dioxide (UO2) polycristalline pellet image collected on Fig. 1 of
Ref. [31]. The reconstructed image, the correspondent Voronoi Dia-
gram and the centers of each grain can be observed can be observed
at Fig. 11.

The distribution functions associated with experimental
microstructure and the corresponding Voronoi diagram are shown
in Fig. 12.

Using the proposed curve NðxÞ=Nmax for the areas, we determine
the radius of Ns ¼ 104 sites, and determine, and using the three
step procedure described we determine a huge lattice compared
to the original lattice, produced with the experimental image, with
2 Given the square simmetry of the lattice a typical sphere with radius r can be
interpreted as a box of size 2 � r.
a very similar statistical feature for the area and the cells boundary
length as observed in Fig. 13.

Probably, due to the stochastic behaviour of Metropolis-Hasting
algorithm, the approximation of the centers of the grains/Voronoi
celss, addicted to the small number of grains/sites of the originals
samples, the p.d.f.’s associated with the area and the boundary
length of each grain for the bigger lattice, do not exactly match
the original functions. But the main goal of the proposed algorithm
is achieve, with the procedure proposed we are now able to create
more realistic approximated lattices, that are intrinsecly correlated
to experimental data.

In other words, a better computational/mathematical back-
ground to create useful random lattices that are the aim of
interest to develop studies related to percolation, partial differ-
ential equations, and other sets of computational areas of inter-
est to material science, can be performed using the proposed
algorithm.
3. Conclusions

The proposed scanning algorithm is a very useful technique to
manipulate 2D ceramic images containing the grains edges. A
quantitative characterization of the grains edge length and area
can be casted in the format of normalized histograms and the con-
nectivity of the grains (first neighbours) can be explicitly deter-
mined. The previous features described allows the construction
of huge inhomogeneous lattices statistically correlated to real
ceramics, creating a useful framework for many material science
research areas using a Voronoi like diagram algorithm where the
influence of each grain is modulated as a weigth factor related to
the grain area.
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