
Applied Computing and Informatics (2017) 13, 101–117
Saudi Computer Society, King Saud University

Applied Computing and Informatics

(http://computer.org.sa)
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
A Survey on HTTPS Implementation by Android

Apps: Issues and Countermeasures
* Corresponding author.

E-mail address: weix2@ucmail.uc.edu (X. Wei).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.aci.2016.10.001
2210-8327 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Xuetao Wei *, Michael Wolf
University of Cincinnati, United States
Received 5 July 2016; revised 5 October 2016; accepted 31 October 2016

Available online 11 November 2016
KEYWORDS

HTTPS;

Android;

Mobile security;

TLS/SSL;

Mobile development
Abstract As more and more sensitive data is transferred from mobile applications across unse-

cured channels, it seems imperative that transport layer encryption should be used in any non-

trivial instance. Yet, research indicates that many Android developers do not use HTTPS or violate

rules which protect user data from man-in-the-middle attacks. This paper seeks to find a root cause

of the disparities between theoretical HTTPS usage and in-the-wild implementation of the protocol

by looking into Android applications, online resources, and papers published by HTTPS and

Android security researchers. From these resources, we extract a set of barrier categories that exist

in the path of proper TLS use. These barriers not only include improper developer practices, but

also server misconfiguration, lacking documentation, flaws in libraries, the fundamentally complex

TLS PKI system, and a lack of consumer understanding of the importance of HTTPS. Following

this discussion, we compile a set of potential solutions and patches to better secure Android HTTPS

and the TLS/SSL protocol in general. We conclude our survey with gaps in current understanding

of the environment and suggestions for further research.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contents

1. Introduction . 102
2. Overview of Android HTTPS and current findings . 103
3. In-depth cause analysis of HTTPS misuse . 106

3.1. Developer misuse of HTTPS . 106

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2016.10.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:weix2@ucmail.uc.edu
http://dx.doi.org/10.1016/j.aci.2016.10.001
http://dx.doi.org/10.1016/j.aci.2016.10.001
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2016.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

102 X. Wei, M. Wolf
3.2. Server misconfigurations . 108

3.3. Lacking documentation on HTTPS . 109
3.4. Flaws in SSL/TLS libraries . 109
3.5. Issues in the HTTPS protocol . 110

3.6. Need for consumer awareness . 111
4. Proposed solutions . 111

4.1. Link SSL to DEBUGGABLE flag in the Android manifest . 112
4.2. Remove SSLErrorHandler . 112

4.3. Android market and client side application validation . 112
4.4. Use SSL pinning. 112
4.5. Improve documentation and API clarity . 112

4.6. Begin persistent Internet-wide SSL vulnerability scanning. 113
4.7. Patch and increase oversight on SSL libraries . 113
4.8. Large mobile applications should use stronger HTTPS protections . 113

4.9. Revise the TLS protocol suite . 113
4.10. Increase consumer awareness . 114

5. Discussion and future work . 114
5.1. Gaps in research . 114

5.2. Moving forward . 114
6. Conclusion . 115

References . 115
1. Introduction

The Android mobile platform was introduced in 2007 by Goo-
gle and the Open Handset Alliance. Due to its open nature and
support from both Google and third-party developers, it has

become the most widespread mobile operating system as of
2014 [1]. The ease of entry to Android development has
allowed the platform to expand to its current size; however,
this free-for-all environment exacerbates issues in application

security and user privacy. The security of Android is the bur-
den which individual developers must bear and the standards
for security are not always clear. Developers writing applica-

tions for Android must consider how their code will assure
user safety while simultaneously calculating for minimal mem-
ory usage, battery life, and weak processing power. Their apps

must comply to security protocols, launch as their own UID,
sign their code, and minimize permissions [2]. Needless to
say, lost in the innumerable tasks of application creation and

deployment, security errors are undeniably frequent. In this
survey, the primary focus will be on the insecure development
of Internet-connected non-browser Android applications and
the implementation of HTTPS, potential remedies, and sugges-

tions for further research. The increased shift of consumer elec-
tronics to the mobile realm and the development of a wide
range of applications that has followed has meant a steady

increase in the amount of personal, critical and confidential
information that flows in and out of mobile devices [3,4]. These
handhelds use channels such as public WiFi which, even with

modern protections, can be vulnerable [5]. Packets can be
easily sniffed and manipulated when sent in plaintext HTTP
messages over these networks [6]. There are many mechanisms

which satisfy the goal of protecting packets, but the SSL and
TLS protocol built into HTTPS has become the de facto suite,
though it may not deserve the unchecked faith it receives [7].
Thus TLS and its implementations will be the system investi-

gated as we continue. While web browsers are generally able
to implement HTTPS connections securely since they are man-
aged by enormous teams of engineers or contributors, Android

applications do not have this sort of oversight. The widespread
and mostly unsupervised creation of Android applications has
allowed for security loopholes to appear in programs which
use HTTPS calls [8]. According to the Bureau of Labor Statis-

tics, software jobs in the US are set to grow by 30% by 2022
[9]. It is essential that both new and experienced developers
are able to properly tackle loopholes in Android security.

The Android platform has several encryption and security
suites. It hosts a large Java encryption library and well-
respected and versatile third-party implementations such as

Bouncy Castle [10] and OpenSSL [11]. There are several differ-
ent methods of implementing HTTPS built directly into the
platform. These methods frequently require no custom code
to function securely. In addition, the Android development

training website hosts several walkthroughs on HTTPS [12].
Despite the need for transport-layer encryption and the ready
availability of encryption mechanisms, many Android applica-

tions simply do not implement HTTPS when they should or
their code alters the HTTPS implementation in a way that
makes the application vulnerable. In these cases, user data

are susceptible to Man in the Middle attacks. As shown in
Fig. 1, MitM attacks allow for a malicious actor (E) to eaves-
drop, intercept and insert itself into a conversation between

two legitimate users (A and B). This has become one of the
most pressing threats to wireless and cellular communications.

More unfortunately, there is frequently no warning to the
user that these vulnerable connections are not secured by

SSL/TLS. Issues remain in SSL libraries, the TLS and X.509
certificate validation protocol, and server-side configurations.
As will be discussed in later sections, cleaning up the SSL uni-

verse to protect user data requires the cooperation of more
parties than just Android application developers. It is impera-
tive that proper encryption is used in all applications which

process user data over the Internet. This paper will analyze
why developers do not (or are unable to) implement secure
HTTPS connections and present an idea for a solution to the

Figure 1 A classic Man In the Middle attack with the

conversation between Alice (A) and Bob (B) being intercepted

by Eve (E).

Survey on HTTPS implementation by Android apps 103
gap between theoretical security and implemented HTTPS
security in Android. We will look at the state of the art
research in fields beyond the mobile realm to detect trends in

security and ascertain ways to harden the HTTPS environment
on Android. The remainder of this paper is organized in the
following way. Section 2 contains a summary of HTTPS, its

proper usage on the Android platform, and the major relevant
findings contributed by security researchers. Section 3 provides
a deeper interpretation and grouping of these results including
a listing and discussion of causes of HTTPS misuse. Section 4

provides a listing of potential solutions which have been sug-
gested by security researchers. Section 5.1 gives the observed
gaps in current Android HTTPS research. Section 5.2 contains

concrete suggestions for future research which fulfill the some
of the solutions suggested in Section 3 or bridge holes in cur-
rent understanding noted in Section 5.1. The paper is con-

cluded in Section 6.

2. Overview of Android HTTPS and current findings

Cryptography is difficult to implement even with modern soft-
ware [13]. In order to create resistant keys, complex algorithms
Figure 2 A simple
and programming mechanisms are needed. Hundreds of algo-
rithms are used for different steps in the encryption process [2].
Adding to this, developers aren’t always taught security best

practices [14]. As computers increasingly grow in their process-
ing capacity, so will the encryption systems grow in intricacy to
maintain their defenses against brute force and man-in-the-

middle (MITM) attacks. Internet systems have developed
greater complexity with the influx of users, web stakeholders,
and non-traditional server methodologies [15]. In order to

secure user data and the integrity of Internet-connected appli-
cations, developers must be able to properly implement
encryption technologies [4,16,17]. SSL/TLS is one such crypto-
graphic system which requires a layer of abstraction in order to

be usable to developers. SSL was developed to provide an end-
to-end encrypted data channel for servers and clients on wire-
less systems. Given that wireless technology is prone on the

physical level to eavesdropping attacks based on RF broadcast
interception, this cryptographic protocol is vital for the secure
transfer of any data to and from cell phones [18]. The corner-

stone of SSL is the ability of the client to confirm without a
doubt that the server contacted is the correct one. From here
data can then be transferred with trust. To establish this state

of trust, a complicated, mixed public-private key exchange
takes place. This requires an extensive handshake and verifica-
tion process to avoid sending the encryption key to any inter-
ceptors on the network who have latched on to the chain of

communication.
In the lowest level, SSL functions in the following way

depicted in Fig. 2. The client sends an HTTPS request to the

server with its SSL version number and supported ciphers.
The server responds with its SSL version number and ciphers
as well as its certificate. This server certificate has been signed

by a trusted certificate authority (CA) which has verified the
servers authenticity. The client will compare the certificate’s
public key to its local key store and the field values to expected

values. If the certificate passes, and the certificate has not been
revoked by a CA (as determined by a query to a CA’s certifi-
cate revocation list (CRL)), the handshake continues. The
cipher suite is chosen from the algorithms which the client

and server have in common. An example cipher suite could
use ECDHE for key exchange, RSA for certificates, AES128-
TLS handshake.

104 X. Wei, M. Wolf
GCM for message encryption, and SHA256 for message integ-
rity checking. A pre-master secret is encrypted with server’s
public key using a cipher suite which is in common between

the two machines and transmitted to the server. If the client
has been asked to verify itself with a certificate, this will be
included with the secret and transmitted to the server. If the

authenticity is confirmed, each machine uses the pre-master
secret to generate the master – a session ID that functions as
the symmetric key for the SSL communication. Once the hand-

shake has been completed and each device informs the other
that all further communication will be encrypted with the ses-
sion ID, the client encrypts its messages using the symmetric
key and sends the data to the server. Once all data is sent,

the connection is terminated [19,20]. Digital certificates, the
core of the SSL system, are based on the X.509 protocol
[21]. This protocol along with the Online Certificate Status

Protocol (OCSP) [22] establish how certificates are to be devel-
oped, validated, and revoked [23]. The major components of
certificate checking are issuer verification, hostname validation

and revocation checking. Each of these steps assures that the
server in question is still trusted by a certificate authority.
Within the certificate validation process, issues have arisen

with servers signing their own certificates and certificates using
wildcard hostnames (for example, *.google.com). These dis-
crepancies are easily spotted and flagged by properly imple-
mented SSL clients or humans. However, in situations where

the functionality of X.509 has been compromised by custom
code, such as removed revocation checks, these invalid certifi-
cates can be accepted – rendering the SSL process useless [24].

Without proper validation checks, any rogue access point can
break into the chain of communication, send a random certifi-
cate to the user, and forward the packets to the original server,

decrypting and reading all data flowing between the ends.
Much in the way that higher-level programming languages
obscure memory management to make the developers job

more straightforward, so do many encryption suites try to
make encryption and decryption a standard, human-
understandable process. The papers and communications
which become the foundation of SSL, TLS, and the many

improvements, revisions, and decisions on these topics, come
from the Internet Engineering Task Force (IETF) [25]. These
technical documents cannot be directly utilized by most devel-

opers. Thus, libraries and encryption suites take the technical
documentation and develop a platform for applications to
use. Libraries like OpenSSL [11] handle the TLS handshake

for developers, leading to a more uniform and secure set of
HTTPS connections. While these libraries have come under
scrutiny due to security flaws [26,27], their role is vital in the
Internet and they have existed for years. OpenSSL, founded

in 1998, is used by servers which comprise 66% of the web ser-
vers [28]. SSL/TLS libraries are the ‘physical’ implementation
of the IETF protocols. However, this code is not necessarily

‘in the wild’. In this paper, we will use the term ‘in the wild’
to refer instead to consumer-facing applications. As libraries
rely on protocols for guidance, consumer-facing implementa-

tions rely on libraries and, in effect, protocols, for guidance.
For this paper, the primary ‘wild’ code investigated will be
on the Android platform. The movement of cryptography to

abstraction is especially important in Android which has a
heavy focus on third-party development and ease-of-
development. In the standard Android implementation of
HTTPS, there are three parts in the creation of a secure con-
nection with SSL/TLS. These three parts, setup, socket gener-
ation, and the certificate management, reflect the typical TLS
handshake protocol [29]. The following is a possible SSL

implementation. Setup involves customizing the HTTP packet
headers. This can be done through HttpParams and
ClientConnectionManager to transmit the proper headers

and data. Cipher suites can be manually selected, but defaults
will function for most calls. The socket is generated through an
instance of the SSLSocketFactory class. Finally, the

X509TrustManager which is an entity within the
SSLSocketFactory will by default authenticate credentials
and certificates. The stock Android trust manager has 134 root
certificate authorities installed [30]. The library will attempt to

trace the certificate trust chain back to one of these 134 root
CAs. Once the client and server are certified, transmission
commences. This can be an incredibly simple and black-

boxed process. For instance, according to the Android Devel-
oper Training, valid HTTPS code can be written in four lines
using HttpsURLConnection, part of the URLConnection

library (see Listing 1) [12,31].
Assuming that the device had the proper certificates

installed, this code in lst. 1 would be operational. The

URLConnection API takes care of hostname verification
and certificate management. Besides the URLConnection
API, other libraries and middleware have been developed for
application designers which manage these components. More

customization is available in the Java Secure Socket Extension
(JSSE) which comes packaged with Java [32]. Other common
libraries include OpenSSL [11] and GnuTLS [33]: C-based

frameworks for SSL/TLS implementation. Higher-level wrap-
per implementations of these SSL/TLS libraries include cURL
[34] and Apache HttpClient [35]. Furthermore, certain indus-

tries have their own middleware such as Amazons Flexible
Payment Service [36] which help abstract the HTTPS connec-
tion code away from the developer. While libraries are an

attempt to make SSL/TLS implementation default, they can
also leave the applications vulnerable. Since application secu-
rity is completely tied to the libraries it uses, flaws in the
libraries are in extension flaws in the applications which use

them. Giorgiev et al. [37] found that SSL certificate validation
is completely broken in many critical software applications
and libraries. In one example, Chase Mobile Banking overrides

X509TrustManager and doesn’t check the server’s certificate
thus violating the most important aspect of HTTPS. Further-
more, Tendulkar et al. [8] found that during the investigation

of 26 open-source applications, 10 were using SSL incorrectly.
This is perhaps due to misreading library documentation or
overriding important features of the suites. Even large-scale
enterprises misuse HTTPS or don’t fully secure their connec-

tions [24]. A vulnerability note released by CERT identifies
applications by Fandango and Credit Karma which fail to val-
idate SSL certificates [38]. The issues within Android are more

complex than a lack of experience with application construc-
tion, they derive from issues in libraries, protocols, server con-
figurations, and user comprehension of SSL and TLS. Fahl

et al. [24] developed a tool called MalloDroid which targets
application vulnerabilities dealing with MITM attacks. Mallo-
Droid analyzed the API calls which applications made,

checked the validity of certificates, and identified cases of cus-
tom HTTPS implementation. Of the applications tested, 8%
were vulnerable. The main issues discovered in this investiga-
tion were symptoms of unnecessary customizations placed

/ /
=

=

=

Listing 1 Example of a standard Android HTTPS call.

Survey on HTTPS implementation by Android apps 105
over default SSL code. The use of customized code over SSL
defaults is almost always detrimental [39]. Tendulkar et al.

[8] found that 1613 out of 1742 implementations of SSL with
custom code did not require anything beyond the defaults.
In fact, in most cases, adding the single character ‘s’ would

have allowed the application to securely use HTTPS. The pri-
mary customizations at fault were trust managers which accept
all certificates, trust all hostnames, and ignore SSL errors
[24,8]. Trust managers exist to validate certificates. When the

certificate checking is turned off, security is compromised.
Using user-defined trust managers that accept all certificates
or self-signed certificates has been shown to be an issue in

the Android community. It places user data in a vulnerable
position and compromises the original intention of both SSL
libraries and the SSL/TLS protocol. Unfortunately, trusting

all hostnames is even simpler than implementing a custom
trust manager. Using the org.apache.http.conn.ssl.AllowAll
HostnameVerifier, developers are able to bypass checking the
server for a certified hostname. Several applications investi-

gated with MalloDroid contained custom classes which
allowed all hostnames in the SSL connection [24]. This imple-
mentation subverts the fundamental trust process of SSL/TLS.

Many mobile applications have been found to simply ignore
the errors thrown by Android or a corresponding library
which could not validate the HTTPS certificate.

As seen in Listing 2, messages are hidden from users and
the application continues as though it has a secure connec-
tion[24,8]. Again, overriding errors thrown by the system

defeats its purpose and mimics the insecure manner in which
users click through SSL errors in the browser. However, unlike
in desktop browsers, this case comes with the repercussion of
never presenting the user with options for their own security.
Listing 2 Overridden SSLSock
One final issue that doesn’t revolve around the customization
of default SSL code is that developers sometimes use hybrid

HTTP/HTTPS or don’t use SSL/TLS at all. Fahl et al. [24]
found an instant messenger application which sent login cre-
dentials over non-encrypted channels vulnerable to a replay

attack. Other hybrid systems were vulnerable to stripping
attacks or leaking data through broken SSL channels. Brow-
sers and applications using Android’s WebView to connect
to a server are particularly vulnerable in these cases. These

instances warrant attention from both developers and server
architects. Beyond application-level flaws, there are wide-
spread server misconfigurations which lead to a large number

of false positive SSL errors [40]. These false-positives take up
user attention and lead to an unsafe dismissal of SSL error
validity by developers and users. Certificate management is

often a difficult and paperwork-intensive process for server
operations teams. In addition, content delivery networks
(CDNs), and more specifically CNAME routing, have compli-
cated the certificate issuance and validation process. Since the

CDN model is based off surrogate servers handling web traffic
load from the customer’s server, using HTTPS properly, an
intimate client-server model, requires less-than-ideal work-

arounds to maintain non-repudiation and trust. During the
investigation of 20 CDN providers and 10,721 websites by
Liang et al. [15], 15% raised invalid certificate errors. All 5

CDNs investigated had insecure HTTPS or HTTP communi-
cation on the back-end. Due to many Android applications
reliance on servers which use CDNs, this issue needs to be

resolved in order for efforts of client-side validation and error
reporting to be accurate and attune to SSL errors. Each of
these vulnerabilities identified are not just issues waiting to
be exploited. Huang et al. [41] showed that 2% of certificates
etFactory found in the wild.

106 X. Wei, M. Wolf
which users received when accessing Facebook were forged.
These false certificates were invalid and should have been cast
away, but users still followed them or the application which

accessed the website did not throw an error, thus falling victim
to a man-in-the-middle attack. As Moxie Marlinspike has
shown with his tool sslsniff [42], automated MITM attacks

are simple to carry out. The susceptibility of the physical layer
of mobile communication to eavesdroppers only raises this
risk. Android HTTPS development is in a bind. While devel-

opers want to have a secure system for their users, several fac-
tors within and without their control complicate proper
implementation of end-to-end encrypted communication.
Why aren’t Android developers using HTTPS? Why do exist-

ing SSL implementations remain insecure? In the next section,
we will analyze factors which have been identified in the cur-
rent Android development process and SSL/TLS ecosystem

which keep HTTPS from reaching the ideal security that it is
often claimed to be.

3. In-depth cause analysis of HTTPS misuse

In this section, we will look into the issues which compromise
the security of SSL/TLS implementations, in particular, on

Android-based devices. First, we will look at the primary
causes of SSL insecurities with current Android HTTPS imple-
mentations. Even though the only guidance afforded to devel-

opers hoping to secure their applications are a few weakly
enforced frameworks in the Android system, security must
be built by manually integrating custom security features into
the project while retaining a functional and cohesive form.

This process can be ad hoc, prone to error, repetitive, and inex-
act [43]. As shown in the previous section, vulnerabilities and
holes are rampant and actively exploited. The first step in

patching these flaws is determining their origin. There exist
issues rooted in the mobile app development paradigm, server
configuration, Android documentation, SSL/TLS libraries, the

SSL/TLS protocol, and application consumers. Extensive
research has gone into determining the root cause of each of
these factors. This section will investigate each of these causes

further.
3.1. Developer misuse of HTTPS

Among the papers reviewed, the most commonly reported

flaws in HTTPS configuration were due developer negligence.
One such problem is debug code being left in production appli-
cations. this problem isn’t new and it has been listed in the

CommonWeakness Enumeration [44]. Leftover code and snip-
pets that bypass standard procedures to make the an app oper-
ational in development have a widespread effect on application

security [8]. Ironically, leftover debug code can violate the pro-
tections which the system it models is supposed to afford.
HTTPS is not immune to development glitches where the

author of a program either leaves vulnerable code or places
an intentional override in their application, especially on
Android. This could come in the form of a situation where,
in order for an application to populate and display data for

the developer, the certificate validation must be set up to allow
a stream of data from a mock server. This allows for the
author to assure the other components of the application are

properly functioning, but leaves the HTTPS connection vul-
nerable unless the certificate checking is turned back on. This
happens with unfortunate frequency since there are simple
mechanisms which we will later discuss to prevent uninten-

tional remnant debug code from emerging in production appli-
cations. Developers want top level security, but also desire
their product to function properly in development [24]. This

creates an issue with a complex setup like SSL/TLS. As
explained earlier, the most crucial part of an HTTPS commu-
nication paradigm is the existence of valid certificates and rec-

ognized certificate authorities. When running both the server
and the application, developers may build their server with
self-signed certificates for development and forget to change
the application’s validation process when they do get the

proper CA-signed certificate or bypass this for alternative rea-
sons [39,45]. Running an application without SSL/TLS protec-
tion while debugging is obviously harmless, but once these

apps are open to the general public, there is extreme risk of
data theft. Beyond inspecting the code itself, speaking to devel-
opers about their mistakes and security bugs yields a more

thorough look into the cause of these developer-based flaws.
A study conducted by Fahl et al. [24] showed a few trends
among the developers surveyed.

(i) Developers make mistakes. Upon contacting the devel-
opers at fault, many took the advice and fixed their mis-
takes. Others, however, refused to admit that the flaw

was an issue [39]. These mistakes are understandable.
Android is a complex system and public-key cryptogra-
phy is not a easily grasped even with high-level libraries.

The startling rejection and denial made by developers in
this survey may be a result of embarrassment at incor-
rectly implementing code. However, for applications

made by developers both willing and unwilling to admit
fault for SSL misconfiguration, it seems apparent that
there was a failing in code coverage in the development

process.
(ii) Another explanation may be apathy or simple ignorance

on the topic of SSL/TLS security. A paper by Xie et al.
[14] found that while many of the participants in their

experiment had a general knowledge and awareness of
software security, there were gaps between this knowl-
edge and the actual practices and behaviors that their

participants reported. Despite general knowledge of
security, they were not able to give concrete examples
of their personal security practices. In the same study,

Xie et al. noted that there was a prevalence of the ‘‘it’s
not my responsibility” attitude. The developers often
relied on other people, processes, or technology to han-
dle the security side of the application. When these soft-

ware authors are so busy with the pure functionality and
viability of their product and the approaching deadlines,
it is obvious that the security hat looks much better on

another member of the team. Unfortunately, code
review and quality assurance only go so far, especially
when looking at an application retrospectively. In an

ideal situation, security is considered in every step of
the development process from the design through the
deployment. As evidenced by this report, this is not

the case in many development environments.
(iii) Online forums and user-to-user resources may not be the

cause of developer misuse of SSL, but they allow devel-
opers to discover ways to bypass security measures in

Figure 3 An example question seeking an SSL override on StackExchange.

Figure 4 An unsafe suggestion for resolving the question on StackExchange.

Survey on HTTPS implementation by Android apps 107
order to solve errors. One such website is Stack Over-

flow [46]. Typically, errors solved are caused when the
developer who has posed the question has incorrectly
written a chunk of code. In these situations, Stack Over-

flow operates in an important, positive way. However, in
the case of SSL errors, the most trivial way to stop the

errors without configuring the server is to stop the appli-
cation from throwing the errors. Figs. 3 and 4 show an
example of an Android SSL certificate expiration over-

ride. While most respondents explain that these solu-

108 X. Wei, M. Wolf
tions should not be used in production environments

before giving a sample override, some answers, such as
the one shown in Fig. 4, do not provide that context.
This answer has received negative feedback most likely

for this reason. However, given almost 10,000 views, this
solution has almost certainly ended up in a developer’s
production application. Thoughtful answers are often
mixed with less security-oriented responses on these

websites, allowing harmful programming paradigms to
develop online.For instance, a developer may ask for a
way to get past the UntrustedCertificate error in

Apache’s HttpClient and the answer may be to use a
custom SSLSocketFactory to trust all hosts [47]. Of
course, those who answered the question or other com-

munity members may stress how this should not run in
production, but the solution is still presented in a fash-
ion that a desperate developer can quickly find a
work-around. Websites such as Stack Overflow don’t

encourage app designers to customize their SSL/TLS
implementation to use self-signed certificates and accept
all hosts in production, but they do show developers

how to use them in testing [39]. Stackoverflow cannot
be blamed nor can the open-door style of development
which Android possesses. The fault in these situations

are the developers who either forget to remove the
work-around code or just ignore the warnings on using
accept-all policies in production applications.

Despite the many flaws which can be found in Android
development and production applications, there is no solid evi-

dence that Android developers are more clumsy with SSL than
others in a similar situation. Investigations of iOS applications
has shown that the two platforms have a comparable number

of SSL/TLS vulnerabilities [39]. The so-called walled garden
approach doesn’t seem to fix issues in developer misuse of
HTTPS. While it may make sense to correlate a lack of devel-
oper knowledge with an incorrect SSL connection, it would be

incorrect to say that the Android-specific development para-
digm causes these errors. If anything can be found to be lack-
ing, it is a lack of oversight on mobile applications. Another,

more social, factor may contribute to these developer mistakes
and in turn effect the security of HTTPS calls. Xie et al. [14]
show that there are issues in developer environments (team

members, support staff, managers, etc.) that can cause them
to make mistakes. One such issue is misplaced trust in process.
This involves believing that software security is only retrospec-

tive or investigated in the code review stages. Secondly, there is
the feeling that a software engineer doesn’t need to know
about vulnerabilities if they aren’t specifically working on
them. This would be like designing a backend without paying

any attention to the frontend. Software isn’t contextual, and
all components in the final project need to be designed, devel-
oped, and reviewed at every step in the process. Each member

of a team should be aware of what the others are doing in
order to create the most accurate and unified product. Finally,
and most recognizably to developers, is the existence of exter-

nal constraints which effect workflow and programming pro-
cess on a human level. These include deadlines, client desires,
government policy, and any sort of confining elements that

would stop the developer from creating the product in the
way he or she imagines. When the budget tightens or a dead-
line approaches, proper security can be an unfortunate sacri-
fice when a client’s main focus is functionality and design
[14]. Besides a missing understanding of HTTPS standards,

these external constraints potentially hold the most sway over
the correctness of a developer’s solution. Developers are faced
with pressure, deadlines, an imperfect support system, and the

complexities of public key infrastructure and Android. Mis-
takes and misconfigurations are bound to arise in this system.
When user data must rely on this stressed authorship, there are

serious implications. While applications created by these devel-
opers are the breaking-point in this system, there are several
more causes both for developer mistakes and general insecuri-
ties in Android SSL connections.

3.2. Server misconfigurations

On the opposite end of the TLS system is the HTTPS server.

Setting up an Apache HTTPS server is not difficult [48]. In
addition, security for these servers can be configured to be
much higher with ease [49]. Despite this, only 45% of the

Top 1 Million websites support HTTPS [50]. Furthermore,
the systems which do operate on HTTPS can have flaws which
can completely compromise the security of SSL. Korczynski

et al. [51] discovered that even in a relatively small set of Inter-
net services, certain elements of the TLS protocol were being
ignored or misused. These heavily trafficked websites receive
significant amounts of traffic and financial transactions, mak-

ing it imperative for stronger end-to-end implementations of
TLS. SSL server probing [52,53] has shown an upward trend
in positive TLS implementation and healthy cipher use, how-

ever the growing reliance on encrypted data flows has made
tight adherence to protocols on the server-side fundamental
to effective security throughout the full Internet domain. A fre-

quent mistake made by HTTPS servers is the use of self-signed
certificates. Self-signed certificates, certificates which have no
authority to back up their validity, work well in testing situa-

tions, but when a server needs accept requests from the public
Internet, these false certificates are unsafe. In these cases, a
signed certificate from a certificate authority must be acquired
or purchased. These servers will treat Android traffic the same

way as any traffic and cause the pitfalls for mobile traffic just
as they do for desktop clients. Indeed, the most frequent issue
with server configuration is the mishandling of certificate

installation [40]. Certificate management isn’t an automated
process. After applying for a certificate from a certificate
authority, that certificate is sent by email to the company

which sent in the request. This certificate must then be manu-
ally installed in order for clients to believe that the server is in
fact correct. When certificates expire following their two or
three year lifespan, a smooth transition to a new certificate

must be carried out in order to assure maximum uptime. Vra-
tonjic et al. [54] found that among many other violations,
82.4% of servers investigated used expired or otherwise invalid

certificates. Again, in the days following the Heartbleed bug,

only 10% of vulnerable servers replaced their potentially com-
promised certificates. Of this 10%, another 14% reused the

same private key which may have leaked [50,55]. These cases
demonstrate the difficulty that system operators have with
healthy use of certificates. Indeed, the prevalence of these

incorrectly implemented certificates has a direct effect on
developers and the services that rely on secure Internet connec-

Survey on HTTPS implementation by Android apps 109
tions. If developers can’t connect to a server outside their con-
trol due to an SSL error, the only course of action would be to
lower the validation parameters on their application. Both

ends of the SSL connection need to maintain the highest level
of security. In order to reach adoption by developers on all
platforms, the system must display a reasonable level of consis-

tent functionality. Certificate management is a tricky and com-
plicated aspect of SSL which needs further research, tools, and
perspectives to be introduced before it can reach a realistically

reliable state. New technologies in the burgeoning operations
world make certificate management even trickier. Content
Delivery Networks (CDNs) are distributed server farms which
spread out the load on large, public websites. The servers of

the CDN act as surrogates for the main web server, stepping
in the middle of a direct client-server relationship. This
middle-man server must be trusted by the server, but any cur-

rent method of doing this violates the SSL protocol [15]. Inno-
vative methodologies must be contributed to the X.509
protocol and the certificate authority industry to meet the chal-

lenge of scaling websites and an ever-increasing pool of vital
websites that require certificates to be properly installed. Until
servers are properly secured, the security of all client applica-

tions will suffer. Developers will be wary of using the protocol
and the default Internet connection methodology on Android
will not be HTTPS until it is as easy to implement as cleartext
HTTP.

3.3. Lacking documentation on HTTPS

Beyond the physical limitations of an SSL connection, one of

the problems which developers face is a lack of proper docu-
mentation and a foundation in the importance of application
security. There is very little research of interactive support to

developers for secure software development [14]. This informa-
tion is critical to expose developers to correct methodologies
and point them in the way of secure Internet connection cre-

ation. While the Android platform prides itself on ease of
use, it can be surprisingly confusing. For instance, manual
analysis of financial applications with vulnerabilities in their
inter-app communication yielded the conclusion that several

flaws were caused due to developer confusion over Android’s
complexities [56]. The authors stated that they believe that
these errors, made by security-conscious developers, are

indicative of the fact that Android’s Intent system is confusing
and tricky to use securely. This subject, completely separate
from SSL/TLS in terms of purpose and architecture, has

shown that Android is at its core a complex system that is dif-
ficult to comprehend from a front-end developer standpoint.
Existing documentation and tutorials are not reaching their
audiences effectively. Approaching the issue of ‘complexity’

isn’t an endeavor that can happen with a single update. How-
ever, in order to further the security and proper development
practices of Android applications, the maintainers of the oper-

ating system must work toward abstracting the complexities or
putting out better documentation. Further research must go
into the psychology behind technical documentation compre-

hension, particularly for Android. One such example of inad-
equate training is also the most critical. The Android developer
training on SSL/TLS is sorely lacking in proper examples and

implementation. The training on security is near the bottom of
the screen and listed below trainings on user interface and per-
formance [12]. There is a minimal explanation of the protocol
or public key cryptography in general. A lack of solid docu-
mentation in popular SSL/TLS libraries also presents an issue

[37]. The OpenSSL library documentation [11] is a meaty web-
page that can be rather intimidating. It may be that the quick
code snippets of StackOverflow are much more appealing. In

several prominent libraries, there are examples of generally
confusing APIs. This will be discussed in the next subsection.
In order to fulfill their role in the implementation of SSL,

libraries must create documentation for developers who are
not cryptography experts. Major security-breaching methods
like AllowAllHostnameVerifier should be documented as
being for testing purposes only [57]. Finally, there are general

barriers in coding that need to be broken down in order to
allow developers to properly build secure programming princi-
ples into their products. Research by Ko et al. [58] has

presented findings on the elements of programming environ-
ments which prevent problem solving. The primary takeaway
from this study is that there is a minimal error reporting infras-

tructure in many major IDEs and programming language
compilers. There are invisible rules that seem to exist without
much documentation and differences in programming inter-

faces interfere with the natural flow of problem solving. Not
only do libraries need to be more informative, but application
development tools should be smart enough to identify security
flaws or inform developers of best practices. A solid documen-

tation source would be responsive to user confusion and effec-
tive in communicating the most simple, but secure solution.

3.4. Flaws in SSL/TLS libraries

The ideal Android HTTPS library would enable developers to
use SSL correctly without coding effort and prevent them from

breaking certificate validation through customization [39].
This would be a model where socket generation and adminis-
tration of certification authorities are the only responsibilities

assigned to programmer. It would bridge the gap between con-
trol facilities needed to establish HTTPS connections, making
it unnecessary to involve programmers in the development of
every essential interface in the already complex HTTPS envi-

ronment [29]. Furthermore, the API should allow certain
relaxed certificate validation when the application is being test-
ing. Dozens of libraries and SSL/TLS abstraction frameworks

exist to make HTTPS easier to use. Despite the goal of making
the system more approachable, Cairns et al. and others have
shown that major SSL/TLS libraries remain too complicated

and low-level [17,59]. Fahl et al. claim that there is no solid
library which provides easy SSL usage [39]. Indeed, it seems
that frustration with APIs is the guiding factor behind devel-
opers resorting to StackOverflow to find work-arounds. Geor-

giev et al. conducted an investigation into critical applications
which were compromised due to these flawed or poorly-written
libraries [37]. The cURL library is one such confusing library.

For example, Amazons Flexible Payments Service PHP library
attempts to enable hostname verification by setting cURLs
CURLOPT_SSL_VERIFYHOST parameter to true. Unfortu-

nately, this is the wrong boolean to turn on hostname verifica-

tion and thus the middleware and all applications using it are
compromised. PayPals Payment library makes the same mis-

take. Not only cURL, but GnuTLS has a misleading gnutls_
certificate_verify_peers2 which leaves the Lynx text-based

110 X. Wei, M. Wolf
web browser vulnerable. Poorly worded APIs defeat the goal
of libraries to make SSL easier to correctly implement. Com-
bined with poor documentation, these libraries can be detri-

mental to a healthy public key infrastructure. Other
problems were pointed out in the study by Georgiev et al. Val-
idation was lacking and documentation was so scarce that

users were led to misuse the suite. Error handling was different
for each library. This sort of miscommunication between sys-
tems has lead developers to frequently use the incorrect SSL/

TLS libraries for their specific problem. For instance, python
libraries urllib2 and httplib which do not support certificate
checking, were used in applications hooking into PayPal and
Twitter. The disconnect between end users and libraries can

be bridged with better communication, documentation, and
standards across libraries. Not only are SSL/TLS APIs found
to be often confusing, but some contain their own program-

matic holes. Apache Axis, which is used by big-name applica-
tions from PayPal and Amazon, implements Apache’s
HTTPClient. Axis uses the standard SSLSocketFactory, but

omits hostname verification. Using the independent nature of
various SSL libraries to compare reactions to certificates, Bru-
baker et al. found several holes in major open source libraries

and browsers [60]. While efforts in finding flaws have encour-
aged library developers to patch their software, more oversight
needs to go into these libraries which provide the backbone
(and reputation) of the HTTPS ecosystem. Making APIs easier

goes hand-in-hand with documentation clarification and devel-
oper education on security [17]. As technology progresses and
more of the Internet supports HTTPS connections, libraries

will be forced to become more user friendly and standard.
Issues like Heartbleed, which allowed attackers to sniff pro-
tected memory from approximately 25–50% of Alexa top 1

million HTTPS sites, while frightening, will encourage more
scrutinizing eyes to fall on open source SSL libraries and the
infrastructure which supports it [50]. Security researchers have

called for more development on these critical open-source pro-
jects in order to protect the entirety of the HTTPS infrastruc-
ture. Android developers rely on these libraries and they must
be firmly in place for developers to use.
Figure 5 Overview of t
3.5. Issues in the HTTPS protocol

Below the lowest-level SSL libraries, the TLS/x.509 protocols
are set. Even in this foundation of the HTTPS world, there
are flaws. As Fahl et al. express, the SSL/TLS protocol isn’t

forceful enough [24]. Validation checks are not a central part
of the SSL/TLS and X.509 standards [22,61]. Recommenda-
tions are given in these IETF papers, but the actual implemen-
tation is left to the application developer. IETF RFC 2818,

Section 3.1 states that if the client has external information
as to the expected identity of the server, the hostname check
may be omitted. Both OpenSSL and cURL have issues with

the proper implementation of certificate validation. This
leniency in the protocol shifts focus away from a vital part
of SSL security. While understandable for developing applica-

tions with a limited budget, this guiding document of HTTPS
must be more definite on the vital subject of hostname verifica-
tion especially in production applications. Beyond its weak

enforcement of certificate validation, there are several issues
with the TLS protocol that leave it vulnerable. A couple issues
mentioned in a study by Bhargavan et al. [59] are that the pro-
tocol allows cipher suites which have been ruled unsafe and

allows reused identities on resumption of sessions which can
potentially break through the process of the TLS handshake
by bypassing it. As security researchers continue to look into

the TLS protocol and its shortcomings, more hardening mech-
anisms will be determined. Server-side policies have been pre-
sented by the IETF to curb the use of HTTP instead of HTTPS

such as HTTP Strict Transport Security (HSTS) [62].
Described in Fig. 5, they allow for a server to always redirect
traffic to HTTPS through the use of an additional header. This
effectively counteracts Moxie Marlinspike’s SSLSniff [42].

Consumers must manually override occurrences of failed
HSTS in their browser. However, these fixes are not as effec-
tive as client-side HTTPS Everywhere [63] which similarly

forces the server to provide the HTTPS version of the service.
Unfortunately, no such implementation of HTTPS Every-

where for communication libraries exists at the time this paper

was written. The promise of client certification validity can
he role of HSTS [64].

Survey on HTTPS implementation by Android apps 111
double the prevention efforts of man-in-the-middle attacks. As
HTTPS becomes more of a universal standard, it is clear that
communication libraries must offer an HTTPS-only style

method to protect user data from plaintext servers and HTTPS
stripping attacks. Another critical protocol in SSL security,
X.509 [65], is extremely general and flexible. It has too many

complexity related security features of which few are used.
Parsing X.509 certificates isn’t simple [66]. Indeed, it also bears
the pressure of new technologies for which it has no solution.

The X.509 Protocol leaves no room for CDNs which have
become ubiquitous on the Internet [15]. Like the TLS protocol,
the X.509 certificate protocol needs an update which narrows
down its reach, provides rigidity and standard security mecha-

nisms, and is able to adapt to changes in the make-up of Inter-
net routing infrastructure. In the current SSL environment,
system operators and developers are effected by the corruption

of certificate authorities. As shown in the work of Amann et al.
[67] and Bates et al. [68], the entire CA system is convoluted,
unreliable, and overflowing with too many CAs [7]. When

web certificates rely on the authenticity of a CA’s web of trust,
this web should be as small as possible. Several high profile
cases of rogue certificate issuance in recent years [69,70] have

raised questions about the security of these trusted servers
[54]. Nearly every major CA has had a large leak of some sort.
Certificate authorities can be socially engineered into surren-
dering certs to malicious actors. Their systems can be compro-

mised or incorrectly configured and the system of CAs is liable
to fall into capitalistic tendencies which may not be conducive
for healthy certificate validation. Alternatives have been pre-

sented such as Convergence [71] which would replace certifi-
cate authorities with notaries which would ping destination
servers to verify the validity of the desired path. Further dis-

cussion of the future validation methodologies for SSL is
beyond the purview of this paper. While the CA infrastructure
has dire consequences for SSL security, it isn’t necessarily

applicable to developer misuse of SSL. Along with the risky
manual installation process which server administrators must
carry out, the primary flaw in the current CA system which
effects developers is the process of simply getting a certificate.

Nearly all certificate authorities require a fee to receive a cer-
tificate [40]. This is not conducive to the widespread acceptance
of HTTPS. Again, as noted by Zhang et al. following the fall-

out of Heartbleed [55], a majority of system administrators
failed to revoke the certificates which had been reissued. This
leaves these vulnerable certificates out in the wild to be used

against hosts. The certificate authority industry needs to adopt
standards which aid the easy, free access to certificates and a
simple installation process. The security community must
work with system operators to build a more intuitive revoca-

tion process. In the best case scenario, the introduction of a
simpler method of certificate deployment and reset would
secure the systems of critical Internet applications. Complica-

tions and vulnerabilities at the protocol level drip down to
the designs of libraries and applications. In order to assure
developers properly use SSL, the system must be no-more dif-

ficult to implement than a standard HTTP call.

3.6. Need for consumer awareness

Finally, among all of the guilty parties of HTTPS vulnerabili-
ties, the most under-noted one is the end user. As the work of
Felt et al. has shown with regards to web browsers, users fre-
quently disregard warnings about SSL/TLS [72]. This issue is
just as pressing on the Android platform. Another paper by

Felt [73] explores Android user attention when shown mes-
sages on application permissions. Granting applications per-
missions is a critical responsibility which users must bear in

order to protect their privacy and security. Unfortunately,
when 308 users were interviewed, only 17% of participants
paid attention to permissions during installation and only

3% of respondents correctly answered all three permission
comprehension questions. What this means is that the popu-
lace views their applications as black boxes. Few users are crit-
ical of their applications enough to even read the warnings.

This is worrisome since the pace of change is set by consumers.
Unless end-users desire security, it will not be implemented in a
widespread manner. When investigating user comprehension

of HTTPS on Android, the numbers are equally bleak. An
online survey by Fahl et al. shows that half of the 700 users
questioned could not determine if they were using HTTP or

HTTPS [24]. Many of the participants failed to read the entire
warning message. Participants were mostly college-aged and
included students majoring in IT-related and non-IT-related

fields. Results showed that even this age-and-major group
didn’t have a sufficient understanding of data security. Despite
the difficulty which comes with informing users of the risks of
insecure TLS connections, it seems imperative that no group

can push developers to properly implement HTTPS more than
their end users. One subset of the lack of user comprehension is
that Android does not offer any default warning for SSL

errors. This forces developers to provide one for themselves
if they wish to inform users about failed certificate validations
[39]. Furthermore, error reporting in libraries and browsers is

broken [60]. In a study by Brubaker et al. found that during an
investigation of major browsers, many only reported one error
even if there were more. It can be presumed that Android

applications which have much less oversight than these brow-
sers have even worse error reporting. Furthermore, the mes-
sages produced by libraries aren’t always human readable
and the application frequently does little to clarify the message.

This leads to an uninformed end-user who clicks through
warnings that seem unimportant. One notable mistake which
hinders the reputability of SSL errors is the high number of

false flags. A study conducted by Akhawe et al. [40] found that
when analyzing SSL errors on a mass-scale that 1.54% were
false warnings due to misreading the messages from the SSL

API. In order for SSL to secure Internet communications,
the end-user must remain vigilant of the state of their connec-
tion’s integrity and the state of their application’s security.
Developers must work to insure that users are informed and

able to check the security of the application itself. In the next
section, we will present a list of solutions proposed by
researchers and industry leaders and their ideas on combating

broken SSL channels.

4. Proposed solutions

Several solutions to flaws in Android HTTPS security have
been proposed in the aforementioned papers, the IETF, and
security community as a whole, but a more extensive overhaul

is needed to bring this burgeoning platform into the traditional
level IND-CPA compliance [13]. Changing the way a devel-

112 X. Wei, M. Wolf
oper works on a psychological level is not a feasible solution
and remains out of the purview of this paper. Those seeking
to make developers more astute at securing their SSL imple-

mentations must focus on support tools and resources. In this
section, using ideas from other platforms and contexts, we will
discuss a few of the ideas and subject areas which have seen

solutions proposed.

4.1. Link SSL to DEBUGGABLE flag in the Android manifest

Based on research by Fahl et al. [24] and Georgiev et al. [37],
Tendulkar et al. [8] suggest changes in the Android manifest to
increase secure development practices. A single link between

the DEBUGGABLE flag in the Android manifest and SSL/
TLS verification would allow developers to build their apps
using mock certificates while still eventually forcing them to
make their SSL/TLS connections functional in production.

Certificate checks would have to be intact if debugging was
off, but the app could accept self-signed certificates if it was
on. Applications submitted to the Market with the DEBUG-

GABLE flag would be rejected. This solution would directly
counteract many of the issues with developers forgetting their
debug code in their applications. This is a simple solution that

should be implemented in the Android manifest. It is the most
direct and effective solution to allow Android developers to
write safe SSL communications enumerated in this paper.
While it may require some coordination between the Android

Market maintainers and developers who already have their
applications live, the change would create a sensible workflow
for all developers to follow.

4.2. Remove SSLErrorHandler

Tendulkar et al. also suggest removing the ability for develop-

ers to override SSLErrorHandler [8]. This prevents developers
from hiding SSL error messages from the end user, forcing
them to fix their code rather than obfuscate incorrect imple-

mentations. Coupled with disabling of SSL checks when the
DEBUGGABLE flag is triggered, half of SSL vulnerabilities
could be prevented [8]. This does, however, restrict the pro-
grammatic capability of developers and would make debug-

ging much more challenging. Instead, warnings or errors
could better announce the danger of leaving certificate check-
ing out of the application.

4.3. Android market and client side application validation

Applications submitted to the Android market could be

required to undergo scrutiny by MalloDroid [24] or the auto-
mated fuzzing framework noted in recent work by Malek et al.
[74]. Fuzzing, also talked about in other SSL testing research

[37], would test the number of accepted certificates from ran-
domly generated data in a way like Frankencerts [60]. Applica-
tions with AllowAllHostnameVerifier [57] would be flagged.
Another solution proposed by Enck et al. suggests Kirin [75]

as a service within individual devices which would check appli-
cations for dangerous permissions and malicious code. This
could be refitted into a service which also verifies that applica-

tions downloaded properly use HTTPS, flagging applications
that use unsafe certificate verification methods or custom root
stores. This device-based solution would not only protect a
phone from the Android Market, but also apps in open-
source repositories like F-Droid [76]. This solution would
not prevent developers from writing non-HTTPS code, but

would stop these applications from reaching production mar-
kets. Difficulties of implementing this include the setup and
oversight required by market operators and the added restric-

tions placed on applications which may not deal in sensitive
data.

4.4. Use SSL pinning

Another solution suggested by many researchers is the
increased use of SSL Pinning. A pinning strategy using Trust

on First Use (TOFU) retrieves the certificate from a website
when it is first accessed. Every further connection compares
the cached cert to the one which has been sent. This tactic
is already used with success in SSH as Key Continuity Man-

agement. The user must trust the server on the first access,
but all future sessions are more secure. The technology of
HTTPS Strict Transport Security with pinning (HSTS) [77]

forces all clients which wish to connect to a server to do
so by HTTPS. Any situations where there is a mismatch will
force a new session to be held to renegotiate certificates. This

may be a hefty burden on bandwidth and may break services
already in place. However, this technology would prevent
attacks from rogue CAs, SSL stripping, session hijacking,
and developers who do not use secure HTTP from connect-

ing to secure servers. Coupled with other SSL protocol
improvements, pinning could round out HTTPS, forming
an effective foundation for Android applications that devel-

opers can rely on. SSL pinning relies on the validity of an
initial connection and may become burdensome on the end
user, leading to further manual overrides and apathy toward

web security.

4.5. Improve documentation and API clarity

Developer misuse of SSL can be mitigated can also be miti-
gated through better documentation and clearer APIs. Cases
of unclear APIs are specific and should be continually analyzed
and reported by the community. Consistent error reporting by

APIs can aid in a better understanding of how developers
should solve for SSL instead of against it [37]. Code analysis
techniques and intelligent suggestions could be adopted by

IDEs to check SSL implementations in real-time [58]. Further-
more, Android platform maintainers with the help of the
development and security communities need to create a more

comprehensive and educational source of information on cor-
rect implementations of HTTPS in both testing and produc-
tion systems. One small example is that the Android

‘‘Preparing to Release” checklist should include information
about removing debug code in applications and ensuring the
application does not accept self-signed certificates [65].
Improving documentation is as close to improving the devel-

oper paradigm as is possible. Updating documentation is not
a trivial task and may take years to update across the entire
ecosystem. However, new tools which aid in the development

of SSL session creation should be sure not only to explain
how to successful connection, but also the importance of prop-
erly approaching the debugging vs production certificate man-

agement situation.

Survey on HTTPS implementation by Android apps 113
4.6. Begin persistent Internet-wide SSL vulnerability scanning

Research conducted by the EFF, Durumeric et al. [50], Zhang
et al. [55], Levillain et al. [52], and others following Heartbleed
have shown that widespread scanning of the Internet for holes

in the security of SSL are possible. These scans identify exactly
how safe some hosts and servers are and potentially where
attacks are originating from. As shown in the work of Duru-
meric et al. has presented, these scans also allow for research-

ers to notify server operators whose systems may be vulnerable
to attack. This type of notification has proven effective in
improving the safety of the Internet. A movement toward

Internet-wide vulnerability scanning has positive implications
for patching the security of the HTTPS. As new paradigms
for SSL analysis are developed [51], the capacity for SSL

adherence analysis becomes greater. Yet, the growing number
of network flows across the internet will make tracing individ-
ual applications and versions more challenging. Any observa-

tory must accurately and transparently identify applications
that may be at risk and be able to notify the developers at
once.

4.7. Patch and increase oversight on SSL libraries

In order to secure SSL implementations on every platform,
SSL libraries and middleware with flaws in their validation

and revocation checks mentioned in the previous section need
to be patched. Design refactoring of current libraries should
focus on hiding low-level code. A system similar to HTTPS

Everywhere should be used in Android communication APIs
[63,24]. As libraries are more and more utilized, their code
needs to be scrutinized and brought into a state of security that
is both forward-looking and all-encompassing. Large compa-

nies which handle critical data should be contributing efforts
toward the improvement of open-source SSL libraries and pro-
tocols. Changes to libraries may roll out slowly across the SSL/

TLS ecosystem, but they would become the cornerstone of safe
Android web development.

4.8. Large mobile applications should use stronger HTTPS
protections

In a more specific sense, large mobile applications made by

Facebook, Amazon, and Google have the ability to verify their
own certificates in mobile applications and detect MITM
attacks [41]. Certain companies which can spare the bandwidth
and application space should look into origin bound certs

(OBCs) [41] and the use of HSTS [15]. These fixes are more
of a server-side change than anything, but their use can secure
popular mobile applications. Depending on the success of

these systems, APIs for third-party apps which hook into com-
pany servers could also require clients to have certificates. This
may prove challenging in scenarios where the application is

closed source. However, even black box approaches [51] are
able to identify certain patterns in SSL traffic that indicate
unsafe SSL usage. The technology industry seems to under-

stand the importance of SSL, but implementations of the
strongest and arguably the most complex security measures
in reality are rarely ideal.
4.9. Revise the TLS protocol suite

Beyond issues with developers, the TLS protocol needs to
revised to allow for further progress in technological security.
IETF RFC 2818, Section 3.1 [61], which deals with HTTP over

TLS, needs to be revised to be more strict on validation guide-
lines. The protocol must require hostname and certificate val-
idation and the community must adopt the strongest standard
possible and implement it correctly. From there, applications

which deal with user data can be built. The IETF [78] gives
the following recommendations to certificate authorities and
client developers:

� Move away from including and checking strings that look
like domain names in the subjects Common Name.

� Move toward including and checking DNS domain names
via the subject AlternativeName extension designed for that
purpose: dNSName.

� Move toward including and checking even more specific
subjectAlternativeName extensions where appropriate for
using the protocol (e.g., uniformResourceIdentifier and
the otherName form SRVName).

� Move away from the issuance of so-called wildcard certifi-
cates (e.g., a certificate containing an identifier for ‘‘*.exam
ple.com”).

Furthermore, the X.509 needs revision [21]. In order to
make way for CDNs, several amendments have been sug-

gested, such as DNS-Based Authentication of Named Entities
(DANE) [79,15]. In order to defend the protocol from resump-
tion attacks, the suggestion made by Bhargavan et al. [59] is to
create a new channel binding that would serve as a unique ses-

sion hash. Master secrets thus benefit from this nonce. Also,
secure resumption indicator which forces connections to check
previous sessions is recommended. Stricter name constraints

can define exactly who is receiving a certificate and make social
engineering more difficult. However, certificate transparency
(CT) represents a more promising proposal. It compiles a list

of all existing certificates on the Internet. This allows for the
public to view and investigate fraudulent certs issued in prepa-
ration for MITM attacks. This protocol, of course, relies on

interested parties, like the EFF’s SSL observatory to pay atten-
tion [66]. This could also help CAs determine the validity of
cert requests. Combining CT and pinning would greatly
increase security [67]. The openness of these systems will both

spread awareness of SSL security, but hopefully spur further
educational materials and human-friendly implementations.
One other addendum to the protocol would establish a system

that rather than allowing certificates to expire and throw a
fatal error immediately, have certs warn the administrator
for a week before throwing the error and more relaxed warn-

ings [40]. CAs can use more specific revocation lists– some
for normal expirations and some for blacklists [40]. These
two solutions would stop a large number of false positive
warnings which undermine the social comprehension of SSL.

Finally, Android specifically could benefit from implementing
a device-wide web security policy [80] which would guide its
specific implementations of SSL to a strong standard. The

TLS/X.509 protocol can benefit from dozens of new additions
and specifications which will meet the needs of the applications

114 X. Wei, M. Wolf
which use it. The main limitation remains what direction
would be the most sustainable solution moving forward, gar-
nering both industry and academic support. While these

increases in strictness will make the line drawn between secure
and insecure architectures clear, it may pose an issue to devel-
opers and users who are looking for performance and avail-

ability over security. Suggestions for a warning escalation
system may alleviate the pressure on developers and system
administrators, much innovation and discussion remains

before a proper certificate architecture that solves for both
security and usability can be put in place.

4.10. Increase consumer awareness

Gaining user pressure on developers seems to be possible at
this point to in only a few ways. If platform developers were
to implement an effective non-HTTPS warning system in

Android, the hands of developers would be pushed [24]. This
would not alert all users, but it would alert those who are secu-
rity conscious. Going further and preventing users from going

to sites with misconfigured SSL/TLS forces developers to fix
their authentication issues though it may inconvenience a user
[72]. Less frequent and more accurate warnings may stop the

end user from ignoring the errors since a user will obviously
click through messages if they are bombarded with them
[40]. The end user is most familiar with SSL when it gives them
an error. These interactions need to be more meaningful and

human-understandable. As with any security education, plac-
ing proper importance on SSL/TLS will require concrete
examples and explanations about why sites with broken certifi-

cates should be avoided almost completely.

5. Discussion and future work

5.1. Gaps in research

This survey contains data from a wide range of academic
papers and recent events; however, the topic of Android devel-
oper misuse of HTTPS is not solved. There are no interviews

which answer the ‘why’ question or truly get into the develop-
ers’ heads. Why don’t developers fix the holes in their code
noted in the work by Fahl et al. [39]? Why do developers use
HTTP when using HTTPS may require only changing the

URL in the call? The answers to these questions are currently
conjectures. While steps are made to implement the solutions
above, a deeper look into the psychological and potentially

sociological underpinnings of SSL implementation is needed.
Research into developer understanding of SSL documentation
is lacking. While it is clear that their knowledge of cryptogra-

phy may not be strong [17], there has been no research into the
specific tools which developers need to create a secure HTTPS
connection. There have been no tools, as of this writing, which

check the security of HTTPS calls as they are written in an
IDE. Much of existing research revolves around static code
analysis of applications. Codebases that are not publicly avail-
able have generally not been included. Research is still wanting

in how strongly closed source Android apps follow the TLS
protocol and how these implementations compare to those
seen in open source repositories. While the prevalence of

MITM attacks in the wild has been investigated, the preva-
lence of MITM attacks against Android phones has not been
studied on such a scale. Another area of SSL ecosystem
research which is not clear is the effect of implementing HSTS
and OBCs on a modern cellular or wireless network. Finally,

there is little research in the field of an Android implementa-
tion of the DANE protocol and similar tools. Determining
the effectiveness of these tools on the Android platform or

as an extension in an Android browser is an important tool
in deciding how to better secure HTTPS on Android and make
it the standard protocol of the platform.

5.2. Moving forward

The previous sections opens up several ideas for next steps in

research to prevent Android developer misuse of HTTPS. In
this section, we will present some recommendations for future
work. A productive solution to the issue of misinformation
and SSL ignorance would be the creation of an online resource

which exists as a single, accurate reference for the growing
number of Android developers seeking to implement HTTPS
in their applications. This solution would work with existing

parties such as Android Developer Training and Stack Over-
flow to present credible and understandable information. A
project in this field would include a primer on public key

infrastructure, the proper usage of HTTPS, current attacks
on SSL, a presentation of the most popular ways of imple-
menting TLS on Android, and directions on how to acquire
a server certificate. The presentation would be easy to read

and include links to resources for further study and more
specific problem solutions. A plugin to an IDE which would
provide real-time feedback on the legitimacy of HTTPS calls

could be developed in order to point out mistakes to develop-
ers. Similar to warnings which arise when using C’s vulnerable
strcpy, this plugin could then be tested for effectiveness at

properly informing developers of their mistakes and the proper
way to implement SSL. This plugin would need to return
human readable and specific errors. An experimental plugin,

emphaSSL [45] has been developed pursuant of this idea.
The review of 75 open-source applications showed that 40%
of the applications had significant violations of TLS protocol.
This is concerning given the popularity of some of these appli-

cations and the sensitive data they transmit. Further research
is needed to determine how effective feedback within the
IDE is for developers and how to best present security sugges-

tions during the product creation lifecycle. Fahl et al. [24] men-
tion the implementation of their service MalloDroid as part of
the Android Market or as a web application. In order to bring

the benefits of Mallodroid to end users, an experimental ser-
vice based off Mallodroid could be developed which would
detect applications with vulnerable SSL connections and flag
the program operator. This would fit into a model of an

Android Market app or an end user device. This experiment
would present either of these models with static code checking
at its core and predict success rates. Furthermore, the work of

Yao et al. [81] could be used by market administrators and net-
work watchdogs to identify insecure traffic and identify the
applications and specific software versions which are vulnera-

ble. Individual flows could be analyzed for weak ciphers,
expired and self-signed certificates, as well as completely
plain-text packets. This would give greater oversight on exist-

ing network traffic at a more practical and automated level
than static code analysis and would open up oversight to

Survey on HTTPS implementation by Android apps 115
closed-source applications. Implementations of traffic finger-
printing and analysis have been conducted [51,52], which give
great insights to the way that various Internet services handle

SSL overall. As mentioned in the work of Georgiev et al. [37],
several open source libraries could benefit from a reworded
API and stronger documentation. Another project which

could originate from this survey would be an effort to present
clear method names and contributions to these open source
libraries. This would require strong collaboration with security

experts in the community and further research into psycholog-
ical implications of programming syntax. One of the more
specific solutions for Android which could come from work
existing on a desktop scale would be the implementation of

CDNSEC [82], a Firefox add-on that demonstrates the DANE
protocol, as an Android service. While this would serve a very
specific purpose based deeply in the work of Liang et al. [15]

and not so much on the SSL comprehension for developers,
it would be the first step toward adoption of DANE and in
extension, forward-thinking SSL security, on multiple plat-

forms. Furthermore, the development of Convergence [71], a
CA-free certificate validation system on the Android platform
would allow for the promising protocol to expand and test the

implications of the overhead on mobile phones.
A less technical research project could be conducted in a

similar manner to that of Xie et al.’s survey of developers
[14], but focus on asking developers what their major chal-

lenges were in implementing HTTPS. Following the survey,
the experimenters could look into the applications made by
these developers to see how the SSL was implemented. Conclu-

sions drawn from this would go into refining documentation,
educational materials, and SSL libraries. Furthermore, devel-
opers could be presented with a situation which requires an

HTTP call in their chosen language. The experimenters would
then record the comprehension of the developer, whether or
not web resources were used, and how well this implementa-

tion would withstand a MITM attack.
Again, a device-wide security policy could be proposed or

discussed in further research which would encourage Android
developers to adopt a standard set of security procedures and

set a benchmark for SSL usage. This exists in diverse for-
mats, but the presentation of a unified system would fulfill
the call issued by Jeff Hodges and Andy Steingruebl for a

web security policy framework [80], but with a particularly
mobile lean.

The development of a sustainable Internet-scanning service

for security researchers would allow for further research into
the shortcomings that still exist within the HTTPS protocol
in its current form. This tool would be available to researchers,
commercial entities, and security organizations in order to find

holes to patch. The outcome would be much like the work of
Durumeric et al. following Heartbleed [50], extensive notifica-
tion of vulnerable entities with the hopes that these systems

would be patched quickly. Further solutions will certainly arise
for the Android platform as research into new protocols, lan-
guages, and programming paradigms continues.

6. Conclusion

This paper has compiled current research on vulnerable

HTTPS implementations and lacking protocols. We looked
at the current shortcomings in the real-world application of
end-to-end transport security, listed the areas in SSL which
need improvement, and presented the current proposals of
solutions to these areas. It is clear that Android developers

remain unable to properly use the protocol in their applica-
tions due to reasons within and without their reach. Even in si-
tuations where the implementation is syntactically correct,

there can be flaws along the chain of communication or in
the CAs which back up the trust web of SSL. User-facing
applications, SSL libraries, protocols, and infrastructure have

limitations which must be further investigated. Most notably,
the areas of education and support tools for developers
require research and resolution. Evaluation of the solutions
presented by the papers was brought together in this survey

and including them into the next set of TLS/X.509 protocols
and versions of SSL libraries will ensure user data integrity
and security in a mobile environment that continues to see

growth in the amount of confidential data transmitted. From
these solutions, developers will benefit and this will trickle
down to end users.
References

[1] IDC, Worldwide smartphone market grows 28.6% year over

year in the first quarter of 2014, according to idc, Tech. rep.,

IDC, 2014. <http://www.idc.com/getdoc.jsp?containerId=

prUS24823414>.

[2] J. Burns, Mobile application security on android, in: Black Hat

USA, 2009.

[3] H. Wilcox, Press release: Juniper research forecasts total mobile

payments to grow nearly ten fold by 2013, Tech. rep., Juniper

Research, 2008. <http://www.juniperresearch.com/

viewpressrelease.php?pr=106>.

[4] P. Ruggiero, J. Foote, Cyber threats to mobile phones, Tech.

rep., 2011. <https://www.us-cert.gov/sites/default/files/

publications/cyber_threats-to_mobile_phones.pdf>.

[5] H. Hwang, G. Jung, K. Sohn, S. Park, A study on mitm (man in

the middle) vulnerability in wireless network using 802.1x and

eap, in: IEEE ICISS, 2008.

[6] T. King, Packet sniffing in a switched environment, SANS

Reading Room. <https://www.sans.org/reading-room/white-

papers/networkdevs/packet-sniffing-switched-environment-244>.

[7] Revisiting ssl: a large scale study of the internet’s most trusted

protocol, Tech. rep., 2012.

[8] V. Tendulkar, Mitigating android application ssl vulnerabilities

using configuration policies, North Carolina State University,

2013. http://repository.lib.ncsu.edu/ir/bitstream/1840.16/8840/

1/etd.pdf.

[9] BLS, Occupational outlook: Computer programmer, Tech. rep.,

US BLS, 2012. <http://stats.bls.gov/ooh/computer-and-

information-technology/computer-programmers.htm>.

[10] The Legion of Bouncy Castle, The Legion of Bouncy Castle.

<http://bouncycastle.org>.

[11] OpenSSL Project, OpenSSL. <http://www.openssl.org/>.

[12] Security with HTTPS and SSL, android Developer Training.

<https://developer.android.com/training/articles/security-ssl.

html>.

[13] M. Egele, D. Brumley, Y. Fratantonio, C. Kruegel, An empirical

study of cryptographic misuse in android applications, in: ACM

CCS, 2013.

[14] J. Xie, H.R. Lipford, B. Chu, Why do programmers make

security errors?, in: IEEE VL/HCC, 2011

[15] J. Liang, J. Jiang, H. Duan, K. Li, Kang, T. Wan, J. Wu, When

https meets cdn: a case of authentication in delegated service, in:

IEEE S &P, 2014.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414
http://www.idc.com/getdoc.jsp?containerId=prUS24823414
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0010
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0010
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0010
http://www.juniperresearch.com/viewpressrelease.php?pr=106
http://www.juniperresearch.com/viewpressrelease.php?pr=106
https://www.us-cert.gov/sites/default/files/publications/cyber_threats-to_mobile_phones.pdf
https://www.us-cert.gov/sites/default/files/publications/cyber_threats-to_mobile_phones.pdf
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0025
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0025
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0025
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0025
https://www.sans.org/reading-room/whitepapers/networkdevs/packet-sniffing-switched-environment-244
https://www.sans.org/reading-room/whitepapers/networkdevs/packet-sniffing-switched-environment-244
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/8840/1/etd.pdf
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/8840/1/etd.pdf
http://stats.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
http://stats.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
http://bouncycastle.org
http://www.openssl.org/
https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/training/articles/security-ssl.html
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0065
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0065
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0065
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0065
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0070
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0070
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0070
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0075
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0075
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0075
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0075

116 X. Wei, M. Wolf
[16] M. Egele, D. Brumley, Y. Fratantonio, C. Kruegel, An empirical

study of cryptographic misuse in android applications, in: ACM

CCS, 2013.

[17] K. Cairns, G. Steel, Developer-resistant cryptography, in: W3C/

IAB STRINT, 2014.

[18] Y. Zou, X. Wang, L. Hanzo, A survey on wireless security:

Technical challenges, recent advances and future trends, CoRR

abs/1505.07919. <http://arxiv.org/abs/1505.07919>.

[19] Microsoft, SSL/TLS in Detail. <http://technet.microsoft.com/

en-us/library/cc785811.aspx>.

[20] The transport layer security (tls) protocol, rFC 5246.

<http://tools.ietf.org/html/rfc5246>.

[21] Internet x.509 public key infrastructure certificate and certificate

revocation list (crl) profile, rFC 5280. <http://tools.ietf.org/

html/rfc5280>.

[22] X.509 internet public key infrastructure online certificate status

protocol – ocsp, rFC 6960. <http://tools.ietf.org/html/

rfc6960>.

[23] Microsoft, How Certificates Work. <http://technet.microsoft.

com/en-us/library/cc776447%28v=WS.10%29.aspx>.

[24] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B.

Freisleben, M. Smith, Why eve and mallory love android: an

analysis of android ssl (in)security, in: ACM CCS, 2012.

[25] The internet engineering task force. <http://www.ietf.org/>.

[26] Heartbleed bug. <http://heartbleed.com/>.

[27] Debian security advisory 1571. <http://heartbleed.com/>.

[28] Netcraft, April 2014 web server survey, Tech. rep., Netcraft,

2014. <http://news.netcraft.com/archives/2014/04/02/april-

2014-web-server-survey.html>.

[29] I. Buitron-Damaso, G. Morales-Luna, Https connections over

android, in: IEEE CCE, 2011.

[30] Trusted roots. <http://www.setupmobile.se/wp-content/

uploads/2011/11/trusted_roots_ICS.txt>.

[31] Android, URLConnection. <https://developer.android.com/

reference/java/net/URLConnection.html>.

[32] Oracle, JSSE. <http://docs.oracle.com/javase/7/docs/technotes/

guides/security/jsse/JSSERefGuide.html>.

[33] GnuTLS, GnuTLS. <http://gnutls.org/>.

[34] Haxx, cURL. <http://curl.haxx.se/>.

[35] Apache, HTTPClient – SSL Guide. <https://hc.apache.org/

httpclient-3.x/sslguide.html>.

[36] Amazon, Amazon Flexible Payment Service.

<https://payments.amazon.com/developer>.

[37] R. Anubhai, D. Boneh, M. Georgiev, S. Iyengar, S. Jana, V.

Shmatikov, The most dangerous code in the world: validating ssl

certificates in non-browser software, in: ACM CCS, 2012.

[38] Vulnerability note vu#582497: Multiple android applications

fail to properly validate ssl certificates. <http://www.kb.cert.

org/vuls/id/582497>.

[39] S. Fahl, M. Harbach, H. Perl, M. Koetter, M. Smith,

Rethinking ssl development in an appified world, in: ACM

CCS, 2013.

[40] D. Akhawe, B. Amann, M. Vallentin, R. Sommer, Here’s my

cert, so trust me, maybe?: understanding tls errors on the web,

in: WWW, 2013.

[41] L.S. Huang, A. Rice, E. Ellingsen, C. Jackson, Analyzing forged

ssl certificates in the wild, in: IEEE S&P, 2014.

[42] Moxie Marlinspike, SSLSniff. <http://www.thoughtcrime.

org/software/sslsniff/>.

[43] M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel,

Semantically rich application-centric security in android, in:

ACSAC, 2009.

[44] Cwe-489: Leftover debug code. <http://cwe.mitre.org/data/

index.html>.

[45] X. Wei, M. Wolf, L. Geo, K.H. Lee, M. Huang, N. Niu,

emphassl: towards emphasis as a mechanism to harden network

security in android apps, in: IEEE GLOBECOM, 2016.
[46] Stack overflow. <http://stackoverflow.com/>.

[47] Stack overflow: Ssl – untrusted certificate error. <http://

stackoverflow.com/questions/2642777/trusting-all-certificates-

using-httpclient-over-https>.

[48] Setting up Apache HTTP Server with SSL support on Ubuntu/

Debian. <http://softwareinabottle.wordpress.com/2011/12/18/

setting-up-apache-http-server-with-ssl-support-on-

ubuntudebian/>.

[49] Apache, SSL/TLS Strong Encryption: How-To. <http://httpd.

apache.org/docs/2.4/ssl/ssl_howto.html>.

[50] Z. Durumeric, J. Kasten, D. Adrian, J.A. Halderman, M.

Bailey, The matter of heartbleed, in: ACM IMC, 2014.

[51] M. Korczynski, A. Duda, Markov chain fingerprinting to

classify encrypted traffic, in: IEEE INFOCOM, 2014.

[52] O. Levillain, A. Ebalard, B. Morin, H. Debar, One year of ssl

internet measurement, in: ACM ACSAC, 2012.

[53] H. Lee, T. Malkin, E. Nahum, Cryptographic strength of ssl/tls

servers: current and recent practice, in: ACM IMC, 2007.

[54] N. Vratonjic, J. Freudiger, V. Bindschaedler, J. Hubaux, The

inconvenient truth about web certificates, in: WEIS, 2011.

[55] L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. Mislove, A.

Schulman, C. Wilson, Analysis of ssl certificate reissues and

revocations in the wake of heartbleed, in: ACM IMC, 2014.

[56] E. Chin, A. Felt, K. Greenwood, D. Wagner, Analyzing inter-

application communication in android, in: ACMMobiSys, 2011.

[57] Apache, AllowAllHostnameVerifier. <http://developer.

android.com/reference/org/apache/http/conn/ssl/

AllowAllHostnameVerifier.html>.

[58] A.J. Ko, B.A. Myers, H.H. Aung, Six learning barriers in end-

user programming systems, in: IEEE VL/HCC, 2004.

[59] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, P.

Strub, Triple handshakes and cookie cutters: breaking and fixing

authentication over tls, in: IEEE S&P, 2014.

[60] C. Brubaker, S. Jana, B. Ray, S. Khurshid, V. Shmatikov, Using

frankencerts for automated adversarial testing of certificate

validation in ssl/tls implementations, in: IEEE S&P, 2014.

[61] Http over tls, rFC 2818. <http://tools.ietf.org/html/rfc2818>.

[62] Http strict transport security (hsts), rFC 6797. <http://tools.

ietf.org/html/rfc6797>.

[63] EFF, HTTPS Everywhere. <https://www.eff.org/https-

everywhere>.

[64] Http strict transport security hsts. <http://scratchingsecurity.

blogspot.com/2013/06/http-strict-transport-security-hsts.

html>.

[65] Android, Preparing for Release. <http://developer.

android.com/tools/publishing/preparing.html>.

[66] An observatory for the ssliverse. <https://www.eff.org/files/

DefconSSLiverse.pdf>.

[67] Using frankencerts for automated adversarial testing of certificate

validation in ssl/tls implementations, in: ACSAC, 2013.

[68] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, K.R.B. Butler,

Forced perspectives, in: ACM IMC, 2014.

[69] P. Hallam-Baker, Comodo ssl affiliate the recent ra compromise,

Comodo Blog. <https://blogs.comodo.com/uncategorized/the-

recent-ra-compromise/>.

[70] Microsoft security advisory 2607712. <https://technet.

microsoft.com/en-us/library/security/2607712.aspx>.

[71] Convergence. <http://convergence.io/>.

[72] A. Felt, R. Reeder, H. Almuhimedi, S. Consolvo, Experimenting

at scale with google chrome’s ssl warning, in: ACM CHI, 2014.

[73] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner,

Android permissions: user attention, comprehension and

behavior, in: ACM SOUPS, 2012.

[74] S. Malek, N. Esfahani, T. Kacem, R. Mahmood, N. Mirzaei, A.

Stavrou, Packet sniffing in a switched environment (2012).

<http://mason.gmu.edu/nesfaha2/Publications/SERE2012.

pdf>.

http://refhub.elsevier.com/S2210-8327(16)30072-2/h0080
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0080
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0080
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0080
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0085
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0085
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0085
http://arxiv.org/abs/1505.07919
http://technet.microsoft.com/en-us/library/cc785811.aspx
http://technet.microsoft.com/en-us/library/cc785811.aspx
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc6960
http://tools.ietf.org/html/rfc6960
http://technet.microsoft.com/en-us/library/cc776447%28v=WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc776447%28v=WS.10%29.aspx
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0120
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0120
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0120
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0120
http://www.ietf.org/
http://heartbleed.com/
http://heartbleed.com/
http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0145
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0145
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0145
http://www.setupmobile.se/wp-content/uploads/2011/11/trusted_roots_ICS.txt
http://www.setupmobile.se/wp-content/uploads/2011/11/trusted_roots_ICS.txt
https://developer.android.com/reference/java/net/URLConnection.html
https://developer.android.com/reference/java/net/URLConnection.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://gnutls.org/
http://curl.haxx.se/
https://hc.apache.org/httpclient-3.x/sslguide.html
https://hc.apache.org/httpclient-3.x/sslguide.html
https://payments.amazon.com/developer
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0185
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0185
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0185
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0185
http://www.kb.cert.org/vuls/id/582497
http://www.kb.cert.org/vuls/id/582497
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0195
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0195
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0195
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0195
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0200
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0200
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0200
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0200
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0205
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0205
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0205
http://www.thoughtcrime.org/software/sslsniff/
http://www.thoughtcrime.org/software/sslsniff/
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0215
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0215
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0215
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0215
http://cwe.mitre.org/data/index.html
http://cwe.mitre.org/data/index.html
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0225
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0225
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0225
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0225
http://stackoverflow.com/
http://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
http://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
http://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
http://softwareinabottle.wordpress.com/2011/12/18/setting-up-apache-http-server-with-ssl-support-on-ubuntudebian/
http://softwareinabottle.wordpress.com/2011/12/18/setting-up-apache-http-server-with-ssl-support-on-ubuntudebian/
http://softwareinabottle.wordpress.com/2011/12/18/setting-up-apache-http-server-with-ssl-support-on-ubuntudebian/
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0250
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0250
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0250
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0255
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0255
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0255
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0260
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0260
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0260
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0265
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0265
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0265
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0270
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0270
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0270
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0275
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0275
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0275
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0275
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0280
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0280
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0280
http://developer.android.com/reference/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://developer.android.com/reference/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://developer.android.com/reference/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0290
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0290
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0290
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0295
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0295
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0295
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0295
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0300
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0300
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0300
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0300
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/rfc6797
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
http://scratchingsecurity.blogspot.com/2013/06/http-strict-transport-security-hsts.html
http://scratchingsecurity.blogspot.com/2013/06/http-strict-transport-security-hsts.html
http://scratchingsecurity.blogspot.com/2013/06/http-strict-transport-security-hsts.html
http://developer.android.com/tools/publishing/preparing.html
http://developer.android.com/tools/publishing/preparing.html
https://www.eff.org/files/DefconSSLiverse.pdf
https://www.eff.org/files/DefconSSLiverse.pdf
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0340
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0340
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0340
https://blogs.comodo.com/uncategorized/the-recent-ra-compromise/
https://blogs.comodo.com/uncategorized/the-recent-ra-compromise/
https://technet.microsoft.com/en-us/library/security/2607712.aspx
https://technet.microsoft.com/en-us/library/security/2607712.aspx
http://convergence.io/
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0360
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0360
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0360
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0365
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0365
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0365
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0365
http://mason.gmu.edu/nesfaha2/Publications/SERE2012.pdf
http://mason.gmu.edu/nesfaha2/Publications/SERE2012.pdf

Survey on HTTPS implementation by Android apps 117
[75] W. Enck, M. Ongtang, P. McDaniel, On lightweight mobile

phone application certification, in: ACM CCS, 2009.

[76] F-Droid, F-Droid. <https://f-droid.org/>.

[77] Certificate pinning extension for hsts, updated http://tools.ietf.

org/html/rfc6797. <http://www.ietf.org/mail-archive/web/

websec/current/pdfnSTRd9kYcY.pdf>.

[78] Representation and verification of domain-based application

service identity within internet public key infrastructure using

x.509 (pkix) certificates in the context of transport layer security

(tls), rFC 6125. <http://tools.ietf.org/pdf/rfc6125.pdf>.
[79] The dns-based authentication of named entities (dane) transport

layer security (tls) protocol: Tlsa, rFC 6698. <http://tools.ietf.

org/html/rfc6698>.

[80] The need for a coherent web security policy framework, 2010.

<http://www.w2spconf.com/2010/papers/p11.pdf>.

[81] Y. Hongyi, R. Gyan, A. Tongaonkar, L. Yong, M. Zhuoqing

Morley, Samples: self adaptive mining of persistent lexical

snippets for classifying mobile application traffic, in: ACM

MobiCom, 2015.

[82] GitHub, DANE4CDN.<https://github.com/cdnsec/dane4cdn>.

http://refhub.elsevier.com/S2210-8327(16)30072-2/h0375
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0375
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0375
https://f-droid.org/
http://www.ietf.org/mail-archive/web/websec/current/pdfnSTRd9kYcY.pdf
http://www.ietf.org/mail-archive/web/websec/current/pdfnSTRd9kYcY.pdf
http://tools.ietf.org/pdf/rfc6125.pdf
http://tools.ietf.org/html/rfc6698
http://tools.ietf.org/html/rfc6698
http://www.w2spconf.com/2010/papers/p11.pdf
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0405
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0405
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0405
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0405
http://refhub.elsevier.com/S2210-8327(16)30072-2/h0405
https://github.com/cdnsec/dane4cdn

	A Survey on HTTPS Implementation by Android Apps: Issues and Countermeasures
	1 Introduction
	2 Overview of Android HTTPS and current findings
	3 In-depth cause analysis of HTTPS misuse
	3.1 Developer misuse of HTTPS
	3.2 Server misconfigurations
	3.3 Lacking documentation on HTTPS
	3.4 Flaws in SSL/TLS libraries
	3.5 Issues in the HTTPS protocol
	3.6 Need for consumer awareness

	4 Proposed solutions
	4.1 Link SSL to DEBUGGABLE flag in the Android manifest
	4.2 Remove SSLErrorHandler
	4.3 Android market and client side application validation
	4.4 Use SSL pinning
	4.5 Improve documentation and API clarity
	4.6 Begin persistent Internet-wide SSL vulnerability scanning
	4.7 Patch and increase oversight on SSL libraries
	4.8 Large mobile applications should use stronger HTTPS protections
	4.9 Revise the TLS protocol suite
	4.10 Increase consumer awareness

	5 Discussion and future work
	5.1 Gaps in research
	5.2 Moving forward

	6 Conclusion
	References

