
Applied Computing and Informatics (2018) 14, 1–16
Saudi Computer Society, King Saud University

Applied Computing and Informatics

(http://computer.org.sa)
www.ksu.edu.sa

www.sciencedirect.com
Mobile cloud computing for computation offloading:

Issues and challenges
* Corresponding author.

E-mail addresses: k.akherfi@aui.ma (K. Akherfi), gerndt@in.tum.de

(M. Gerndt), h.harroud@aui.ma (H. Harroud).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.aci.2016.11.002
2210-8327 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Khadija Akherfi a,*, Micheal Gerndt a, Hamid Harroud b
aTechnical University of Munich, TUM, Munich, Germany
bAl Akhawayn University in Ifrane, Ifrane, Morocco
Received 28 September 2016; revised 3 November 2016; accepted 28 November 2016
Available online 18 December 2016
KEYWORDS

Cloud computing;

Mobile cloud computing;

Computational offloading;

Algorithms;

Partitioning
Abstract Despite the evolution and enhancements that mobile devices have experienced, they are

still considered as limited computing devices. Today, users become more demanding and expect to

execute computational intensive applications on their smartphone devices. Therefore, Mobile Cloud

Computing (MCC) integrates mobile computing and Cloud Computing (CC) in order to extend

capabilities of mobile devices using offloading techniques. Computation offloading tackles limita-

tions of Smart Mobile Devices (SMDs) such as limited battery lifetime, limited processing capabil-

ities, and limited storage capacity by offloading the execution and workload to other rich systems

with better performance and resources. This paper presents the current offloading frameworks,

computation offloading techniques, and analyzes them along with their main critical issues. In addi-

tion, it explores different important parameters based on which the frameworks are implemented

such as offloading method and level of partitioning. Finally, it summarizes the issues in offloading

frameworks in the MCC domain that requires further research.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contents

1. Introduction . 2
2. Concepts and background . 3

2.1. Cloud computing . 3

2.2. Mobile cloud computing . 3

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2016.11.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:k.akherfi@aui.ma
mailto:gerndt@in.tum.de
mailto:h.harroud@aui.ma
http://dx.doi.org/10.1016/j.aci.2016.11.002
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2016.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 K. Akherfi et al.
2.3. Computation offloading . 3

3. Offloading approaches . 5
3.1. Offloading steps . 5
3.1.1. Application partitioning . 5

3.1.2. Preparation . 5
3.1.3. Offloading decision. 6

3.2. Framework classes . 6
3.3. Framework mechanisms . 6

4. Comparison of offloading frameworks in mobile cloud computing. 6
4.1. CloneCloud . 6
4.2. MAUI . 7

4.3. Cloudlet. 7
4.4. Jade. 8
4.5. Mirror server . 9

4.6. Cuckoo . 10
4.7. Phone2Cloud . 10
4.8. A comparative review of some offloading frameworks . 12

5. General issues and challenges in computation offloading for MCC . 14

5.1. Platform diversity . 14
5.2. Security and privacy in mobile cloud applications . 14
5.3. Fault-tolerance and continuous connectivity . 14

5.4. Automatic mechanism. 14
5.5. Offloading economy/cost . 14
5.6. Partition offloading and external data input . 14

6. Conclusion . 15
Acknowledgments . 15
References . 15
Figure 1 Cloud computing layers.
1. Introduction

The main goal of CC is to allow IT departments to focus on
their businesses and projects instead of just taking care of their

data centers and keeping them working [2,18,20]. CC is a new
concept that aims to provide computational resources as ser-
vices in a quick manner, on demand, and paying as per usage.
The CC paradigm is presented in three cloud delivery models:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS) as shown in Fig. 1.
According to Gartner [3], CC will have in 2016 a Global Com-

pounded Annual Growth Rate (CAGR) of IaaS: 41%, PaaS:
26.6% and SaaS: 17.4%.

Recently, user preferences for computing have changed

because of the latest developments and enhancements in
mobile computing technologies. Several reports and studies
have presented the importance of MCC and its impact on

mobile clients and enterprises. For instance, and according
to a recent study by ABI Research, more than 240 million busi-
ness will use cloud services through mobile devices by 2015 and
this will push the revenue of the MCC to $5.2 billion [11].

Moreover, the usage of smartphones has increased rapidly in
various domains, including enterprise, management of infor-
mation systems, gaming, e-learning, entertainment, gaming,

and health care. Although the predictions that mobile devices
will be dominating the future computing devices, mobile
devices along with their applications are still restricted by some

limitations such as the battery life, processor potential, and the
memory capacity of the SMDs [31]. Nowadays, modern
mobile devices have sufficient resources such as fast proces-

sors, large memory, and sharp screens. However, it is still
not enough to help with computing intensive tasks such as nat-
ural language processing, image recognition, and decision-
making. Mobile devices provide less computational power
comparing to server computers or regular desktops and

computation-intensive tasks put heavy loads on battery power.

Figure 2 General view of MCC.

Mobile cloud computing for computation offloading 3
Currently, there are several works and research in CC that

aim at enhancing the computing capabilities of resource-
constrained mobile client devices by providing mobile clients
access to cloud infrastructures, software, and computing ser-

vices. For example, Amazon web services are used to protect
and save clients’ personal data via their Simple Storage Service
(S3) [23]. In addition, there are several frameworks that allow
to process data intensive tasks remotely on cloud servers. For

instance, the ASM computation offloading framework [6]
showed that computation offloading helped to reduce the
energy consumption cost of mobile devices by 33%, and the

turnaround time of the application by 45% [30].
The following two points highlight our main contribution

in this paper.

1. Classifying current computation offloading frameworks.
Analyzing them by identifying their approaches and crucial
issues.

2. Presenting the related open issues in computation offload-
ing for MCC and challenges that require more investigation
and elaboration.

This paper is organized as follows: Section 2 explains the
essential background concepts and terminology, including

CC, the MCC concept, and computation offloading. Section 3
presents the offloading approaches. A comparison between the
different offloading frameworks and their critical issues is dis-

cussed in Section 4. Section 5 highlights general issues and
challenges in computation offloading for MCC. Finally, Sec-
tion 6 gives a summary and points to future work.

2. Concepts and background

2.1. Cloud computing

CC is a new way of providing computing resources and ser-
vices. It refers to an on-demand infrastructure that allows

users to access computing resources anytime from anywhere
[25]. CC offers to users and business three main advantages:
(1) enormous computing resources available on demand, (2)

payment for use as needed and on a short-term basis (storage
by the day and release them as needed), and (3) simplified IT
management and maintenance capabilities [1]. CC provides cli-

ents with different applications as services via the Internet. As
examples of public CC we can list Windows Azure and Ama-
zon Web Services (AWS). Windows Azure is an open and flex-
ible cloud platform which provides several services to develop,
deploy and run web applications and services in cloud data

centers [33]. AWS, which is considered as an example of a pub-
lic computing tool, provides users with two models: infrastruc-
ture as a service and software as a service. These services allow

the user to use virtualized resources in cloud data centers [23].
Computational clouds implement a variety of service models in
order to use them in different computing visions [4].

2.2. Mobile cloud computing

MCC can be seen as a bridge that fills the gap between the lim-
ited computing resources of SMDs and processing require-

ments of intensive applications on SMDs.
The Mobile Cloud Computing Forum defines MCC as fol-

lows [11]: ‘‘Mobile Cloud Computing at its simplest form

refers to an infrastructure where both the data storage and
the data processing happen outside of the mobile device.
Mobile cloud applications move the computing power and

data storage away from mobile phones and into the cloud,
bringing applications and mobile computing to not just smart-
phone users but a much broader range of mobile subscribers”.

MCC has attracted the attention of business people as a

beneficial and useful business solution that minimizes the
development and execution costs of mobile applications,
allowing mobile users to acquire latest technology conve-

niently on an on-demand basis.
Fig. 2 shows the general view of MCC which is composed

of three main parts: the mobile device, wireless communication

means, and a cloud infrastructure that contains data centers.
These latter provide storage services, processing, and security
mechanisms for both the cloud environment and mobile
devices.

2.3. Computation offloading

Computation offloading is the task of sending computation

intensive application components to a remote server. Recently,
a number of computation offloading frameworks have been
proposed with several approaches for applications on mobile

devices. These applications are partitioned at different granu-
larity levels and the components are sent (offloaded) to remote
servers for remote execution in order to extend and enhance

the SMD’s capabilities. However, the computation offloading
mechanisms are still facing several challenges.

In the remaining part of this section, our objective was to
give a summary about the MCC offloading research by dis-

cussing the following:

Figure 3 Offloading process overview.

Figure 4 Number of computation offloading and data offloading papers.

4 K. Akherfi et al.
1. Usage scenarios for offloading in MCC.
2. Techniques being applied in offloading.

3. A classification of proposed offloading frameworks.

Computation offloading emerged around 1970s. However,

its potential has been widely explored only when wireless com-
munication and Internet speed became sufficiently enhanced
and could support it [37].

The potential of mobile offloading mainly depends on the
mobile network technologies such as cellular and WiFi. They
determine the viability of mobile offloading. Today, the WiFi
technology is able to provide high bandwidth connections.

However, the data transmission using the cellular network
requires a considerable amount of energy from the mobile
device as opposed to a WiFi network.

Fig. 3 illustrates the environment that supports computa-
tion offloading. In this overview, the mobile device decides
to offload method B to a cloud server or a powerful machine.

The cloud here provides the virtual computation resources to
run the offloaded components. The powerful machine can be
a server or cluster in a computing center, or a computing grid,

or a virtual server in the cloud. Fig. 41 shows the number of
published papers since 2004 citing the word ‘‘Offloading”
1 The number of published works is retrieved from Google Scholar.
and ‘‘Computation”. Most of the research works tackling data
offloading have the goal to store data in remote large reposito-
ries. It can be seen in Fig. 4 that the research work citing ‘‘com-

putation offloading” and ‘‘data offloading” is increasing
progressively.

Clearly, computation offloading is worthwhile only when
the local execution (mobile device) consumes more time and

energy than the offloading overhead. Many factors can impact
the offloading decision and could influence the offloading
process.

Fig. 5 illustrates these factors which are network specifica-
tions, mobile specifications, application characteristics, server
specifications, and user’s preferences.

The computation offloading has experienced a remarkable
improvement which makes it applicable in a wide range of
domains. Table 1 shows some of these domains.

As it is known, the battery life of mobile devices and the
limited processors’ capabilities remain key limiting factors in
the design of mobile applications. Today, the demand for
resource intensive applications such as 3D video games and

voice recognition is increasing day by day. To close this gap
between the users demand and the mobile devices limitations,
research studies have been exploring computation offloading

in MCC to bring the power of cloud computing to the other-
wise limited mobile devices capacity.

Figure 5 Aspects affecting the offloading decision.

Table 1 Areas of the research work related to computation offloading.

Domain Research

work

Contribution of some research work

Artificial intelligence based

applications

[6,8,16,27,37] The proposed work aims to reduce computation time on robots by using an offloading technique.

The system is designed for real-time moving object recognition and tracing using computation

offloading [27]

Graphics and image

processing

[6,37,17,35] The suggested work examines the trade-offs that emerge from executing some of the workload

locally and some on remote cloud servers. Extraction and matching are two features that are

crucial in image classification. The paper analyzes the possibility of executing the previously

mentioned features in a mobile device using different scenarios [17]

Health and social

applications

[24,21] The proposed work presents an extensible module that proactively facilitates the management of

processes for web service supported by mobile applications. This module measures power

consumption and application performance from the smartphone device. Based on the obtained

measurements, the module dispatches image processing jobs locally or remotely [24]

Games applications [35] The objective of the presented work was to satisfy Cloud Mobile Gaming communication and

computation constraints by using an adaptation technique that ensures a good mobile gaming

experience [35]

Mathematics [7,34] The work presents a new architecture that addresses the mobile device limitations by using a

partial offloading execution from the smartphone to a remote cloud infrastructure hosting

smartphone clones [7]

File system and database [26,7] The presented work addresses the maximization of the lifetime of mobile devices by developing

computational offloading schemes while considering the network status. The paper presents an

experimental environment where different profiles and computational moles are evaluated [26]

Mobile cloud computing for computation offloading 5
3. Offloading approaches

3.1. Offloading steps

Offloading transfers a compute intensive task from the SMD

to a remote server. Offloading is a process that includes basi-
cally three steps: application partitioning, preparation, and
offloading decision.

3.1.1. Application partitioning

The first step is application partitioning which is very impor-
tant for computation offloading. It divides the application into

offloadable and non-offloadable components meaning which
components to retain on the mobile device and which to
migrate to the cloud server. The decision whether a component
is offloadable can be taken based on different information. The
programmer can annotate application components for exam-
ple through a special API as offloadable. Compute intensive

parts that are candidates for offloading can be identified also
by source code analysis in combination with performance pre-
diction or via application profiling. If the partitioning is done

at design time, both techniques have a limited accuracy since
they do not take the real execution context into account, when
the application is run.

3.1.2. Preparation

The preparation step performs all actions required for offload-
able components to enable their use in mobile applications.

This includes the selection of a remote server, the transfer
and installation of the code, as the start of proxy processes that
receive and execute tasks on behalf of the SMD. Besides the
transfer of the code, also data might be transferred to prepare

for the remote execution.

Figure 6 CloneCloud execution model (adapted from [6]).

6 K. Akherfi et al.
3.1.3. Offloading decision

The offloading decision is the final step before remote execu-

tion is started for offloadable components. Whether an
installed remote component is used in the SMD application
or not depends typically on the execution context. If the deci-

sion is taken at runtime, more precise information is available,
for example, the SMD might even not have a wireless connec-
tion or the energy consumption for transferring the data for

the remote execution might simply be too high. Whenever
the situation changes, the offloading can be adapted. Such a
runtime decision induces some overhead that typically is not
present if the decision is taken at design time.

3.2. Framework classes

According to when the decision is taken to offload computation

on a remote server, we can distinguish two types of offloading
frameworks. The first class is static offloading frameworks.
Here all the presented steps are performed at design time,

before the application is started on the mobile device. The other
classes are dynamic offloading frameworks. In those frame-
works, at least the final decision whether to offload a computa-

tion is taken at runtime. The other two steps can be executed at
design or runtime. For example, a framework that is based on
user annotations of offloadable components and on pre-
installation of the components on a remote server will be called

a dynamic offloading framework, if it decides at runtime
whether it is better to offload computation or not.

3.3. Framework mechanisms

Although there are several offloading mechanisms available
for offloading computation intensive components of mobile

applications to the cloud, we can classify these mechanisms
into two broad categories:

1. Frameworks based on virtual machine cloning.
2. Frameworks based on code offloading.

Frameworks based on code offloading offload intensive

application components by invoking a remote procedure call
(RPC) using annotations, special compilation or binary modi-
fication. Whereas in virtual machine cloning, the mobile devi-

ce’s full image is captured and stored on the cloud server.
During offloading, the mobile’s execution is suspended and
transferred to the VM clone in the cloud.

4. Comparison of offloading frameworks in mobile cloud

computing

This section introduces different existing offloading frame-
works. For each of the frameworks we identify the approaches
used in the three steps introduced in the previous section. At

the end of the section, the different frameworks will be com-
pared with respect to their most important properties.

4.1. CloneCloud

Chun et al. present in [6] the CloneCloud framework which
aims at improving the battery life and performance on the
mobile device by offloading intensive components to cloud
servers.

The partitioning step in this framework combines static

program analysis with program profiling to produce a set of
offloadable components while meeting some constraints, such
as methods that use mobile sensors should be executed locally.

The framework uses thread level granularity for partitioning of
applications. The role of static analysis is to discover con-
straints on possible migration points while profiling aims to

build a cost model for offloading and execution. Partitioning
and integration of the applications are performed at the appli-
cation level.

As a preparation step, a duplicate of the smartphone’s soft-

ware is captured and stored within a cloud server.
At runtime, the offloading decision is taken and threads are

migrated from the mobile device to the clone in the cloud. In

CloneCloud, threads must be suspended, all states of the
threads must be transferred to the server, and then threads
resume on the server in order to offload computation. The

framework is based on VM instance migration to the cloud
server. Fig. 6 shows the CloneCloud execution model. Initially,
a duplicate of the smartphone’s software is created in the

cloud. The state of the smartphone and the clone is synchro-
nized periodically or on-demand. After the execution of off-
loaded components, results from the execution on the clone
are reintegrated back into the smartphone state. CloneCloud

employs dynamic offloading.
The objective of the distributed execution mechanism in

CloneCloud was to implement a specific partition of a given

application process executing inside an application-layer vir-
tual machine.

In CloneCloud framework, the distributed execution goes

through several steps as follows. When the user tries to run a
partitioned application, the framework looks in a database
of pre-computed partitions for current execution conditions

(such as available network bandwidth and cloud resources).
The result of the verification is a partition configuration file.
The partition is loaded by the application binary which instru-
ments the selected methods with migration. On the mobile

device, once the execution of the process reaches a migration
point, the running thread is suspended and its state is wrapped
and shipped to a synchronized clone. In this clone, the thread

state is instantiated into a new thread with the same stack and

Mobile cloud computing for computation offloading 7
reachable heap objects, and then resumed. On the cloud server,
when the migrated thread reaches a re-integration point, it is
suspended, packaged, and then shipped back to the mobile

device. Finally, the received packaged thread is merged into
the state of the original process in the mobile device.

To evaluate the prototype, the authors implemented three

applications (virus scanner, image search, and privacy-
preserving targeted advertising). All measurements are the
average of five executions. Phone, CloneCloud with WiFi,

and CloneCloud with 3G are the used environments.
A clear tendency is that larger workloads benefit from

offloading because of amortization of the migration cost over
a larger computation [6].

4.2. MAUI

MAUI [8] is a framework that considers energy saving on

smartphones as the main objective function for the offloading
process. MAUI is a highly dynamic offloading framework
because of a continuous profiling process. The framework

hides the complexity of a remote execution from the mobile
user and gives the impression as if the entire application is
being executed on the mobile device.

In MAUI, partitioning is done based on developer annota-
tions to specify which components can be executed remotely
and which cannot.

In the preparation step, two requirements should be met:

(1) application binaries must be in both mobile and server sides
and (2) proxies, profilers and solvers must be installed on both
the mobile device and server sides.

At the beginning, MAUI profiler measures the device char-
acteristics. Then, it keeps monitoring the program and net-
work characteristics during the whole execution time because

these characteristics can often change and any old or inaccu-
rate measurement may lead MAUI to make the wrong
decision.

The offloading decision is taken at runtime. The framework
chooses which components should be remotely executed
according to the decision of the MAUI solver. The decision
is based upon the input of the MAUI profiler.

Fig. 7 shows the MAUI architecture. On the smartphone,
the framework consists of the following components: a proxy,
a profiler, and a solver. Each time a method is called, the
Figure 7 High-level view of MAUI’s architecture (adapted from

[8]).
MAUI profiler evaluates it for its energy-saving potential
and profiles the device and the network to obtain the status
information. Then, the MAUI solver works on the results pro-

vided by the profiler and determines the destination where the
method will be remotely executed; the proxy is responsible for
control and data transfer between the server and the smart-

phone. On the server side, the profiler and the server proxy
perform similar roles as their client-side counterparts. The
MAUI controller is responsible for authentication and

resource allocation for incoming requests [8].
The authors presents different experiments in order to com-

pare the energy consumption of running three applications(-
face recognition, chess, and video) standalone on the

smartphone versus using MAUI for remote execution to ser-
vers that are located elsewhere. The face recognition applica-
tion can achieve strong energy savings when using MAUI.

On the one hand, the results of the conducted experiments
showed that the energy consumed when offloading code using
3G is 2.5 times higher than offloading code to a close server.

On the other hand, the energy savings for both video and chess
game are less strong but they are still important; when offload-
ing to a close server, MAUI saves 45% for chess and 27%

energy for the video game.

4.3. Cloudlet

Offloading to the cloud is not always a solution, because of the

high WAN latencies, mainly for applications with real-time
restrictions. Thus the cloud has to be moved closer to the
mobile user in the form of cloudlets.

Satyanarayanan et al. suggest in [29] a VM based cloudlet
framework. A cloudlet can be defined as a hosting environ-
ment for offloaded tasks that is deployed to remote resources,

as different as individual servers or parallel systems. Cloudlets
are virtual-machine (VM) based on support scalability, mobil-
ity, and elasticity. They are located in single-hop nearness to

mobile devices.
In the preparation step, the framework requires the cloning

of the mobile device application processing environment to a
remote host. It offloads the entire application using VM as

the offloading mechanism and more precisely it uses a tech-
nique called dynamic VM synthesis. The VM would encapsu-
late and separate the guest software from the cloudlet’s host

software. The mobile device serves as a thin client providing
only the user interface, whereas the actual application process-
ing is performed on the cloudlet infrastructure.

Device mobility is the main critical issue for mobile users on
the move while connected to cloudlets.

As Fig. 8 illustrates, cloudlets are widely distributed Inter-
net infrastructure components whose storage resources and

computing cycles can be exploited by nearby mobile devices
while avoiding the long latency which is available for accessing
distant cloud resources. These cloudlets would be situated in

common areas, such as coffee shops, so that mobile devices
can connect and work as a thin client.

Fig. 9 depicts the cloudlet architecture. Cloudlets are dis-

coverable, and located in single-hop proximity of mobile
devices. The main elements of the architecture are Cloudlet
Host and Mobile Client. A Discovery Service is a component

running in the cloudlet host and publishes cloudlet metadata.
The cloudlet metadata (e.g. IP address and port to connect

Figure 9 Cloudlet architec

Figure 8 Cloudlet illustration adapted from [29].

8 K. Akherfi et al.
to the cloudlet) are used by the mobile client to specify the suit-
able cloudlet for computation offloading. Once the cloudlet is
determined for offload, the mobile client sends the application

code and the application metadata to the cloudlet server. The
cloudlet server deploys the application code in the guest VM.
Once the deployment is done, the execution of the application

is launched.
We can take a scenario where the user must execute a com-

putation intensive application. At runtime, the application dis-

covers a nearby cloudlet and offloads the computation
intensive mobile application [15]. However, because of loss
of network connectivity, the mobile application can find a dif-
ferent cloudlet and run the application in a short time.

4.4. Jade

Sharing the same concern but from a different perspective,

Qian et al. present in [28] a system that monitors application
and device status and that automatically decides where the
code should be executed. The goal of Jade was to maximize

the benefits of energy-aware computation offloading for
mobile applications while minimizing the burden on develop-
ers to build such an application.
ture (adapted from [22]).

Mobile cloud computing for computation offloading 9
During partitioning, applications are partitioned at the
class level in Jade based on the collected information.

As a preparation, the system checks the application and

device status by monitoring the communication costs, work
load variation, and energy status. The framework provides a
sophisticated programming model with a full set of APIs, so

developers have total control on: how the application is parti-
tioned, and how remote code interacts with local code.

The offloading decision is taken at runtime to decide where

the code should be executed. Jade supports two types of ser-
vers: (1) Android servers and (2) Non-Android servers running
operating systems such as Windows and Linux. Non-Android
servers must have Java installed in order to support Jade.

Jade’s runtime engine runs as a Java program on a non-
Android server.

Jade can dynamically change its offloading decision accord-

ing to the device status and thus efficiently reduce energy con-
sumption of mobile devices.

Fig. 10 presents an overview of the Jade framework. The

mobile device that offloads computation is called the client.
The device that executes the offloaded code is called the server.
Mobile applications contain remote tasks which can be off-

loaded to the server. The Jade runtime engine automatically
decides where to execute remote tasks and initiates distributed
execution.

Fig. 11 presents the Jade framework architecture. In order

to offload a computation, the system handles the following
tasks:

� Profiling: In order to make correct offloading decisions, the
framework should have updated information concerning
the status of the application and the device. Application

profiling is the process of collecting information about pro-
grams, such as energy consumption, data size, execution
time, and memory usage. Similarly, device profiling collects

information about devices status, such as battery level,
CPU usage, and wireless connection.

� Communication: To offload code from the mobile client to
the server, the system should be able to (1) connect to the

other server; (2) coordinate with the remote server for off-
Figure 10 Jade overview
loaded components; (3) send data between the mobile

device and the remote server; (4) follow status of remote
execution; and (5) save information related to all connected
devices (e.g., connection speed, hardware configuration).

� Optimization: The framework determines an optimized
offloading approach to reduce energy consumption and
enhance application’s performance.

The Jade framework automatically transforms application
execution on one mobile device into a remote execution opti-
mized for wireless connection, power usage, and server

capabilities.
In order to check the amount of energy that Jade can save

for mobile device, authors run face detection application on a

mobile device. The application performs face detection on 50
pictures with size of each less than 200 KB. Results showed
that Jade reduces the power consumption for face detection
application. Average power consumption was decreased by

34%.

4.5. Mirror server

Zhao et al. present in [38] the mirror server framework that
uses Telecommunication Service Provider (TSP) based remote
services. A TSP is a type of communication service provider

which provides voice communication services such as landline
telephone services. Mirror server extends capabilities of smart-
phones by providing three different types of services: computa-

tion offloading, security, and storage. Mirror server is a
powerful server which retains VM templates for different
mobile device platforms.

This framework does not require a partitioning as the entire

application is offloaded.
In the preparation step, a new VM instance is created. This

VM is called mobile mirror and the mirror server takes care of

managing and deploying the mobile mirrors on a computing
infrastructure in the telecom network. Applications are exe-
cuted in the mirror VM instances and results are returned to

the SMD. The framework employs an optimized mechanism
for offloading.
(adapted from [29]).

Figure 11 Jade architecture (adapted from [28]).

10 K. Akherfi et al.
The Mirror Server architecture is presented in Fig. 12. On
the SMD side, a client synchronization module (Syn-Client)
is deployed within the SMD operating system (OS) to collect

SMD input data and transmit them to the mirror server for
synchronization. On the server side, in order to keep mirrors
and smartphones synchronized, the synchronization module

(Syn-Server) updates mirrors according to the data provided
by Syn-Client and the Traffic Monitor module which monitors
network traffic between the smartphone and the IP network.

The main critical issue is that mirror servers are not
designed for data processing and because of that only limited
services (i.e. file caching, file scanning) can be provided com-

pared to the variety of services in cloud data centers.
In the proposed framework, antivirus scanner application

can be deployed as a service on the mirror server, and the
application can access the file system on mirrors. The benefits

of sending antivirus scanner to the mirrors are significant:

1. It saves battery power on smartphones.

2. Scanning will not affect the common usages of smartphone
devices since the CPU and I/O intensive workload are
moved to the mirror server.

3. Running the scan on mirror will be much faster than that
on the phone due to its limited resources.

4.6. Cuckoo

Kemp et al. present in [19] the Cuckoo framework for compu-
tation offloading for smartphones. This framework offloads

mobile device applications onto a cloud server using a Java
stub model. Cuckoo’s objectives were to enhance mobile’s per-
formance and reduce battery usage. The framework integrates

the Eclipse development tool with the open source Android
framework.

In the partitioning step, Cuckoo takes advantage of the

existing activity model in Android which makes the separation
between the intensive and non-intensive components of the
application. This activity presents a graphical user interface
to the user, and is able to bind to services. The framework
can offload intensive components to any resource running a
Java Virtual machine (JVM).

As a preparation, the framework requires the developer to
write offloadable methods twice - one for local computations
and one for remote computations. For this purpose, a pro-

gramming model is made available to application developers.
This programming model is used for dropped connection, sup-
ports local and remote execution, and combines all codes in a

single package so the user will have a compatible remote
implementation.

Cuckoo is a dynamic offloading framework as it takes the

offloading decision at runtime and offloads the well-defined
components of the application. In case the remote resources
are not reachable (i.e. network connection is not available)
then the application can be executed on local resources (the

mobile device).

4.7. Phone2Cloud

Xia et al. present in [36] a computation offloading framework
called Phone2Cloud. The objective was to improve energy effi-
ciency of smartphones and improve the application’s perfor-

mance. Unlike the previous frameworks, authors focus on
conducting a fully quantitative analysis on energy saving of
the system by conducting application experiments and scenario
experiments.

Phone2Cloud is a semi-automatic offloading framework. In
order to run applications on the cloud and receive the results,
applications need to be manually modified during preparation

step to make it possible to be executed on cloud servers.
The offloading decision is based on a static analysis while

considering user’s delay-tolerance threshold.

For delay tolerant applications, the framework uses a sim-
ple model to expect WiFi connectivity.

The threshold is defined based on predictions to delay

transfers in order to offload more data on WiFi while respect-
ing the application’s tolerance threshold [42]. The framework
will wait for WiFi (only if 4G savings are expected within

Figure 12 Mirror server architecture (adapted from [38]).

Mobile cloud computing for computation offloading 11
the application’s delay tolerance) to become available, rather
than sending data immediately.

The framework can offload the whole or part of an applica-
tion to a cloud server. The prototype of Phone2Cloud is imple-
mented for Android and Hadoop environment (to serve as a
cloud). It consists of several components, including an offload-

ing decision engine, a local execution manager, a bandwidth
monitor, a resource monitor, an execution time predictor, a
remote execution manager, and an offloading proxy that links

the offloading decision engine to remote execution manager.
The decision engine is built in order to analyze the power

consumption due to offloading. Before execution, two types

of comparisons are made:

(1) The average execution time of the application running
on the SMD is compared with the user’s delay-

tolerance threshold.
(2) The power consumption to run the application on the

SMD is calculated and compared with power consump-

tion required to run the same application on the cloud.

First, average execution time and user’s delay-tolerance

threshold are compared. If user’s delay-tolerance threshold is
smaller than average execution time then the application is off-
loaded to the cloud. Otherwise, the decision engine checks

whether power consumption to run the application on the
cloud is greater than power consumption to run the applica-
tion on the SMD. If it is the case, the application is executed
locally. Otherwise, the application is offloaded to the cloud.
An illustration of the architecture of Phone2Cloud is pro-
vided in Fig. 13. Phone2Cloud is composed of seven key

components.

� Execution time predictor: It is one of the key components in
Phone2Cloud. It is used to predict average execution time

of an entire application on a mobile device.
� Bandwidth monitor and resource monitor: Bandwidth
monitor is used to monitor current bandwidth usage of

the network while resource monitor takes care of monitor-
ing CPU workload and other resources. The two monitors
serve the offloading decision engine and the execution time

predictor separately.
� Offloading proxy: It sends necessary input data to the
remote execution manager, receives the results returned by
the remote execution manager, and sends back the results

to the application.
� Offloading decision engine: It is the core component of Pho-
ne2Cloud. Offloading decision engine decides whether to

offload the application’s components from the mobile
device to the cloud server. When it decides to run the appli-
cation locally, it invokes local execution manager to execute

the application. Otherwise, it invokes the offloading proxy
to offload computation to the cloud.

� Local execution manager and remote execution manager:

The local execution manager is designed to execute the
application locally on the SMD. It calls the SMD’s operat-
ing system, like Android OS, to execute the application.
When the remote execution manger receives the required

Figure 13 Architecture of Phone2Cloud (adapted from [36]).

12 K. Akherfi et al.
input data from the offloading proxy, it runs the offloaded
computation on the cloud, and returns results to the
offloading proxy.

The authors examine how the energy consumption and exe-
cution time of applications will be affected. The evaluated

applications are word count, path finder, and sort application.
The framework saves energy and improves applications’ per-
formance and users’ experience of smartphones.

For instance, face finder application costs more energy on
smartphone than on a cloud server and the difference between
the two costs gets bigger as input grows. The reason behind
this is because data transmission costs less energy than running

the application locally. Moreover, the energy consumption in
smartphones grows faster than that on the cloud server. Thus,
face finder application should be offloaded to cloud.

4.8. A comparative review of some offloading frameworks

Having reviewed different existing computation offloading

frameworks along with their main characteristics, Table 2 pre-
sents an overall view about these frameworks and classifies
them based on the following attributes:

� Preparation: Any necessary preparations before offloading.
� Partitioning: Partitioning supported or not.
� Decision: Dynamic or static.

� Offloading Mechanism: Mechanism used to offload inten-
sive computations.

� Granularity Level: Granularity Level (i.e. class, method,

thread).
� Annotation: Automation of partitioning process (Auto-
matic or manual).

� Contribution: Solved problems?

Annotation is one of the important attributes in partition-

ing step. It can be seen as a metadata added to the source code.
The current partitioning algorithms used in the offloading
frameworks can be categorized as (a) automatic and (b)
manual.

In automatic annotation, the offloading framework imple-
ments automatic annotation by using the profiler to collect
the necessary information and annotate the relevant compo-

nent in the application as an indication of availability of par-
titioning [6,7].

Manual annotation is performed by the programmers at the

design phase. It requires examining the scope of the compo-
nents of the application at design time. Programmers annotate
the components of the application at different granularity such
as classes and methods [8,32].

We can notice that some frameworks offload the entire
application while other frameworks split the application into
its components. Concerning the offloading mechanism, some

frameworks encapsulate the offloaded components into a
VM or create a VM with exactly the same hardware/software
specifications. Other frameworks focus on the code mechanism

to offload intensive components. For the annotation attribute,
some frameworks use manual annotation while others use
automatic one except Phone2Cloud framework which follows

a semi-automatic way. Decision offloading is the main attri-
bute of the different offloading frameworks. Some frameworks
take the offloading decision at runtime based on a program
profiling and program analysis while others take the decision

during design or compile time using programmers’ annotations
and some estimations. A static offloading decision could not
adapt to fluctuating network conditions efficiently and

depends on programmers’ decision. A dynamic offloading
decision incurs overhead as it is continuously performed to
obtain the latest information.

It can be seen from the presented frameworks that they use
different approaches to offload intensive tasks to remote cloud
servers. However, none of them use or adopt containers tech-

nology such as Linux Containers (LXC). LXC is attracting
researchers these days as a lightweight alternative to full
machine virtualization such as the common known hypervisors
such as KVM or Xen. Recently, research suggests that applica-

tions running in containers can achieve approximately same
speed in memory, processing and also network throughput
as if they were running on a physical machine [41]. LXC is con-

sidered as an OS level virtualization where each container has
its own environment called a namespace where specific pro-
cesses are running and isolated from the rest of the system.

The usage of containers instead of VM will be a good idea
since it is lighter than VM.

Table 2 A comparative review of some offloading framework.

Framework Partitioning Preparation Decision Offloading mechanism Contribution Granularity

level

Automation Year

VM Cloudlet

[29]

The entire migrating image

of the running application is

offloaded to the designated

remote server while the

mobile device provides a

user interface and serves as a

thin client

It requires the cloning of

the mobile device

application processing

environment to a remote

host

Not available VM: the mobile device

transmits all the states of

the application to the

cloudlet, which applies it

to the base VM to launch

and execute the VM

Cloudlet-based

resource-rich mobile

computing

Entire App Not

available

2009

Phone2Cloud

[36]

The application can be

partitioned or entirely

offloaded

Applications need to be

manually modified in order

to be executed on cloud

servers

Static: the offloading

decision is based on user’s

delay-tolerance threshold

and static analysis

Code: the remote

execution manger gets

required input data, it

executes offloading

computation on the cloud

server, and sends back

results to the offloading

proxy

Enhancement of the

application’s

performance and

improvement of

energy efficiency of

smartphones

Part/Entire

App

Semi-

automatic

2009

MAUI [8] Annotate each individual

method as local or remote

It creates two versions of a

mobile application (for

mobile device and cloud).

It uses programming

reflection to identify which

methods are marked

offloadable or not

Dynamic: decision is based

upon the input of the MAUI

profiler and MAUI solver

Code: MAUI does not

support executing only

portions of a method

remotely

Energy-aware code

offload

Method Manual 2010

Mirror Server

[38]

The framework does not

require a partitioning so the

entire application is

offloaded

It creates a mirror for a

smartphone

Not available VM: During the copying

process, no operation

from user is authorized

Reduce the

workload and

increase the

resources of

smartphones in a

virtual manner

Entire App Not

available

2010

Cuckoo [19] Partitioning is made based

on the existing activity

model in Android. The

graphical components

remain on the mobile device

while the services can be

offloaded

Destination running a Java

VM

Dynamic: method

invocations to services are

received and Cuckoo

framework will then decide

whether to offload it or not

while checking the

availability of the remote

resources

Code: the framework

receives method calls and

evaluates whether to

offload the method using

heuristics information

Simplifying the

development of

smartphone

applications while

benefiting from

computation

offloading

Method Manual 2010

CloneCloud

[6]

The partitioning is made

based on static program

analysis and program

profiling

A duplicate of mobile

device’s software stored on

the cloud server

Dynamic: threads are

migrated from the mobile

device to the clone in the

cloud

VM: offloaded

components of an

application are running

inside a virtual machine

Elastic execution

between mobile

devices and clouds

while adapting the

application

partitioning

Thread Automatic 2011

Jade [28] An application is

partitioned at the class level

in Jade. A class must

implement one of two

interfaces to be offloadable

It checks the application

and device status by

monitoring the

communication costs,

work load variation, and

energy status

Dynamic: have updated

information concerning the

status of the application and

the device

Code: an offloaded object

can be executed on the

remote server

An energy-aware

computation

offloading system

Class Automatic 2015

M
o
b
ile

clo
u
d
co
m
p
u
tin

g
fo
r
co
m
p
u
ta
tio

n
o
ffl
o
a
d
in
g

1
3

14 K. Akherfi et al.
5. General issues and challenges in computation offloading for

MCC

The selected issues are presented from three perspectives: the

resource-intensive structures of the existing frameworks, the
security perspective, and the optimal offloading platform.

5.1. Platform diversity

One of the challenges in the current computation offloading
frameworks is the diversity and heterogeneity of smartphone

architectures and operating systems. This diversity is seen in
the following example: MAUI [8] is an offloading framework
which is applicable for the .Net framework whereas Mirror
Server [38] is a framework which is compatible with the

Android platform. A consistent access to cloud services is
expected wherein SMDs are enabled to access cloud comput-
ing services regardless of the installed operating system or

the used hardware. A standardized offloading framework for
different smartphone platforms is still a challenging issue in
the MCC field.

5.2. Security and privacy in mobile cloud applications

Security of data transmission is an important concern in cloud
based application processing. Security and privacy are two cru-

cial concepts that need to be maintained during the offloading
process. These concepts can be addressed from different
angles: (1) Mobile device, (2) cloud data centers, and (3) during

data transmission over the network. Besides all the technolo-
gies, there is a great increase in the variety of sophisticated
attacks on mobile phones which are the main targets for

attackers. Regarding the security in the cloud data centers,
threats are basically related to the transmission of data
between the different nodes over the network. Thus, high levels

of security are expected by both the mobile clients and the
cloud providers. In the current frameworks [10,12], binary
transfer of the application code at runtime is continually sub-
jected to security threats. Despite the available solutions,

strong measures and a secure environment are required for
the three entities of MCC model.

In [39], the authors focus on optimizing tasks and compu-

tations, and they explore secure offloading of applicable linear
programming (LP) computations. In this paper, authors build
their work based on the decomposition of the LP computation

offloading into public LP solvers running on the cloud and pri-
vate LP parameters owned by the customer. To achieve an effi-
cient and validate results, the authors focus on the

fundamental duality theorem of LP computation and come
up with the essential conditions that must satisfied by correct
results. Bugiel et al. present in [40] an architecture for secure
outsourcing of data and arbitrary computations to an

untrusted commodity cloud. The architecture proposed in
their approach consists of two clouds (twins): a trusted cloud
and a commodity cloud.

The computations are divided in such a way that the trusted
cloud is mainly used for critical operations, whereas requests
to the offloaded data are processed in parallel by the fast com-

modity cloud on encrypted data.
However, the idea of dividing operations and handling

them by different clouds lead to different difficulties.
For instance, the deployment and maintenance of this
architecture of cloud will need clear modifications in the main
infrastructure.

The security threat is advancing in a quick manner more
than we can keep up with it. Security techniques need to
enhance and progress constantly to meet new changes and

new offered services. Thus, it is no longer possible to define
a security system that would solve all the security threats at
once.

5.3. Fault-tolerance and continuous connectivity

In MCC, mobility is one of the most important attributes of

SMDs. This is because freedom of movement and autonomy
of communication during the consumption of mobile cloud
services, are crucial criteria for users’ satisfaction. However,
there are some constraints that prevent the achievement of

seamless connectivity and uninterrupted access to cloud ser-
vices while on the move. As mobile users move, data exchange
rates and network bandwidth may vary. Moreover, users may

lose their connection while sending or receiving data; there-
fore, offloading approaches should be provided with suitable
fault-tolerant strategies in order to resend the lost components,

minimize the response time, and reduce the energy consump-
tion of mobile devices. It should be noted that the guarantee
of a successful execution of offloaded applications is very cru-
cial for mobile users.

5.4. Automatic mechanism

The available computation offloading frameworks still need to

be automated. This will help the offloading process to be per-
formed in a seamless fashion while discovering the surrounded
environment [5,9,14]. The achievement of such automation is

not an easy task as it needs the implementation of a protocol
dedicated to finding and discovering services depending on
the current context and its constraints.

5.5. Offloading economy/cost

Using cloud infrastructure resources imposes financial charges
on the end-users, who are required to pay according to the Ser-

vice Level Agreement (SLA) agreed on with the cloud vendor
serving them. Generally, the operations of content offloading
and data transfer between cloud providers incur additional

costs on end-users. Therefore, economic factors should be
taken into consideration while making the offloading
decisions.

5.6. Partition offloading and external data input

At runtime, it is challenging to decide which application com-

ponents need to be offloaded and to find the suitable server for
that. Algorithms answering this problem need resource-
intensive effort, which can affect the execution time of the off-
loaded partitions of the application [13].

Although existing application partitioning algorithms allow
an adaptive execution of the application between the mobile
devices and the cloud servers, they still do not provide any

solution on how to utilize and benefit from the elastic resources
in the clouds. This is specifically needed in order to make the

Table 3 Some challenges and open issues in offloading

frameworks for MCC.

Open Issues in

offloading

frameworks

Challenges to

available

offloading

frameworks

Access a distributed

platform transparently

p p

Continuous connectivity to

cloud servers

–
p

Diversity of operating

systems in mobile devices

along with the variety of

their architectures

p p

Provide an effective

execution of a process

remotely and returns result

to mobile device

p p

Mobile cloud computing for computation offloading 15
applications scalable when a large number of mobile users
need to be served and when the application requires input data

that are stored in other remote servers.
Table 3 recapitulates the main challenges to current

offloading frameworks and open research issues in MCC.

The challenges indicate the issues in the computation offload-
ing frameworks in MCC that still require more elaboration
and thorough study, while the open issues specify unresolved

problems in current offloading frameworks.

6. Conclusion

This paper discusses three main concepts: (1) cloud computing,
(2) mobile cloud computing, and (3) computation offloading.
More specifically, it presents existing frameworks for computa-
tion offloading along with the various techniques used to

enhance the capabilities of smartphone devices based on the
available cloud resources. The paper investigates the different
issues in current offloading frameworks and highlights chal-

lenges that still obstruct these frameworks in MCC. Moreover,
the paper shows the different approaches that are used by the
frameworks to achieve offloading. Some of these approaches

use static offloading while others employ dynamic offloading.
Even though there exist a variety of approaches, all of them
target the same objective which is the improvement of the

smartphone device capabilities by saving energy, reducing
response time, or minimizing the execution cost.

We notice that current offloading frameworks are still fac-
ing some challenges and difficulties. For instance, lack of stan-

dard architectures. This shortage leads to more complications
while developing and managing a proposed framework.
Finally, it is important to come up with a lightweight paradigm

or model that will help to overcome the difficulties and mini-
mizing efforts while developing, deploying, and managing an
offloading framework.

We believe that exploring other alternatives, such as intro-
ducing a middleware based architecture using an optimizing
offloading algorithm, could help better the available frame-
works and provide more efficient and more flexible solutions

to the MCC users.
Acknowledgments

This work has been funded by the Schlumberger Foundation

Faculty for the Future and Technical University of Munich.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al, A

view of cloud computing, Commun. ACM 53 (4) (2010) 50–58.

[2] R. Barga, D. Gannon, D. Reed, The client and the cloud:

democratizing research computing, IEEE Internet Comput. 15

(1) (2011) 72.

[3] B. Butler, Gartner: Cloud Putting Crimp in Traditional

Software, Hardware Sales, Networkworld, 2012.

[4] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud

computing and emerging it platforms: Vision, hype, and reality

for delivering computing as the 5th utility, Future Generat.

Comput. Syst. 25 (6) (2009) 599–616.

[5] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, C.

Killian, Eventwave: programming model and runtime support

for tightly-coupled elastic cloud applications, in: Proceedings of

the 4th annual Symposium on Cloud Computing, ACM, 2013,

p. 21.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti,

CloneCloud: elastic execution between mobile device and

cloud, in: Proceedings of the Sixth Conference on Computer

Systems, ACM, 2011, pp. 301–314.

[7] B.-G. Chun, P. Maniatis, Augmented smartphone applications

through clone cloud execution, HotOS 9 (2009) 8–11.

[8] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S.

Saroiu, R. Chandra, P. Bahl, Maui: making smartphones last

longer with code offload, in: Proceedings of the 8th International

Conference on Mobile Systems, Applications, and Services,

ACM, 2010, pp. 49–62.

[9] Y. Cui, X. Ma, H. Wang, I. Stojmenovic, J. Liu, A survey of

energy efficient wireless transmission and modeling in mobile

cloud computing, Mobile Networks and Applications 18 (1)

(2013) 148–155.

[10] J. Dean, S. Ghemawat, Mapreduce: simplified data processing

on large clusters, Commun. ACM 51 (1) (2008) 107–113.

[11] H.T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile

cloud computing: architecture, applications, and approaches,

Wireless Commun. Mobile Comput. 13 (18) (2013) 1587–1611.

[12] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, V.H.

Tuulos, Misco: a mapreduce framework for mobile systems, in:

Proceedings of the 3rd International Conference on Pervasive

Technologies Related to Assistive Environments, ACM, 2010, p.

32.

[13] I. Giurgiu, O. Riva, G. Alonso, Dynamic software deployment

from clouds to mobile devices, in: Middleware 2012, ACM,

2012, pp. 394–414.

[14] M.S. Gordon, D.A. Jamshidi, S. Mahlke, Z.M. Mao, X. Chen,

Comet: Code offload by migrating execution transparently, in:

Presented as part of the 10th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 12),

2012, pp. 93–106.

[15] K. Ha, G. Lewis, S. Simanta, M. Satyanarayanan, Cloud

Offload in Hostile Environments, Technical Report, DTIC

Document, 2011.

[16] S. Hakak, S.A. Latif, G. Amin, A review on mobile cloud

computing and issues in it, Int. J. Comput. Appl. 75 (11) (2013).

[17] J. Hauswald, T. Manville, Q. Zheng, R. Dreslinski, C.

Chakrabarti, T. Mudge, A hybrid approach to offloading

mobile image classification, in: International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE,

IEEE, 2014, pp. 8375–8379.

http://refhub.elsevier.com/S2210-8327(16)30040-0/h0005
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0005
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0005
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0010
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0010
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0010
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0015
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0015
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0015
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0020
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0020
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0020
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0020
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0025
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0025
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0025
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0025
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0025
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0025
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0030
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0030
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0030
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0030
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0030
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0035
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0035
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0040
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0040
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0040
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0040
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0040
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0040
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0045
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0045
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0045
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0045
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0050
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0050
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0055
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0055
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0055
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0060
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0060
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0060
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0060
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0060
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0060
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0065
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0065
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0065
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0065
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0080
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0080
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0085
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0085
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0085
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0085
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0085
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0085

16 K. Akherfi et al.
[18] A. Huth, J. Cebula, The Basics of Cloud Computing, United

States Computer, 2011.

[19] R. Kemp, N. Palmer, T. Kielmann, H. Bal, Cuckoo: a

computation offloading framework for smartphones, in:

Mobile Computing, Applications, and Services, Springer, 2010,

pp. 59–79.

[20] K. Kumar, Y.-H. Lu, Cloud computing for mobile users: can

offloading computation save energy?, Computer 43 (4) (2010)

51–56

[21] S. Kundu, J. Mukherjee, A.K. Majumdar, B. Majumdar, S.S.

Ray, Algorithms and heuristics for efficient medical information

display in PDA, Comput. Biol. Med. 37 (9) (2007) 1272–1282.

[22] G.A. Lewis, S. Echeverr’ıa, S. Simanta, B. Bradshaw, J. Root,

Cloudlet-based cyber-foraging for mobile systems in resource

constrained edge environments, in: Companion Proceedings of

the 36th International Conference on Software Engineering,

ACM, 2014, pp. 412–415.

[23] S. Mathew, Overview of Amazon Web Services, Amazon

Whitepapers, 2014.

[24] J. Matthews, M. Chang, Z. Feng, R. Srinivas, M. Gerla,

Powersense: power aware dengue diagnosis on mobile phones,

in: Proceedings of the First ACM Workshop on Mobile

Systems, Applications, and Services for Healthcare, ACM,

2011, p. 6.

[25] P. Mell, T. Grance, The Nist Definition of Cloud Computing,

2011.

[26] A. Mtibaa, A. Fahim, K.A. Harras, M.H. Ammar, Towards

resource sharing in mobile device clouds: power balancing

across mobile devices, ACM SIGCOMM Comput. Commun.

Rev. 43 (4) (2013) 51–56.

[27] Y. Nimmagadda, K. Kumar, Y.-H. Lu, C.G. Lee, Real-time

moving object recognition and tracking using computation

offloading, in: International Conference on Intelligent Robots

and Systems (IROS), 2010 IEEE/RSJ, IEEE, 2010, pp. 2449–

2455.

[28] H. Qian, D. Andresen, Jade: reducing energy consumption of

android app, Int. J. Network. Distrib. Comput (IJNDC) 3 (3)

(2015) 150–158 (Atlantis Press).

[29] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case

for vm-based cloudlets in mobile computing, IEEE Pervasive

Comput. 8 (4) (2009) 14–23.

[30] M. Shiraz, E. Ahmed, A. Gani, Q. Han, Investigation on

runtime partitioning of elastic mobile applications for mobile

cloud computing, J. Supercomput. 67 (1) (2014) 84–103.
[31] M. Shiraz, A. Gani, R.H. Khokhar, R. Buyya, A review on

distributed application processing frameworks in smart mobile

devices for mobile cloud computing, IEEE Commun. Surv.

Tutorials 15 (3) (2013) 1294–1313.

[32] M. Smit, M. Shtern, B. Simmons, M. Litoiu, Partitioning

applications for hybrid and federated clouds, in: Proceedings of

the 2012 Conference of the Center for Advanced Studies on

Collaborative Research, IBM Corp., 2012, pp. 27–41.

[33] M. Tulloch, Introducing Windows Azure for IT Professionals,

Microsoft Press, 2013.

[34] C. Wang, Z. Li, Parametric analysis for adaptive computation

offloading, ACM SIGPLAN Notices, vol. 39, ACM, 2004, pp.

119–130.

[35] S. Wang, S. Dey, Rendering adaptation to address

communication and computation constraints in cloud mobile

gaming, in: Global Telecommunications Conference

(GLOBECOM2010), 2010 IEEE, IEEE, 2010, pp. 1–6.

[36] F. Xia, F. Ding, J. Li, X. Kong, L.T. Yang, J. Ma, Phone2cloud:

exploiting computation offloading for energy saving on

smartphones in mobile cloud computing, Inform. Syst. Front.

16 (1) (2014) 95–111.

[37] K. Yang, S. Ou, H.-H. Chen, On effective offloading services for

resource-constrained mobile devices running heavier mobile

internet applications, Commun. Mag. IEEE 46 (1) (2008) 56–63.

[38] B. Zhao, Z. Xu, C. Chi, S. Zhu, G. Cao, Mirroring smartphones

for good: a feasibility study, in: Mobile and Ubiquitous Systems:

Computing, Networking, and Services, Springer, 2010, pp. 26–

38.

[39] C. Wang, K. Ren, J. Wang, Secure and practical outsourcing of

linear programming in cloud computing, in: INFOCOM, 2011

Proceedings IEEE, IEEE, 2011, pp. 820–828.

[40] S. Bugiel, S. Nurnberger, A. Sadeghi, T. Schneider, Twin clouds:

an architecture for secure cloud computing, in: Workshop on

Cryptography and Security in Clouds (WCSC 2011), 2011.

[41] D. Bernstein, Containers and cloud: from LXC to Docker to

Kubernetes, in: IEEE Cloud Computing 1.3, IEEE, 2014, pp.

81–84.

[42] A. Balasubramanian, R. Mahajan, A. Venkataramani,

Augmenting mobile 3G using WiFi, in: Proceedings ACM

MobiSys’10, Chicago, 2010, pp. 209–222.

http://refhub.elsevier.com/S2210-8327(16)30040-0/h0090
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0090
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0090
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0095
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0095
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0095
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0095
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0095
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0100
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0100
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0100
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0105
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0105
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0105
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0110
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0110
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0110
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0110
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0110
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0110
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0115
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0115
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0115
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0120
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0120
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0120
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0120
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0120
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0120
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0130
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0130
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0130
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0130
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0135
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0135
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0135
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0135
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0135
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0135
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0140
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0140
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0140
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0145
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0145
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0145
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0150
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0150
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0150
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0155
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0155
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0155
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0155
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0160
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0160
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0160
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0160
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0160
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0165
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0165
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0165
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0170
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0170
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0170
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0170
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0175
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0175
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0175
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0175
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0175
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0180
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0180
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0180
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0180
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0185
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0185
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0185
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0190
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0190
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0190
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0190
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0190
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0195
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0195
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0195
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0195
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0200
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0200
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0200
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0200
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0205
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0205
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0205
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0205
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0205
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0210
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0210
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0210
http://refhub.elsevier.com/S2210-8327(16)30040-0/h0210

	Mobile cloud computing for computation offloading: Issues and challenges
	1 Introduction
	2 Concepts and background
	2.1 Cloud computing
	2.2 Mobile cloud computing
	2.3 Computation offloading

	3 Offloading approaches
	3.1 Offloading steps
	3.1.1 Application partitioning
	3.1.2 Preparation
	3.1.3 Offloading decision

	3.2 Framework classes
	3.3 Framework mechanisms

	4 Comparison of offloading frameworks in mobile cloud computing
	4.1 CloneCloud
	4.2 MAUI
	4.3 Cloudlet
	4.4 Jade
	4.5 Mirror server
	4.6 Cuckoo
	4.7 Phone2Cloud
	4.8 A comparative review of some offloading frameworks

	5 General issues and challenges in computation offloading for MCC
	5.1 Platform diversity
	5.2 Security and privacy in mobile cloud applications
	5.3 Fault-tolerance and continuous connectivity
	5.4 Automatic mechanism
	5.5 Offloading economy/cost
	5.6 Partition offloading and external data input

	6 Conclusion
	Acknowledgements
	References

