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Worst-case execution time (WCET) is a parameter necessary to guarantee timing constraints on real-time
systems. The higher the worst-case execution time of tasks, the higher will be the resource demand for
the associated system. The goal of this paper is to propose a different way to perform loop unrolling on
data-dependent loops using code predication targeting WCET reduction, because existing techniques
only consider loops with fixed execution counts. We also combine our technique with existing unrolling
approaches. Results showed that this combination can produce aggressive WCET reductions when com-
pared with the original code.
© 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

WCET is an important parameter necessary for the development
of real-time applications and systems. Usually denoted by C, or
computation time of a task, this parameter is required by virtually
all scheduling strategies that can be used to guarantee that all tasks
of a given real-time system will meet their deadlines [1-3]. The
schedulability of a real-time system can be enhanced if we reduce
tasks’ worst-case execution times and consequently the processor
demand. For this objective, we can employ a faster processor,
which is usually an expensive approach, or optimize the software
responsible for the tasks function. The second approach can be per-
formed automatically at compile time using code optimization
strategies, as done by [4,5].

The key aspect of optimizations directed to WCET reduction is
the use of timing analyzers to evaluate the result of code transfor-
mations in terms of WCET. Such timing analyzers are frequently
connected with compilers to inform if a code transformation
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increases, decreases or has no effect concerning WCET. This com-
piler integration with WCET analyzers is important to discover
which path is responsible for generating the worst-case execution
time, and to track any path change due to successive code
transformations.

Loops are frequently good target candidates for compiler opti-
mizations to extract performance of modern processor architec-
tures. Loop unrolling is a well-known technique used to improve
average-case performance of programs. This technique consists in
replicating the loop body for a certain number of times to avoid
branch and jump overhead and to reduce the number of incre-
ment/decrement operations, inserting extra code to verify exiting
corner cases, if necessary. The number of body replications is often
called unrolling factor and the original loop is called rolled loop.

Loop unrolling can contribute to improve the instruction level
parallelism (ILP) and execution performance of programs, by
enabling more optimization that are affected by code expansion.
Although, this code expansion can lead to instruction-cache perfor-
mance degradation, if not carefully applied. If loop unrolling is
applied before the register allocation phase, register pressure can
be increased, leading to the insertion of more spill and reload oper-
ations in the code. However, a standard compiler cannot use loop
unrolling directly if worst-case execution time (WCET) reduction
is desirable, due to the instability of the execution path that gener-
ates the worst possible execution time and negative cache effects.
Some techniques were proposed in the literature to achieve WCET
reduction using loop unrolling, as in [4,6]. In these works, loops are
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carefully unrolled to promote WCET reduction and limit code
increase. But, only loops with fixed execution counts are
considered.

The contribution of this paper is twofold. Firstly, we propose an
alternative way to perform loop unrolling on loops with arbitrary
(or variable) execution counts. Traditionally, loops with unknown
execution counts are unrolled with fixed unrolling factors, with
the corner conditions (i.e, the unrolling factor is not a multiple of
the number of iterations) treated with branch instructions. The
approach adopted in this work is to treat the same corner condi-
tions using code predication instead of instructions that perform
control flow changes. Code predication is already used in software
pipelining of loops, but its application directly with loop unrolling
was not reported in the literature. Code predication also can be
explored using a transformation called If-Conversion, which is a
standard compiler optimization that converts control dependen-
cies into data dependencies, removing branches.

The second contribution of this paper is the combination of our
technique with other standard unrolling approaches for data
dependent loops and loops with fixed execution counts. In this
way, we can decide on a per loop level which of the approaches
should be used for loop unrolling. This combination of techniques
is important because not every loop can be unrolled in the same
way. For example, loops with variable number of iterations must
include compare and branch instructions to treat different exit
conditions, but loops with static execution counts can be unrolled
without these instructions. The necessity of compare and branch
instructions is not the only difference when unrolling these two
types of loops, but the selection of a valid unrolling factor is also
different. In loops with a static number of iterations, we can only
consider unrolling factors that perfectly divide such number of
iterations. Until the present moment, no work addressing the com-
bination of different unrolling techniques was identified in the
literature.

We evaluated the results on an experimental processor, which
implements a subset of the very long instruction word (VLIW)
ST231 ISA that was extended to support a simplified full-
predication mechanism.

The remainder of this paper is organized as follows: Section 2
outlines the related work on loop unrolling directed to WCET
reduction. Section 3 shows the motivations of this work. Section 4
explains the proposed approach to perform loop unrolling target-
ing real-time applications. In Section 5 we describe briefly our
testbed. Section 6 presents the obtained results using a benchmark
suite. In Section 7 presents our conclusions and final remarks.

2. Related work

The first work that concerns WCET reduction using loop unrol-
ling, consists in applying this optimization directly at assembly
level [4]. In this work, only innermost loops with fixed number
of iterations are unrolled and the unrolling factor used for all loops
is 2. Although, not all candidate loops are unrolled, but only those
that are present in the worst-case execution path (WCEP), and they
are kept unrolled only if WCET reduction is achieved. At every opti-
mization application, the WCET information must be re-calculated
to update the worst-case path information that drives the algo-
rithm. This recalculation is necessary because any code change that
affects the WCET may result in a WCEP change. These WCET recal-
culations are a common strategy employed by compilers focused in
worst-case execution time reduction. Experiments using a proces-
sor with no caches showed that a WCET reduction up to 10% was
achieved for all benchmarks.

Another approach to perform loop unrolling aiming at WCET
reduction was proposed in [6]. Here, the optimization is applied

at the source code level and uses a processor with instruction
cache and scratchpad memory. As the optimization is applied at
the source code level, the success of next optimizations performed
by the compiler is enhanced, specially for those that benefit from
code expansion. The key aspects of the technique are: (1) choose
the most profitable loops concerning WCET reduction and (2) cal-
culate an unrolling factor considering memory constraints. Conse-
quently, the algorithm balances memory utilization and WCET
reduction.

Both the previously presented approaches consider only loops
with fixed number of iterations. In fact, both techniques can be
used to unroll loops with arbitrary counts or data-dependent loops,
providing necessary code to exit the loop when the termination
condition is reached. This code is commonly generated as branch
instructions.

If-Conversion [7] is a technique used to convert control depen-
dencies into data dependencies. The basic principle consists in
eliminating gotos and branches and inserting logical variables to
control the execution of instructions in the program. If-
Conversion can be performed at IR-level or machine-level as stated
by [8] and is related to region enlargement techniques used to
expand the instruction scheduling scope beyond a single basic
block, which is specially beneficial for very long instruction word
machines (VLIW).

The application of If-Conversion techniques in loops is not a novel
idea. Software pipeline [9] can benefit from If-Conversion and code
predication to control the execution of prologue and epilogue of
pipelined loops [10]. Another technique that can benefit from If-
Conversion is loop flattening [11]. Loop flattening is a form of soft-
ware pipelining that merges nested loops into a single loop body,
providing necessary code to control the execution and the flow of
data between blocks. In [12] If-Conversion is used to eliminate
back-edges of flattened loops. The next section outlines the motiva-
tion and the key ideas behind the proposed unrolling technique.

3. Motivation

We can consider the loop of the code listing of Listing 1 as a
motivational example. This code shows a loop with the number
of iterations dependent on the value of a variable (called data-
dependent loop). For this loop, a compiler commonly generates a
control flow structure that is shown in Fig. 1. In this structure, a
simple for loop has two basic blocks called header and body which
are surrounded by an entry and an exit basic blocks.

There are some approaches to perform the loop unrolling opti-
mization considering this loop. The simpler strategy consists in
optimizing only loops with fixed counts. In this case, the compiler
chooses an unrolling factor that exactly divides the number of iter-
ations of the loop. If a compiler is able to optimize data-dependent

1| void loop (int a){

2 int i, j =0, k = 0;
3

4 for(i = 0; i < a ; i++4+){
5 j++s

6 k++;

7 }

8|}

9

10| int main(int a){

11 loop (90) ;

12|}

Listing 1. Simple data-dependent loop.



186 A. Carminati et al./Applied Computing and Informatics 13 (2017) 184-193

Fig. 1. Control flow graph of Listing 1.

loops with unknown number of iterations, it must take care of left-
over iterations. Another problem with data-dependent loops is the
difficulty to choose an effective unrolling factor.

Listing 2 shows the application of loop unrolling on the data-
dependent loop of Listing 1 (in C code for simplicity). Is this case,
if the compiler is not able to calculate the number of iterations
for the loop, or determine whether this number is odd or even, it
must check the exit condition on every body replication, as done
by the if statements. This condition checking leads to a control flow
graph that is shown in Fig. 2.

Note that with this approach, the number of branching instruc-
tions is augmented, also increasing the number of basic blocks.
From the WCET perspective, by increasing the number of basic
blocks, we increase the search space that contains the worst-case
execution path that produces the WCET. From the code generation
point of view, a branch may need up to 3 intermediate operations
that are not necessarily in this order: (1) condition calculation, (2)
target address calculation and (3) branch execution. Depending on
the target architecture, all previous operations are executed by one
instruction or are segmented in sequences of 2 or 3 instructions.

Considering the use of a target architecture with instruction
predication support, it is possible to remove branch operations (if
any) from loops that are unrolled. For this purpose, we can con-
sider the loop of Listing 3 and its respective CFG shown in Fig. 3.
This loop is semantically equivalent to the loop of Listing 2. If we
can rewrite an unrolled loop in terms of conditional expressions,
as done to Listing 2 to obtain Listing 3, it is possible to apply If-
Conversions to the code. Until the writing of this paper, no tech-

1| void loop (int a){

2 int i,j = 0,k = 0,1 = 0;
3

4 for(i = 0; i < a; i+=1){
5 1 = 0;

6 J++s

7 k++;

8 14+;

9 if (i+1 >= a) break;

10 i+

11 k++;

12 1++4

13 if(i+l >= a) break;

14 i+

15 k++;

16 14+

17 }

18] }

Listing 2. Unrolled loop.

header

Fig. 2. Control flow graph of Listing 2.

1| void loop(int a){

2 int i, j = 0, k = 0;
3

4 for(i = 0; i < a;){
5 j++;

6 k++;

7 i++;

8

9 if(i < a){

10 j++;

11 k++;

12 i4++;

13

14 if(i < a){

15 J++;

16 k++;

17 44

18 }

19 }

20| }

Listing 3. Unrolled loop rewritten with conditional expressions.

niques exist in the literature to perform these transformations to
unrolled data-dependent loops. As we stated before, If-Conversion
is an optimization technique that converts control dependence into
data dependence through the definition of guards to control the
execution of instructions. If the target architecture supports
instruction predication, If-Conversion can result in branchless code,
reducing code size and number of basic blocks. Generically, an
application of If-Conversion to the code of Listing 3 would produce
the control flow graph of Fig. 4. The prefix (p) means that the exe-
cution of the basic blocks body 2 and body 3 are conditioned to
some predication guard p.

From the WCET perspective, the common behavior of analyzers
is to consider the complete execution of the loop iterations. In this
way, the last iteration will be considered fully executed, even with
the possibility of an early loop exit if the condition is reached. If a
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Fig. 3. Control flow graph of Table 3.

body 1
(p)body 2
(p)body 3

Fig. 4. Control flow graph representing an If-Conversion of the code from Listing 3.

loop is always fully executed in the worst case, it is beneficial to
reduce the number of instructions of the unrolled loop, and if pre-
mature exits will never be taken (branch instructions), we can
eliminate them from the code using predication. Using code pred-
ication we decrease the number of instructions while preserving
the semantics of the code.

In the next section, we present our approach to perform loop
unrolling which applies simultaneously code predication directly
in machine code. The technique starts from a simple data-
dependent loop and directly generates an unrolled and predicated
version, as done step-by-step in this section. The main improve-
ment of our approach is that it avoids the use of branch instruc-
tions, differently from what is usually done by traditional
techniques.

4. Our loop unrolling approach

Our loop unrolling algorithm performs code predication in con-
junction with the unrolling steps. In this way, sophisticated If-
Conversion strategies can be avoided. The algorithm must be used
directly in assembly representation. The architectural requirement
of the technique is the existence of full-predication mechanisms to
control the execution of instructions. As example of such mecha-
nisms, we can cite IA-64 [13] and ARM [14] (except for Thumb
instructions). The technique also benefits from branches that are
segmented in sequences of more than one operation.

The steps to unroll a loop are shown by Algorithm 1. The algo-
rithm assumes that every loop that will be unrolled is composed by
a header and a body. This constraint must be ensured by the caller
of the algorithm procedure. Another requirement is the implemen-
tation of loop headers with compare instruction followed by
branch instructions to control the loop exit.

Algorithm 1. Predicated Loop Unrolling algorithm.

1: procedure prepicATEDLOOPUNROLLING(LoOpD, U, P)
>Unroll loop u times

2: Header «— loopHeader(Loop)

3: Body < loopBody(Loop)

4: remowveUncondBranch(Body)

5: BodyCopy « createCopy(Body)

6: fori—1toU-1do

7: NewHeader — createCopy(Header)

8: removeConditionalBranch(NewHeader)
9: changeCompareOutput(NewHeader, P)
10: Body — unify(Body, NewHeader)

11: NewBody « createPredCopy(BodyCopy, P)
12: Body < unify(Body, NewBody)

13: end for

14: insertUncondBranch(Body, Header)

15: end procedure

The algorithm works as follows: First, header and body are
identified, which is done by Lines 2 and 3. The second step removes
the unconditional branch from the loop body to the header. This
branch instruction will be re-inserted at the end of the algorithm,
as a last instruction (Line 14). The next step is to unroll the loop
using the provided unrolling factor, using the original loop body
as first copy.

For each unroll step, we create a copy of the header, converting
control flow instructions into instructions that control the predica-
tion of subsequent copies of the loop body (Lines 7-10). Then, we
make a predicated copy of the body that is amended at the end of
the original body (Lines 11 and 12). The algorithm basically
removes forward branches used to exit the loop and inserts boo-
lean guards to control the execution of the remaining part of the
loop. These guards are stored in the P variable.

It is relevant to notice that the first copy of the loop body does
not need to be predicated, because the header condition verifica-
tion ensures that at least one iteration (in relation to the rolled
loop) must be executed, otherwise the loop must be already termi-
nated. In this way, the first copy of the body represents exactly the
original basic block of the loop.

4.1. Example

As an example, the algorithm is applied to the Listing 1. The
assembly code dialect used is referent to the ST231 ISA, which is
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also used in our testbed. We omit bundles delimitation in code list-
ings for simplicity. Before the unroll, the sequence of instructions
generated is shown in Listing 4.

After the application of the algorithm and using an unrolling
factor of 2, we obtain the code as shown in Listing 5. The sequence
(p) means that the operation execution is conditioned to the con-
tent of the flag register p, which is a common notation of predi-
cated code. For comparison purposes, the same code is unrolled
in the standard way as shown in code listing of Listing 6. Compar-
ing the two approaches, we can see that the predicated version
presented fewer instructions than the standard counterpart (with
branches).

4.2. Combining loop unrolling techniques

As each loop unrolling technique can be applied to a set of loops
that share a certain characteristic, makes more sense to combine
the techniques to get a more aggressive WCET reduction, instead
of comparing them. In this way, we decide in a per loop level which
approach should be applied.

Depending on loop attributes, we consider three unrolling
alternatives:

1 add $r8 = $zero, O
2 add $r9 = 8$zero, O
3 add $r10 = $zero, O
4| HEADER:

5 cmplt $br0, $r9, $rl6
6 brf $br0, $EXIT

7| BODY :

8| add $r10 = $r10, 1
9 add $r8 = $r8, 1

10 add $r9 = $r9, 1

11 goto $HEADER

12| EXIT:

13

14

15

16

17

18

Listing 4. Example of loop in assembly code.

1 add $r8 = $zero, O
2 add $r9 = $zero, O
3 add $r10 = $zero, O
4| HEADER::

5 cmplt $br0, $r9, $r16
6| brf $br0, $EXIT

7| BODY:

8| add $r10 = $rio0, 1
9 add $r8 = $r8, 1

10 add $r9 = $r9, 1

11 cmplt $p, $r9, $ri16

12 (p)add
13 (p)add
14 (p)add

$r10 = $r10, 1
$r8 = $r8, 1
$r9 = $r9, 1

15 goto $HEADER
16| EXIT:

17

18

Listing 5. Example of unrolled loop using code predication.

1 add $r8 = $zero, O

2 add $r9 = $zero, O

3 add $r10 = $zero, O
4| HEADER:

5 cmplt $br0, $r9, $rl16
6| brf $bro, SEXIT

7| BODYO:

8 add $r10 = $r10, 1

9 add $r8 = $r8, 1

10 add $r9 = $r9, 1

11 cmplt $br0, $r9, $rl6
12|  brf $br0o, SEXIT

13| BODY1:

14 add $r10 = $r10, 1
15 add $r8 = $r8, 1
16 add $r9 = $r9, 1
17 goto $HEADER

18| EXIT:

Listing 6. Example of unrolled loop using the standard approach.

Standard without branches

For loops that are not data-dependent (fixed execution counts), we
can use the simplest loop unrolling approach. This approach repli-
cates the loop body using an unrolling factor that divides the exe-
cution count of the loop. As this approach is a common strategy
considering compiler optimization, we will omit its representation
in pseudo-code. If we use this approach, we will refer to
simpleLoopUnrolling(loop, unrollingFac) as the algorithm represen-
tation and its parameters.

Standard with branches

For data-dependent loops with some kind of control flow change
inside of the loop body, we can use loop unrolling with compare
and branch instructions to exit the loop when the condition is
reached. For simplicity, we apply this unrolling alternative to loops
with call instructions in the body. This approach is also a common
strategy considering compiler optimization, and we will omit its
representation in pseudo-code. If we must use this approach, we
will refer to branchedLoopUnrolling(loop, unrollingFac) as the algo-
rithm representation and its parameters. This approach cannot
be used with function inlining, although this is not a problem
because we do not use this type of optimization for two reasons:
(1) we do not apply any optimization when we cannot quantify
WOCET effects. (2) with inlining, we lose the one-to-one mapping
between the object code and source code, which is necessary to
perform WCET calculation.

Predicated

For data-dependent loops with simple loop bodies, we can use the
predicated version. We cannot use this type of unrolling in loops
with call instructions because condition or flag registers are not
commonly exposed to the calling conventions used in processors.
If we had to save the flag registers, it would be better to use the
previous approach. We will call this approach as predi-
catedLoopUnrolling, as presented by Algorithm 1.

Algorithm 2 chooses the adequate unrolling technique through
inspection of the loop characteristics. The field loop.uf represents
the unrolling factor that must be used for a specified loop. We can-
not choose unrolling factors arbitrarily if our objective is WCET
reduction. In the next section, we will show how to use WCET
information to choose adequate unrolling factors.
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Algorithm 2. Optimization algorithm that is executed by the
compiler.

1: procedure OprimizELOOPS( Program)

2 LooplList — getLoops(Program)

3 for each loop € LoopList do

4 if not loop.isDataDep then

5: simpleLoopUnrolling(loop, loop.uf)

6 else if loop.hasCall then

7 branchedLoopUnrolling(loop, loop.uf)
8

LoNg

else
predicatedLoopUnrolling(loop, loop.uf , P)
10: end if
11: end foreach

12: end procedure

In relation to the predication flag that must be given as param-
eter of Algorithm 1 in Line 9, the same register can be used to hold
all conditions for all loops, because each copy of the loop body
must be guarded by only one condition, i.e., that related to the exit
condition of the loop, which is updated before the execution of this
body copy. In this way, we can pass any register or flag that can be
used to predicate instructions. In this algorithm, we consider can-
didates for loop unrolling: (1) innermost loops and (2) loops com-
posed by two basic blocks header and body, as the example of
Fig. 1. We use these restrictions to process only small loops, where
we can easily achieve gains using loop unrolling.

4.3. Ensuring WCET reduction by unrolling factor selection

The previous algorithm is responsible for unrolling the loops of
a program using a set of unrolling factors. It is also necessary to
choose a unrolling factor for each loop that minimizes the WCET.
As we are interested only in verifying the effectiveness of our tech-
nique, we are not concerned in choosing an optimal unrolling fac-
tor considering code increase and WCET reduction.

We adopted a scheme that tries to iteratively choose an unrol-
ling factor for each loop in the program. If the loop has no impact
on the worst-case execution time, i.e. resides outside the WCEP
(worst-case execution path), it will be kept rolled, otherwise it will
be unrolled. The set of unrolling factors will vary according to char-
acteristics of the loop, such as data dependency and parity of exe-
cution counts.

If the unrolled loop increases the WCET, then it will be also kept
rolled. Otherwise it will be maintained unrolled using the factor
that best minimizes the WCET considering the previously consid-
ered ones from the set. Each loop is processed exactly once, and
after each loop handling the WCET (and WCEP) information must
be updated to guide the treatment of the next loops. To verify if
a WCET increase occurs, it is necessary to perform a program
recompilation and an invocation to the WCET analyzer. We do
not reconsider loops in case of path changes, since typically all
loops in a program are on the WCEP, as stated by [6]. We only
check if the current loop is on the WCEP.

Algorithm 3 presents our approach for selection of unrolling
factors. This algorithm is designed to be executed as a complemen-
tary part of the compilation process, and can be implemented as a
separated tool. Regarding the flow of information point of view, it
is necessary the following interactions between the compiler and
the algorithm:

e Compiler — Algorithm: the compiler must export all informa-
tion related to all loops that can be unrolled. The information
must allow the correlation between the loops and the worst-
case execution time related data. Execution counts must be
exported as well. In case of data-dependent loops, execution
counts can be provided as annotations in the source code, for
example. These execution counts are also necessary for the cal-
culation of the worst-case execution time.

e Algorithm — Compiler: The algorithm can provide unrolling
factors for all loops that were exported for a determined pro-
gram. If such unrolling factors are not provided, the compiler
keeps the loops rolled. To decide which unrolling factor to
use, the algorithm uses WCET analysis and loop information.

As we can see, the previous relation between compiler and algo-
rithm forms a cyclic and incremental approach to optimize loops.
The parameter of Algorithm 3 is the representation of a compiled
program. The first step of the algorithm is to retrieve a list of
(exported) loops of the program representation (Line 2) followed
by a WCET analysis (Line 3). The main loop of the algorithm iter-
ates over the loop list (Line 4), considering only loops that are in
the WCEP (Line 5). Then, we assume that it will be kept rolled (Line
6) if its is not possible to choose an unrolling factor. The next step
consists into test different unrolling factors in the interval [2,17]. If
a loop can be unrolled, we have basically two alternatives to con-
sider an unrolling factor as valid:

Data independent loops for data-independent loops (Line 8), the
unrolling factor must exactly divide the
execution count of the loop (Line 9),
because we do not want to generate
instructions to control the reaching of
the exit condition inside the replicated
copies of the body.

Data dependent loops for data-dependent loops (sentence of
Line 8 is evaluated to false) we do not
test if the unrolling factor divides the
execution count, because leftover itera-
tions are treated explicitly by compare
and branch or compare and predicate
instruction, depending on the
approach. However, we use a heuristic
approach that considers factors whose
parity is equal to the loop bounds’ par-
ity (Lines 13).

Note that a loop can have more than one possible unrolling fac-
tor from the interval [2,17]. In this case, we will use the one that
most reduces the WCET. Experience says that even small unrolling
factors can produce instruction cache degradation, so, the interval
[2,17] is able to cover a useful range of unrolling factors for real
programs. Although, depending on the compiler used and proces-
sor characteristics, these values can be tuned experimentally. If
such unrolling factor exists, we recompile the program and test
for WCET changes. In case of WCET increase (Line 21), we use
the last chosen unrolling factor (Line 22) and skip to the next loop.
Otherwise we use the actual factor updating the WCET (Line 24
and 25).

The algorithm only cares about data dependency and parity of
execution counts to choose unrolling factors. The final decision
about which unrolling approach must be applied to data-
dependent loops is left to the compiler that implements Algorithm
2.
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Algorithm 3. Algorithm that defines unrolling factors for all
optimizable loops in Program.

1: procedure caLculATEUNROLLINGFACTORS(Program) >
Algorithm executed by the optimization planning tool

2 LooplList — getLoops(Program)

3 wecetData — calculateWCET (Program)

4 for each loop < LooplList do

5: if isinWCEP(loop, wcetData) then

6: lastUF — 0

7 fori—2to17 do

8: if not loop.isDataDep then

9: if not divides(loop.bound, i) then

10: continue

11: end if

12: end if

13: if parity(loop.bound) = parity(i) then

14: loop.uf — i

15: recompile(Program)

16: newWocet «— calculateWCET (Program)

17: if newWcetData.value >= wcetData.
value then

18: loop.uf « lastUF

19: else

20: wcetData — newWcetData

21: lastUF — i

22: end if

23: end if

24: end for

25: end if

26: end for each

27: end procedure

The time complexity of Algorithm 3 is O(n?), where n is the
number of loops. In fact, there will be, for any program, one initial
invocation to the analyzer to estimate the WCET and other invoca-
tions for each loop to test the considered unrolling factors, giving a
total of 1+ 16 x n invocations to the analyzer. The worst case
occurs when all loops are data independent and can be divided
by factors in the interval [2,17]. In practice, this situation only
occurs when the loop count represents a common multiple of all
considered unrolling factors. For each loop considered in this algo-
rithm, an invocation to recompile(Program) must be performed
(Line 15). In this invocation, all loops will be unrolled (Algorithm
2 is invoked inside the compiler), justifying the quadratic complex-
ity. Although our approach is simple, complex heuristics that try to
balance code expansion and WCET as proposed by [6] can be
applied as well. Our combination of loop unrolling strategies can
increase the compilation time due to the fact that we need to pro-
cess more code that in the original program. Choosing adequate
unrolling factors can also increase considerably the compilation
time due to the necessity of WCET analyses. As pointed by [6], per-
formance improvements are a primary focus of embedded systems,
being longer compilation times of less importance.

5. Evaluation

To evaluate the technique proposed in this paper we conducted
experiments using an architecture with a simplified complete
predication support. In the next subsections, we will give a short
description of the target architecture, compiler support and WCET
analyzer. The concluding part of this section presents numerical

results obtained from the use of the proposed technique applied
to a set of benchmarks commonly used in the literature.

5.1. Target architecture

The architecture used to evaluate the proposed technique was
an experimental deterministic 32-bit microprocessor [15,16] with
RISC instructions that follows a subset of the HP VLIW ST231 ISA
[17]. The processor has a VHDL model, which can be both simu-
lated and synthesized to a FPGA. This processor has a VLIW (very
long instruction word) design. VLIW is a design philosophy where
the hardware is not only exposed by instructions but the instruc-
tion level parallelism (ILP) is exposed as well. Since the processor
is intended for real-time applications, n-associative or shared
caches and out-of-order execution are not utilized. The processor
has an instruction cache memory comprising 32 lines with 256 bits
per line forming a 1024 kb direct-mapped cache memory. The pro-
cessor does not have a data cache, but has a scratchpad memory.

The processor has a four issue five stage static scheduled pipe-
line. Each instruction (or bundle) encodes up to four operations
that will be dispatched in parallel. The used processor has an ISA
extension that enables code predication in a simplified way
through the thirtieth bit, which is otherwise unused. If an opera-
tion has its 30th bit enabled, then the result of the instruction will
only be committed if the predication flag is configured to true. If
the predication flag has false as value, then the operation will pro-
duce no effect (or nop). The predication flag is a 1-bit register that
can be accessed through comparison instructions. This flag is con-
nected to the branch register number 4 that is already defined by
the ISA. In this way, the branch register number 4 controls the exe-
cution of predicated instructions.

5.2. Compiler and WCET analysis

We used a custom compiler back-end developed for the target
architecture using the LLVM [18] infrastructure. The compiler also
produces all necessary information for WCET calculation, as an
annotated CFG containing information like loop bounds and map-
pings between CFG nodes (basic blocks) and a target program code.
For data-dependent loops, worst-case execution counts (or
bounds) must be provided through source code annotations.

We also used a custom WCET analyzer implemented in C++,
that produces cycle-accurate estimates of the worst-case execution
time for the target architecture considering the program binary
and the data produced by the compiler. This WCET analyzer pro-
duces an annotated CFG that includes worst-case counts for each
basic block and a single numerical value that represents the calcu-
lated WCET.

The unrolling technique was implemented in our back-end at
the end of machine code generation. It is difficult to perform
WCET-oriented optimization using LLVM due to its highly opti-
mized pass-manager that isolates the treatment of each function
of a compilation unit. Due to this fact, we cannot optimize the pro-
gram as a whole aiming at WCET reduction using the standard
LLVM pass-manager because the generated code is only fully mate-
rialized at the end of the complete process. Moreover, the pass-
manager deallocates any machine related code representation
structures of a function after writing its generated object code to
file at the end of the pass-manager execution. So, when we can
finally calculate the WCET of a program, we cannot use this data
to change the code (optimization application), because the needed
intermediate structures no longer exist. Due to this fact, strategies
like that proposed by [5], where the analyzer is invoked directly by
the compiler to take optimization decisions cannot be used.

To overcome this limitation, we adopted an approach similar to
[19]. In this approach, a tool in a higher or planning level is
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responsible to select the parts of the program that must be opti-
mized, using WCET information as guidance. This tool shares a
database with the compiler that is used as communication chan-
nel. This database stores facts about the structure of the program
and values that specify if such structure must be touched by a
specific optimization. The tool invokes the compiler to generate
the object code and data used as input for the WCET analyzer. After
that, WCET information is obtained through the WCET analyzer.
Using this information, the planning tool updates the database
using heuristics like the one proposed in Section 4.3, which
chooses the loops and unrolling factors and invokes the compiler
again. This task repeats until WCET stabilization or when the entire
code is already analyzed by the planning tool.

Using this strategy, we can perform any WCET-oriented opti-
mization in an iterative way. Optimizations must keep consistency
between the transformed code and the annotations provided in the
source. In this way, if a data-dependent loop is unrolled, the execu-
tion bound provided as an annotation must be updated before the
WCET calculation. A simplified diagram of our tools and their con-
nection can be seen in a figure on the Supplementary material. As
we can see, both LLVM infrastructure and planning tool share a
data-base containing information about loops, which is empty on
the first program compilation. From the first compilation, the plan-
ning tool can invoke the WCET analyzer tool and execute Algo-
rithm 3 to choose an unrolling factor for each loop.

6. Results

We used the Malardalen WCET benchmarks [20] to evaluate the
effectiveness of the proposed technique. These benchmarks are
widely used to evaluate and compare methods and techniques
related to WCET analysis. We excluded benchmarks with indirect
recursion. We considered a constant time for complex library func-
tion calls, as those that are used to handle floating point numbers.
The description of each benchmark can be seen in a table on the
Supplementary material.

The results of the experiments are shown in Table 1. The col-
umn Initial WCET shows the WCET of the benchmark without the
application of the loop unrolling. Initial code size presents the size
of the code (in bytes) in this initial scenario. Optimized WCET pre-
sents the WCET of the optimized version with its respective code
size (Optimized code size). The columns WCET reduction and Code
increase present the percentage of WCET reduction and its relative

Table 1
Obtained results

code augmentation, respectively. WCET reduction is calculated as
Initial WCET Qptimized WCETInitial WCET x 100 and Code increase as

Optimized code size_Initial code size , 10(), We omitted in this table bench-
marks where no gain was obtained. In this way, a total of 18 from
33 benchmarks are shown.

Table 2 shows how many loops of each type were unrolled and
the maximum unrolling factor (Max. uf) in each benchmark.

Analyzing the obtained results, we can see that the combination
of techniques was able to reduce the WCET of half of the bench-
marks. For example, considering the adpcm.c benchmark, we
achieved a small WCET reduction (1.19%) in contrast with a higher
code increase (31.10%). If we look at Table 2 we can see that two
loops of adpcm.c were unrolled (one with fixed execution count
and another with a call instruction), and the maximum unrolling
factor used was 2. On the other hand, we can see a high WCET
reduction for the exptint.c benchmark, with less code increase then
in the adpcm.c. In this benchmark, only one loop was unrolled, with
an unrolling factor of 7. The average WCET reduction considering
all benchmarks was 6.72%, while the average code increase was
15.56%. As maximum values, we got 32.44% and 80.19%, for WCET
reduction and code increase, respectively.

Table 2
Obtained results

Benchmark Simple With pred. With branch Max. uf

adpcm.c
bsort100.c
cnt.c
compress.c
cre.c

duff.c
edn.c
expint.c
fft1.c

fir.c
insertsort.c
jfdctint.c
Ims.c
ludcmp.c
matmult.c
ndes.c
gsort-exam.c
st.c

w
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Benchmark Initial WCET Initial code size Optimized WCET Optimized code size WHCET reduction (%) Code increase (%)
adpcm.c 19,607 10,208 19,373 14,816 1.19 31.10
bsort100.c 272,623 432 271,985 560 0.23 22.86
cnt.c 9046 752 8566 864 5.31 12.96
compress.c 140,139 4912 137,162 5488 2.12 10.50
cre.c 113,846 2048 112,671 2624 1.03 21.95
duff.c 1859 592 1397 816 24.85 27.45
edn.c 96,871 2336 73,042 3296 24.60 29.13
expint.c 113,473 1540 76,661 1812 32.44 15.01
fftl.c 1,034,634 19,984 727,844 44,272 29.65 54.86
fir.c 509,930,221 976 444,387,758 1616 12.85 39.60
insertsort.c 2720 304 2111 432 22.39 29.63
jfdctint.c 3947 1264 3568 1536 9.60 17.71
Ims.c 352,360,015 14,016 303,674,957 70,768 13.82 80.19
ludcmp.c 43,902 3296 43,622 4320 0.64 23.70
matmult.c 268,362 1008 225,657 1968 15.91 48.78
ndes.c 146,612 5376 144,282 7248 1.59 25.83
gsort-exam.c 503,582 2528 480,816 2784 4.52 9.20
st.c 1,480,353 5088 1,198,582 5856 19.03 13.11
Average 6.72 15.56

Maximum 3244 80.19
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Table 3
Comparing predicatedLoopUnrolling with branchedLoopUnrolling

Benchmark  Branched unroll. WCET  Branched code size Predicated unroll. WCET  Predicated code size =~ WCET reduction (%)  Code size reduction (%)
compress.c 138,875 5968 137,162 5488 1.23 8.04

duff.c 1515 912 1397 816 7.79 10.53

edn.c 73,181 3072 73,042 3296 0.19 -7.29

fftl.c 727,868 44,272 727,844 44,272 0.00 0.00

fir.c 509,930,221 976 444,387,758 1616 12.85 —65.57

insertsort.c 2720 304 2111 432 22.39 -42.11

Ims.c 305,531,002 83,248 303,674,957 70,768 0.61 14.99

Our approach could be applied to 7 benchmarks, which are com-
press.c, duff.c, edn.c, fft1.c, fir.c, insertsort.c and Ims.c. To understand
how much WCET reduction we can achieve with the predicated
loop unrolling, we unrolled those three benchmarks with the bran-
chedLoopUnrolling instead of predicatedLoopUnrolling algorithm,
because every loop that can be unrolled with the last method
can be unrolled with the first as well. The results are shown in
Table 3. We can observe that the predicated loop unrolling has
noticeable effects considering the duff.c, fir.c and insertsort.c bench-
marks. For insertsort.c and fir.c benchmarks, using the branched
approach, we simply do not achieve WCET reduction, so the loop
is kept rolled, which also explains the difference in code sizes. As
we can see, the predicated approach, even with its limited applica-
bility, can exploit cases where the standard approach fails to get
WCET reduction. In the edn.c case, we achieved WCET reduction
with negative code decrease because the algorithm could use a
higher unrolling factor with the predicated version (9 instead 5
for a branch).

It is important to say that these results can be enhanced using
heuristics to find better unrolling factors to control code expansion
[6], which is out of the scope of this paper.

7. Conclusion

The correct scheduling of tasks in a real-time system demands
the knowing of the worst-case execution time of each of these
tasks. The higher the worst-case execution times, the higher will
be the resource demand for the associated system. To reduce the
WCET of tasks, one approach that was proposed in the literature
consists in applying compiler optimizations on the software that
implements the task’s behavior in a feedback oriented way. Since
worst-case reduction is the objective, WCET timing analyzers pro-
vide this feedback, instead of execution profiles commonly used in
average-case optimization. Loop unrolling for WCET reduction is
considered by [4,6]. Though, in both works only loops with fixed
iteration counts are unrolled.

We proposed in this paper an alternative way to perform loop
unrolling with arbitrary iteration counts. Traditionally, this type
of loop is unrolled using compare and branch operations to control
different exit conditions or contexts. What we propose is the use of
code predication to control the loop execution under different exit
conditions, since worst-case analyzers tend to consider that each
loop, even unrolled, is always fully executed up to its execution
bound. The approach can be used in architectures with full predi-
cation support and is better applicable when branch operations
are segmented in more than one step.

We introduced an algorithm that performs this code transfor-
mation directly at the machine code level (or assembly). In our
framework, each data dependent loop of each benchmark is anno-
tated with a safe loop bound that represents an upper bound on
the execution count. After loop unrolling application, the annota-
tion is transformed to reflect the new loop bound of the unrolled
loop. Since our technique does not depend on branches, the num-
ber of instructions is reduced and the instruction scheduling scope

is enhanced, as the whole body of the unrolled fits in a single basic
block. This scope enhancement can enable more optimizations to
be applied to the code.

We also proposed a strategy that selects which unrolling tech-
nique to apply in a per loop basis. For loops with fixed execution
counts, we applied the standard technique that unrolls loops using
unrolling factors that perfectly divide execution counts to avoid
compare and branch instructions. For data dependent loops, we
used our predicated or the branch-based approach, depending on
the case.

We observed in the experiments that the combination of unrol-
ling techniques was able to reduce the WCET of 18 from 33 bench-
marks. For six benchmarks we obtained gains above 20%. In the
experiments, we also showed that the predicated approach, even
with its limited applicability, can exploit cases where the standard
approach fails to get WCET reduction.

As we are not interested in code increase limitation, higher code
expansion was observed as well. To work around this situation,
techniques like [6] can be applied to our heuristic of unrolling fac-
tor selection.
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