
Applied Computing and Informatics (2017) 13, 130–139
Saudi Computer Society, King Saud University

Applied Computing and Informatics

(http://computer.org.sa)
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Timing analysis for embedded systems using

non-preemptive EDF scheduling under bounded

error arrivals
E-mail address: m.short@tees.ac.uk

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.aci.2016.07.001
2210-8327 � 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Michael Short
School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA, UK
Received 8 June 2016; revised 22 July 2016; accepted 28 July 2016
Available online 4 August 2016
KEYWORDS

Real-time and embedded

systems;

Timing analysis;

Non-preemptive scheduling;

Transient error protection;

Fault-tolerance
Abstract Embedded systems consist of one or more processing units which are completely encap-

sulated by the devices under their control, and they often have stringent timing constraints associ-

ated with their functional specification. Previous research has considered the performance of

different types of task scheduling algorithm and developed associated timing analysis techniques

for such systems. Although preemptive scheduling techniques have traditionally been favored, rapid

increases in processor speeds combined with improved insights into the behavior of non-preemptive

scheduling techniques have seen an increased interest in their use for real-time applications such as

multimedia, automation and control. However when non-preemptive scheduling techniques are

employed there is a potential lack of error confinement should any timing errors occur in individual

software tasks. In this paper, the focus is upon adding fault tolerance in systems using non-

preemptive deadline-driven scheduling. Schedulability conditions are derived for fault-tolerant peri-

odic and sporadic task sets experiencing bounded error arrivals under non-preemptive deadline

scheduling. A timing analysis algorithm is presented based upon these conditions and its run-

time properties are studied. Computational experiments show it to be highly efficient in terms of

run-time complexity and competitive ratio when compared to previous approaches.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

Recent results quantifying the optimality gap between non-

preemptive scheduling and its preemptive counterpart on
uniprocessors have been very encouraging. Using processor
speedup analysis as a quantification metric, it has been shown
that any task set which can be successfully scheduled by a fully

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2016.07.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.short@tees.ac.uk
http://dx.doi.org/10.1016/j.aci.2016.07.001
http://dx.doi.org/10.1016/j.aci.2016.07.001
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2016.07.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Timing analysis for embedded systems using EDF scheduling 131
preemptive optimal scheduling algorithm on a uniprocessor
can also be scheduled by its non-idling, non-preemptive coun-
terpart if the processor is speeded up by a factor which is no

more than a simple linear function of the timing requirements
(and is usually quite small for realistic applications) [1,2]. Since
timing requirements are typically fixed by application con-

straints and processor speeds are much faster than one or
two decades ago, this has renewed interest in non-preemptive
and limited-preemptive scheduling on low cost microcontroller

and microprocessor platforms [1–5]. For embedded real-time
applications such as multimedia, automation and control,
increases in hardware parallelism (such as multicore proces-
sors, DMA, programmable ADCs/DACs and dedicated com-

munication controllers) also favor the use of non-preemptive
scheduling as the workload on the host CPU can be consider-
ably reduced. Such applications are the focus of this paper.

There are several reasons to implement an application using
a non-preemptive scheduler if it is possible to do so: these
include an easier code implementation (no need to implement

context switching and advanced stack management), lower
CPU and memory overheads, exclusive access to shared
resources by design, fewer cache/pipeline-related flushing

events and potentially less susceptibility to transient errors
[6–10]. Indeed, the principal advantage of preemptive software
architectures is their comparative flexibility around timing
requirements [6], which as mentioned has recently been explic-

itly quantified [1]. Among the available options for non-
preemptive scheduling, the non-preemptive Earliest Deadline
First (npEDF) dynamic priority-driven scheduling algorithm

is known to be optimal among the class of non-preemptive
schedulers that do not allow the use of inserted idle-time
[8,11,12] (For recent developments in the area of priority-

driven non-preemptive scheduling allowing the use of inserted
idle-time, the interested reader is referred to Nasri and Kargahi
[4] and Nasri and Fohler [5]. The results demonstrated by

Abugchem et al. [1] and Thekkilakattil1 et al. [2] are directly
applicable to the npEDF scheduler. Since very efficient run-
time implementations (with effectively O(1) CPU overheads)
are relatively straightforward to create [13], npEDF becomes

the focus of the current paper.

1.2. Problem statement

Non-trivial problems can arise with npEDF with respect to
task failures and overloads, due to its single-tasking mode of
operation. Such failures occur in situations when assumptions

of finite and known worst-case execution times are violated
and a task overrun its determined execution time, overloading
Figure 1 Task failure leading to
the CPU. Although overloads are also problematic in preemp-
tive architectures, Allworth [14] has noted:

‘‘[The] main drawback with this [non-preemptive] approach
is that while the current process is running, the system is not

responsive to changes in the environment”.

Unless evasive action is taken when a task fails, program
flow will never be returned to the scheduler; the entire system
will effectively ‘freeze’ indefinitely, or at least until the problem

is cleared. Such a situation is depicted in Fig. 1 for two peri-
odic tasks s1 and s2, both having a period and relative deadline
of 50 ms. Supposing that task s1 fails during its third invoca-
tion (at t= 105), then both tasks will miss their deadlines

indefinitely; or at least until the situation is detected and
recovered.

Timeline breaks such as that depicted above are especially

problematic in real-time control systems. Physical processes
such as chemical reactors, aircraft and nuclear power plant
are open-loop unstable, and the automatic control of such sys-

tems is safety-critical in nature as interruptions of the provided
control service may lead to hazardous physical conditions [15].
Even with open loop stable systems, interruptions of control

services can lead to deleterious or degraded performance
because of the effect of introducing large time delays and jitters
in the feedback loop [16]. Considering that experimental stud-
ies employing fault-injection have reported that approximately

58% of faults injected into a representative real-time operating
system and its application tasks resulted in either complete sys-
tem failures or multiple task ‘crashes’ [17], adding fault toler-

ance into npEDF would seem to be advisory. Fault-tolerance
in this context refers to fault detection and recovery and also
temporal redundancy, i.e., indirectly detecting a fault (caused

by an error) through its effect on the execution time of a task,
recovering the state of the CPU and attempting re-execution of
the failed task at some appropriate future point in time.

1.3. Contributions and structure

In this paper, schedulability conditions to ensure that a set of
fault-tolerant tasks (which can be periodic or sporadic, or

both) under npEDF scheduling will meet their deadlines given
some mild assumptions about the nature of errors and their
arrival rate will be developed. The efficiency of fault-tolerant

npEDF when compared to other fault-tolerant non-
preemptive scheduling methods will also be investigated. The
specific contributions include the following: (i) the develop-

ment of efficient schedulability testing conditions for fault tol-
erant task sets under bounded error arrival rates and (ii) results
a schedule (‘timeline’) break.



132 M. Short
from a computational study which provide an evaluation of
the relative effectiveness of the proposed techniques in com-
parison with previous works. The remainder of this paper is

organized as follows. Section 2 reviews some relevant previous
work in the area of fault tolerant real-time scheduling. Sec-
tion 3 presents the system and error models while Section 4

derives the schedulability analysis. Section 5 presents the com-
putational simulation results. Section 6 concludes the paper
and presents some areas for future work.

2. Related work

A watchdog timer is arguably the simplest approach for error

detection and correction in a computer system [18,19]. How-
ever the use of a watchdog can have several drawbacks with
respect to a real-time control system, as outlined in Short

and Sheikh [24]. Previous work has therefore considered more
elaborate error/fault detection and recovery means for task
failures for a variety of non-preemptively scheduled systems:
the key related works are now elaborated.

Mosse and Melham [20], consider a real-time scheduler
which is capable of recovering from task failures in an aperi-
odic task environment. The authors consider npEDF along

with a ‘suitable error detection’ capability, such that failed
tasks can be detected at or before the end of their allotted exe-
cution times. They propose an optimal scheduling algorithm

(SFS) with time complexity that is quadratic in the number
of active jobs to reserve idle (backup) slots in the aperiodic
schedule at least every Df time units to execute backup tasks
should a fault occur. The authors also propose a linear-time

heuristic (LTH) to reduce the overheads, and demonstrate that
the degree of sub-optimality is small. However, for periodic (c.
f. aperiodic) tasks, deciding schedulability becomes intractable

due to strong NP-hardness [21]. Sporadic tasks cannot be sup-
ported directly in the scheduler. Broster and Burns [22] con-
sider situations in which messages can fail due to

electromagnetic interference in a Controller Area Network
(CAN). A CAN supports fixed-priority non-preemptive
scheduling of messages in a broadcast environment. The

authors propose a technique to upper-bound the latest time
that a particular message can be scheduled for retransmission
using an estimate of message worst-case response times. For
npEDF, response times require considerably more effort for

their computation and no equivalent to the method has yet
been proposed. Hughes and Pont have previously described
a simple task guardian to be used with the TTC periodic task

scheduler [23]. TTC is a compact form of ‘cyclic executive’ (see
[9] or [14] for further details). Although the technique of
Hughes and Pont [23] gives a basic form of error/fault toler-

ance, the underlying scheduler itself does not support sporadic
tasks. For periodic tasks, schedulability testing involves a
check across the least common multiple of the task periods
that the timeline is free of overloads. This procedure is again

strongly NP-hard; Short [10] proposed a re-design of the
TTC approach which allows for an improved form of FIFO-
based TTC scheduler. This reduces the schedulability test to

pseudo-polynomial complexity [10]. Exploiting the predictabil-
ity and lack of interference in the non-preemptive schedule, a
simple means to detect task failures and execute a backup task

in an npEDF scheduler was proposed by Short and Sheikh
[24]. Although the technique was successfully applied to con-
trol an unstable system in the presence of errors, a major draw-
back in this work is that worst-case non-preemptive blocking
was significantly increased; this in turn had a very negative

effect on task schedulability and a loss of achievable CPU
utilization.

Overload detection and recovery has also been investigated

with respect to fully preemptive scheduling. As outlined by the
survey paper of Gardner and Liu [25], these techniques typi-
cally rely upon the detection of a task exceeding its execution

budget and the application of corrective action. An effective
solution for preemptive EDF lies in the Constant Bandwidth
Server (CBS) [26], which for the case of real-time control sys-
tems typically involves the dynamic elongation of the period(s)

of the offending task(s) to maintain a constant utilization. The
CBS, however, cannot deal with timeline breaks such as that
depicted in Fig. 1. Although each of these schemes may be

applied (to a certain extent) within the framework of npEDF,
to the knowledge of the current author no schedulability con-
ditions for the general case of fault-tolerant npEDF scheduling

of recurring tasks under bounded error arrivals have previ-
ously been described. This is aimed to be addressed in the next
section.

3. System and error model

3.1. System model

Let the single processor task system be represented by a set T

of n recurring (periodic/sporadic) tasks, denoted as T = {s1,
s2, . . . , sn}. Each task is parameterized by a 3-tuple:

si ¼ ðpi; ci; diÞ ð1Þ
In which pi is the task period (minimum inter-arrival time), ci is
the (worst-case) computation requirement of the task, di is the

task (relative) deadline. Each invocation of a task is called a
job. When a job of task i becomes ready at time t, its absolute
deadline is set at time t+ di and the scheduling algorithm

must allocate ci units of CPU time to process the job in the
interval [t, t + di); otherwise, a deadline miss will occur. Jobs
are scheduled according to the npEDF scheduling policy, in

which the ready job with the earliest (absolute) deadline is
selected to be run to completion. Ties between ready jobs shar-
ing a common deadline are broken arbitrarily but consistently,
typically by lowest task index. An executing job is said to be

blocking another job, if this ready job has an earlier deadline
and is waiting for the current job to complete before it can exe-
cute on the processor; note that in a fully preemptive system,

the blocking task would have been preempted (suspended,
paused) by the arrival of the blocked job. Under the npEDF
scheduling policy, a job can be blocked if and only if it is

invoked subsequently to the blocking job being selected for
execution.

The utilization of an individual task is given by ui = ci/pi,

and the utilization of the task set U= Rui. Successive job arri-
vals from sporadic tasks are always separated by at least pi
units of time; job arrivals from periodic tasks are always sep-
arated by exactly pi time units. In this paper no specific rela-

tionships between task periods and deadlines are assumed:
for any task i the deadline may be constrained (di < pi), impli-
cit (di = pi) or unconstrained (di > pi). A task set is considered

to be schedulable if and only if every valid job sequence that



Timing analysis for embedded systems using EDF scheduling 133
could be generated at run-time meets all deadlines [11]. In
order to facilitate schedulability analysis, two further functions
related to the task set parameters will be defined as follows:

hðtÞ ¼
Xn

i¼1

tþ pi � di
pi

� �
� ci ð2Þ

bðtÞ ¼ max
dj>t

fcj � 1g ð3Þ

The quantity h(t) is the processor demand function, represent-
ing the worst-case execution requirement of jobs with release
time and deadline in the interval [0, t). The quantity b(t) is

the blocking function, representing the worst-case blocking
due to non-preemption that a job may experience in the inter-
val [0, t). See, for example, Refs. [1,11,12] for details of the

derivations of these functions.

3.2. Error model

In the current context, a job error can be defined as an incor-

rect state arising during the computation of a job (arising due
to electromagnetic inference or other disturbances); a job fault
is the inability of a job to function in a correct manner (due to

the manifestation of an error or a software defect); and a job
failure is a loss of service where the required computational
results cannot be delivered on-time due to faults. The paper

is concerned with temporal effects of errors and defects upon
system timing. The terms job error, job fault and job failure
will be used interchangeably on occasion; it should be taken

that this refers to a job which has exceeded its assumed
worst-case execution time. In this paper, it is assumed that
job failures occur intermittently due to transient errors
(EMI) and/or particle strikes. Any transient upset affecting

the CPU (and its constituent components or peripheral
devices) can potentially lead to control-flow or data errors
occurring, which leads to job faults and failures – these job-

level faults and failures will ultimately lead to timing failures
(deadline misses). Previous estimates of bit corruption proba-
bility in an IC arrange from �10�9 to 10�7 bit failures per

hour, varying upon altitude [27]. Other types of failure may
also occur intermittently (pseudo-randomly) due to interac-
tions between sensor signals and other inputs and latent soft-
ware defects, see for example [19,24]. The arrival of errors

(or the encountering of software defects) leading to timing
faults and failures of jobs is therefore considered sporadic in
nature, in the sense that the occurrence of two consecutive

job failures is always separated by at least pf time units. In
other words, suppose that the last job failure affecting the sys-
tem occurred at time t1 (with probability k), then the probabil-

ity of a job failure occurring at some time t2 > t1 is either k if
(t2 � t1)P pf and zero otherwise. This assumption of pseudo-
periodic error arrivals leading to job failures has been used in

several previous works (e.g. [20,22]), and is thought to give a
good approximation of reality.

In the analysis that follows, the following assumptions are
made regarding the nature of errors, job faults and failures

and the resulting behavior of the scheduler: (i) the arrival/
occurrence of an error or fault during the execution of a job
will cause it to fail; (ii) failures are detectable at or before

the end of a job’s execution (the job will generate a run-time
exception or subsequently try to exceed its determined worst-
case execution time); (iii) a period of lost computation time
equal to cf time units is experienced after every job failure
(e.g. the time taken to execution of a fault handler or recovery
mechanism) and (iv) a failed job is not immediately re-executed

but is simply re-queued for execution using its original dead-
line. Assumption (ii) in the above can be enforced by employ-
ing suitable run-time error detection techniques (e.g. [19,24]).

However, unlike the method proposed in Short and Sheikh
[24], assumption (iv) requires that control be returned to the
npEDF scheduler upon completion of a fault handler. This

is very beneficial from the perspective of schedulability as will
be described in the next Section. The schedulability guarantees
that will be developed ensure that all jobs generated by all
tasks will meet their deadlines in an environment in which

error arrivals are repetitive (sporadic), but are bounded in
the sense that they are separated by at least pf time units. In
the absence of any empirical data or specific knowledge

regarding the error separation pf, one may look to practical
guidelines that have been developed within industry. For
industrial measurement and process control systems, Electro-

magnetic Compatibility (EMC) testing according to IEC
61000-4-4 requires a system to be able to tolerate short bursts
of interference (of duration �15 ms) with a repetition period of

300 ms. Therefore, setting pf = 300 ms and cf = 15 ms (in
addition to the time actually required for any additional fault
recovery mechanisms) seems a practical choice for most types
of industrial embedded systems.

4. npEDF schedulability analysis of fault-tolerant task sets

4.1. Preliminaries

To include the effects of sporadic task failures in the schedula-

bility analysis, it must be assumed that error load (along with
processor demand and blocking) will manifest simultaneously
in the worst-case manner. To begin, the worst-case sporadic

fault manifestation pattern with respect to npEDF scheduling
will be categorized. Although intuitively it may seem that the
worst-case sporadic fault manifestation is the same as for spo-

radic tasks (the first job failure occurs at t= 0 and subsequent
failures arrive with minimum separation), this does not seem to
be the case as the following example will illustrate. Consider
two implicit-deadline tasks s1 = {11,3} and s2 = {5,2} with

pf = 20 and cf = 0. The tasks are schedulable under npEDF
when no job failures occur, as the worst-case blocking that
s1 can induce upon s2 is (3–1) = 2, leaving enough slack for

s2 to meet its deadline. Consider the situation in which an error
occurs at t= 0, causing s1 to fail (indicated by ‘F’) as shown in
Fig. 2 (top). When the job failure is detected at t= 2, a

scheduling decision is made and although s1 is re-scheduled
for execution, this execution is suspended until a later time
(indicated by ‘R’ in the figure) as s2 has become active and

has the earlier deadline; s2 still meets its deadline. Suppose
now that the occurrence of the error is delayed until t = 2,
causing s2 to fail as shown in Fig. 2 (bottom). In this case,
when the failure is detected at t= 4, a scheduling decision is

made and although s2 is immediately re-executed, it now
misses its deadline at t= 5.

Observation 1. Under npEDF, considering a job with a

deadline at t= d, then the worst-case arrival of a single error
leading to a job failure must be delayed until at least t= b(d)



Figure 2 Illustration that a fault arrival occurring during blocking situations is not necessarily the worst-case behavior.

134 M. Short
as a failed job with deadline >d will not be eligible for re-
execution under the npEDF scheduling policy until all jobs

with deadlines at or before d have been successfully executed.
h

Observation 2. Under npEDF, considering a job with a dead-
line at t= d and a single error occurs in the interval [b(d),d),

then the worst-case behavior is induced when the eligible job
with the largest execution time fails. Under the npEDF
scheduling policy, jobs which are eligible for execution in the

interval [b(d),d) are those which are generated by tasks satisfy-
ing the relationship di 6 d. h

Extending this analysis to the case in which multiple job

failures may occur in a given interval is not a trivial matter,

since there are situations in which the effect of multiple job

failures (with each job having a short execution time) may

not necessarily be as severe as the manifestation of only a sin-

gle job failure (having a comparatively longer job execution

time). In addition, there are situations in which the absence

of blocking due to non-preemption can lead to worse failure

behaviors that with blocking present; such a case may occur

if more failures can be packed into the interval [0,d) than [b

(d),d) and b(d) is less than the largest execution time of the eli-

gible jobs in [b(d),d). Another complicating factor is that if a

failure is detected immediately, then this may have the effect

of inserting a preemption point in the schedule, which may

reduce run-time blocking (although the worst-case blocking

is clearly not effected). As such, although the exact categoriza-

tion of the worst-case behavior could potentially be obtained,

this may require consideration of an excessive number of situ-

ations and would be very difficult to compute. However, it is

relatively easy to use the observations above to calculate a safe

upper bound on the worst-case failure workload, which is pre-

sented in the following Lemma:

Lemma 1. Following a synchronous arrival pattern of tasks at
t= 0, for npEDF scheduling an upper bound on the cumulative
worst-case workload due to failed job executions in an interval
[0, t) in an environment with a minimum error inter-arrival rate
of pf is given by the function f(t) defined below:

fðtÞ ¼ t

pf

& ’
� cf þmax

dj6t
fcjg

� �
ð4Þ

Proof. As the minimum fault inter-arrival rate is pf, the largest

number of errors that may occur in an interval [0, t) is given by
the smallest integer that is greater than or equal to the quantity
t/pf. If blocking due to non-preemption is present, re-execution

of jobs before t does not need to be considered for errors
affecting jobs with deadline >t, and since it holds that:

t� bðtÞ
pf

& ’
6 t

pf

& ’
ð5Þ

We also have that the number of assumed error arrivals is

always greater than or equal to the actual number of error arri-
vals, regardless of whether blocking is present or not. As it was
assumed that an error arrival will cause the executing job to

fail, and since any task with a relative deadline at or before t
generates jobs which are eligible for execution in the interval
[0, t), taking the largest execution time among those tasks sat-
isfying the relationship di 6 t gives an upper bound on the exe-

cution time of the largest valid job executed; hence adding this
value to the worst-case execution time of the fault handler cf
gives the worst-case computational demand due to any single

error arrival. The function f(t) in Eq. (4) multiplies this upper
bound on the number of error arrivals (and hence job failures)
by an upper bound on the worst-case computational demand

of any single job failure; it must therefore upper bound the
cumulative computational demand due to failed job executions
regardless of the presence or absence of blocking or the actual
arrival pattern of any valid set of errors. h

As with processor demand and blocking, the actual run-

time load induced by faults may be much lower than that
obtained by the function f(t) since it represents a worst-case
value. Building upon this Lemma, it is also possible to make
one further observation that will prove useful.



Timing analysis for embedded systems using EDF scheduling 135
Observation 3. Defining cmax = max{ci} + cf, the following

inequality holds as an upper bound on the value of f(t) "tP 0:

fðtÞ 6 cmax þ t � cmax

pf
ð6Þ

¼ cmax þ t � u0f ð7Þ

with uf
0 = cmax/pf being the utilization of an equivalent spo-

radic task to capture the worst-case effects of job failures on
the CPU over its lifetime. h
4.2. Schedulability conditions

It is now possible to incorporate the effects of task failures into

a sufficient schedulability analysis in a relatively straightfor-
ward way, which is summarized in the Theorem and Corollary
below:

Theorem 1. A set of fault-tolerant tasks scheduled using npEDF

in an environment with a minimum fault inter-arrival rate pf and
fault handler execution time cf is schedulable if:

U0 < 1:0 ð8Þ
And:

8t; dmin 6 t < tmax : hðtÞ þ bðtÞ þ fðtÞ 6 t ð9Þ
where dmin is the smallest relative deadline among the tasks, h(t),
b(t) and f(t) are as given by (2)–(4), U0 = U+ uf

0 and the bound
tmax is given by

tmax ¼ max max
16i6n

fdi � pig;
Pn

i¼1uiðpi � diÞ þ 2cmax � cf
ð1�U0Þ

� �
ð10Þ

with cmax = max{ci} + cf.

Proof. Lemma 1 has established the validity of the upper
bound f(t), and it is straightforward to see that whether the

summation of the processor demand h(t), non-preemptive
blocking b(t) and the upper bound on workload due to failed
job executions f(t) is always less than or equal to the CPU time
available then the tasks will be schedulable. Condition (8) is

sufficient to ensure that the CPU is not overloaded during
the course of its lifetime (in the limit as t? 1), as we have
from (7) that job failures will in effect manifest as a sporadic

task requiring a fraction of the CPU utilization proportional
to no more than uf. Thus it remains to verify that no deadlines
will be missed in some initial portion of the schedule under

worst-case assumptions, and to show that the test interval
for this can be bounded by the proposed value of tmax to com-
plete the proof. We have that for t Pmax{di � pi}, it holds
that tP di � pi "i and hence t � di P � pi "i. Inspecting the

individual terms of the processor demand function (Eq. (2))
for each task we have that

pi þ t� di
pi

� �
> 0 ! max 0;

tþ pi � di
pi

� �
� ci

� �

¼ pi þ t� di
pi

� �
� ci 6 pi þ t� di

pi
� ci ð11Þ
Thus "tP max{di � pi}, since cmax = max{ci} + cf and using

Eq. (7) the following relationship can be written:

hðtÞ þ bðtÞ þ fðtÞ ¼
Xn

i¼1

pi þ t� di
pi

� �
� ci þmax

dj>t
fcj � 1g

þ t

pf

& ’
� cf þmax

dj6t
fcjg

� �

6
Xn

i¼1

pi þ t� di
pi

� ci þ cmax � cf þ cmax

þ t � u0f ð12Þ
When U0 < 1.0 and some deadline(s) will be missed, there will
exist some t such that t< h(t) + b(t) + f(t) corresponding to a

deadline miss and we can write the following:

t < hðtÞ þ bðtÞ þ fðtÞ

6
Xn

i¼1

pi þ t� di
pi

� ci þ 2cmax � cf þ t � u0f ð13Þ

Simplifying and solving for t:

t <
Xn

i¼1

ci
pi
tþ

Xn

i¼1

ci
pi
ðpi � diÞ þ 2cmax � cf þ t � u0f

t < t Uþ u0f
� 	

þ
Xn

i¼1

uiðpi � diÞ þ 2cmax � cf

tð1�U0Þ <
Xn

i¼1

uiðpi � diÞ þ 2cmax � cf

*t <
Pn

i¼1uiðpi � diÞ þ 2cmax � cf
ð1�U0Þ

ð14Þ

And since condition (8) requires that U0 < 1.0 the denomina-
tor in Eq. (14) is non-zero. Thus if there exists some job dead-
line at which t< h(t) + b(t) + f(t), this will occur before the

larger of the value max{di � pi} and the value for t given in
(14), which yields the desired bound of tmax as originally stated
in the Theorem. h

Condition (9) needs to be evaluated only at values of t cor-
responding to absolute job deadlines within the interval [dmin,

tmax) [11]. If the CPU utilization U0 is bounded to be less than
some small fixed constant c, the worst-case complexity of eval-
uating the conditions of Theorem 1 is pseudo-polynomial with
run-time O(n max{pi � di}), which follows from Theorem 3.1

in Stankovic et al. [11]. In the case where U0 is exactly equal
to unity, then the complexity of deciding schedulability can
become exponential as the condition of (9) is required to be

checked over the least common multiple (lcm) of the task
periods/inter-arrivals. Since for many real-world task sets the
CPU utilization can be bounded below the value of some con-

stant close to unity (e.g. c = 0.999), the schedulability test can
be made to be very efficient. In fact, for implicit deadline task
sets the categorization of the run-time complexity can be fur-
ther improved as will now be shown:

Corollary 1. If the CPU utilization U0 is bounded to be less than
some small fixed constant c and all tasks have deadlines equal to
their periods, the worst-case complexity of an algorithm to

evaluate the conditions of Theorem 1 is O(n2).

Proof. When di = pi "i, evaluation of tmax reduces to



Table 1 Illustration of the schedulability test.

t h(t) b(t) f(t) h(t) + b(t) + f(t)

11 2 3 2 7

15 5 3 6 14

22 7 3 6 16

30 10 3 9 22

33 12 3 9 24

40 16 0 16 32

136 M. Short
tmax ¼ max max
16i6n

fdi � pig;
Pn

i¼1uiðpi � diÞ þ 2cmax � cf
ð1�U0Þ

� �

¼ max 0;
2cmax � cf
ð1�U0Þ

� �
¼ 2cmax � cf

ð1�U0Þ
ð15Þ

And since U0 6 c < 1.0 for some fixed constant c we can fur-
ther write

tmax 6
2cmax � cf
1� c

6 2cmax

1� c
ð16Þ

Now, since h(dmin) + b(dmin) + f(dmin) P cmax, the condition

cmax 6 dmin = pmin is necessary for schedulability (and can
easily be checked in O(n) steps), and any task set failing this
condition can immediately be flagged as unschedulable; hence,

this quantity becomes a lower bound on the smallest period of
any task in a schedulable task set. Thus, the maximum number
of absolute deadlines d0 for the jobs generated by n tasks in the

interval [0, tmax) is upper bounded by

d0 6 ntmax

cmax

6 2n

1� c
ð17Þ

For fixed c, no more than O(n) deadlines need to be checked,
and as the evaluation of the functions h(t), b(t) and f(t) takes

time linear in n for each of these deadlines, the overall proce-
dure requires not more than O(n2) iterations. h

Even in cases of relatively high CPU utilization the bound
on the number of absolute deadlines given by Eq. (17) is useful.
For example when c = 0.999, not more than 2000n deadlines

ever need checking. This is in contrast to methods proposed
by Mosse and Melham [20] and Hughes and Pont [23], in
which evaluation of schedulability surmounts to checking over

the task hyper-period. The following example illustrates this
efficiency gain.

4.3. Illustrative example

To illustrate the efficiency of the proposed schedulability anal-
ysis with respect to previous work, an illustrative example is

given below.

Example 1. Consider a task system consisting of three implicit-
deadline periodic tasks with parameters s1 = {11,2}, s2 =
{15,3} and s3 = {40,4} to be scheduled with npEDF operating

in an environment with pf = 12 and (for ease of exposition)
cf = 0.

Using the technique proposed by Mosse and Melham [20],
it would have to be determined whether the equivalent
aperiodic jobs generated by the periodic tasks over the system

lifetime can be accommodated, by executing the LTH
algorithm (with npEDF as the underlying rule for ordering
the priority queue) for each and every new job occurring in L

which represents the planning cycle (hyper-period) of the
schedule. The length of L corresponds to the least common
multiple of the task periods, which in this case is equal to 1320
and therefore �240 applications of LTH are required to verify

schedulability of the tasks. Using the basic TTC scheduler
technique with ‘task guardians’ [23] requires a number of
checks exactly equal to the length of L (1320) to carry out a

schedulability analysis. However, note that the tasks are not
schedulable using the basic TTC technique without fault-

tolerance as gcd(11,15,40) = 1 < max{2,3,4} = 4.

Alternatively, using the schedulability analysis technique

developed in this Section, it is first determined that cmax = 4
and compute U= 0.482 and uf = 0.333, and hence
U0 = 0.815. This allows the computation of tmax = 43.28

and therefore each absolute task deadline in the interval [1,43]
requires checking to verify schedulability. This requires eval-
uating the functions h(t), b(t) and f(t) for values of t equal to
11, 15, 22, 30, 33 and 40. These values are tabulated in Table 1

below.

From this table it may be observed that the combined CPU
load h(t) + b(t) + f(t) is always less than the time available for
its processing across the required test interval; therefore,
schedulability is verified after checking only 6 absolute

deadlines. h
5. Computational study

Recall that the motivation for the current paper was to develop

an efficient mechanism to add fault-tolerance to npEDF with
efficiently verifiable schedulability conditions. The analysis
and illustrative example in the previous Section gave a promis-
ing indication of the suitability of the proposed method in this

respect; computational experiments using randomly generated
representative task sets will be used to give further evidence in
this respect. Specifically, the competitive ratio and analysis

complexity will be investigated in more depth. First, the
methodology employed to generate the task parameters and
the design of the experiment is described.

5.1. Task parameter generation/experiment design

Individual task sets were randomly generated for the experi-

ments, and in each case the number of tasks n was varied
between 5 and 30 in multiples of 5. For each value of n, the
total CPU utilization U0 was varied between 0.6 and 0.999 in
multiples of 0.1 (or 0.099 for the last step), and for each com-

bination of U0 and n, the fault utilization uf
0 was varied

between 0.1 and 0.3 in steps of 0.1. Next, the individual utiliza-
tion allowed for each task ui was generated (without bias)

using the UniFast algorithm [28], such that the CPU utiliza-
tion for all tasks U= U0 � uf

0. The individual task periods/
inter-arrivals pi were then uniformly selected from the interval

[10,1000] in multiples of 10, and computation times ci were
computed using ci = pi � ui. Next, relative deadlines di were
uniformly drawn from the interval [0.7pi, 1.3pi]. The minimum
fault inter-arrival was computed according to pf = cmax/uf.



Timing analysis for embedded systems using EDF scheduling 137
Next, task sets were generated using this procedure and then
filtered until 105 task sets satisfying conditions (8) and (9)
had been obtained for each combination of n, U0 and uf

0, giving
a total of 900,000 task sets covering a wide range of periods,
relative deadlines, utilizations, computation times and fault
arrival rates.

For each of the generated task sets, a measure of the com-
petitive ratio of the proposed technique was obtained by
applying a modified TTC schedulability test (described in

Short [10]) to each set of tasks; note that the test was modified
to include a fault bounding function (conceptually similar to
(5)) to reflect that a failed task is immediately re-inserted into
the head of the FIFO queue when using the ‘task guardian’

technique. Note that to maximize the chance of schedulability,
‘tick overruns’ were assumed allowed in this case for reasons
discussed in Short [10]. Results are also reported for the mea-

sure of competitive ratio of the proposed technique with the
technique described by Mosse and Melham [20] using the
LTH algorithm with npEDF, with the caveat that the results

presented may not be full accurate, due to the complexity of
the analysis; in most cases the CPU running time was pro-
hibitive. Instead, this measure was accurately estimated based

on a limited range of examples with tractable running time. To
obtain further insight into algorithm complexity as compared
to other methods, the ratio of the length of the testing interval
(tmax) given by (10) with the duration of the synchronous
Table 2 Competitive ratios and relative testing complexity.

Competitive ratio Test interval length

TTC LTH TTC LTH

20.06 100.00 84.49 0.043

Figure 3 Competitive ratio as a function of bo
FIFO busy period, which defines the number of iterations
required for the test in Short [10], and also with the lcm of
the task periods (as this defines the complexity of the test pro-

posed in Mosse and Melham [20]) is also measured. These data
are reported as average case values, as the worst-case value was
always <1 and the best case effectively was 0.

5.2. Results and observations

The results that were obtained from the experiment are as

shown in Table 2. In the table, ratios are expressed as percent-
ages. From these data it can be observed that only 20.06% of
the task sets deemed schedulable by the proposed technique

were found to be schedulable using the modified TTC sched-
uler. This provides further quantifiable evidence of the degree
of sub-optimality of the TTC approach as compared with the
proposed approach: less than a quarter of the task sets could

be successfully scheduled. No task sets were schedulable with
the modified TTC scheduler and not npEDF, which is to be
expected given the optimality of the latter. Among those tasks

which could be tested by LTH in a reasonable time, none were
found that were not able to be scheduled; given that npEDF
was used as the underlying scheduling heuristic, this was also

not surprising. When comparing the test interval lengths, it
can be observed that an 84.49% reduction in the number of
deadline checks was required for proposed approach using
npEDF than with the modified TTC. A more revealing figure

is the ratio obtained for the LTH; on average, less than
0.043% of the deadline checks required by LTH were needed
by the proposed approach, which is a significant improvement.

Note that since the length of the test interval in the original
TTC approach as described in Pont and Hughes (2008) is of
identical length to LTH, this also gives an indication of the

improvement in performance over this method.
th the number of tasks and CPU utilization.



138 M. Short
In order to further investigate the sub-optimality of the
modified TTC approach, an investigation was made of the
parameters that influence the achieved competitive ratio. The

competitive ratio was calculated (as a percentage) for each
configuration of number of tasks and CPU utilization U0.
Fig. 3 shows the obtained ratios for these two indices.

From the figure it is apparent that the competitive ratio
varies considerably with changes to these parameters. The
competitive ratio approaches 90% when 5 tasks are present

with utilization U0 = 0.6, but decreases to 50% in a close to
linear fashion as the CPU utilization increases. Increasing
the number of tasks for a given CPU utilization leads to a dra-
matic (exponential) drop in the competitive ratio. For 20 or

more tasks and utilization of 0.8 or greater, the competitive
ratio remained below the 5% level. These data give additional
supporting evidence that the goal of creating a simple and flex-

ible approach for adding fault tolerance to npEDF has been
achieved, in that the technique has a good competitive schedul-
ing ratio and comparatively low analysis complexity.

6. Conclusions and further work

Non-preemptive scheduling techniques can provide a simple

and attractive option for meeting real-time constraints in
embedded systems. In this paper, the fault-tolerant npEDF
scheduling of periodic and sporadic tasks has been studied.

Schedulability analysis techniques for task sets experiencing
bounded sporadic error arrivals have been developed, and
have been shown to provide an efficiency improvement over
previous methods in terms of competitive ratio and/or analysis

complexity. In conclusion, the proposed technique may be of
interest to developers of fault-tolerant, non-preemptive embed-
ded systems which may be exposed to interference and errors.

Further work will concentrate upon better categorizations of
the fault load, the application of probabilistic schedulability
guarantees and extensions to multiprocessor environments,

extending techniques such as those proposed in Andrei et al.
[29].

Acknowledgment

This research did not receive any specific grant from funding

agencies in the public, commercial, or not-for-profit sectors.
The author declares no conflict of interests regarding the pub-
lication of this article.

References

[1] F. Abugchem, M. Short, D. Xu, On the sub-optimality of non-

preemptive real-time scheduling, IEEE Embed. Syst. Lett. 7 (3)

(2015) 69–72, ISSN 1943-0663.

[2] A. Thekkilakattil1, R. Dobrin, S. Punnekkat, The limited-

preemptive feasibility of real-time tasks on uniprocessors, Real-

Time Syst. 51 (2015) 247–273.

[3] G.C. Buttazzo, M. Bertogna, G. Yao, Limited preemptive

scheduling for real-time systems: a survey, IEEE Trans. Industr.

Inf. 9 (1) (2013) 3–15.

[4] M. Nasri, M. Kargahi, Precautious-RM: a predictable non-

preemptive scheduling algorithm for harmonic tasks, Real-Time

Syst. 50 (4) (2014) 548–584.

[5] M. Nasri, G. Fohler, Non-work-conserving non-preemptive

scheduling: motivations, challenges, and potential solutions, in:
Proceedings of the 28th Euromicro Conference on Real-Time

Systems (ECRTS), Tolouse, France, July, 2016.

[6] G.C. Buttazzo, Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications, Springer-

Verlag, New York, 2005.

[7] M. Short, M.J. Pont, J. Fang, Exploring the impact of pre-

emption on dependability in time-triggered embedded systems: a

pilot study, in: Proceedings of the 20th Euromicro Conference

on Real-Time Systems (ECRTS 2008), Prague, Czech Republic,

2008, pp. 83–91.

[8] K. Jeffay, D. Stanat, C. Martel, On non-preemptive scheduling

of periodic and sporadic tasks, in: Proceedings of the IEEE

Real-Time Systems Symposium, 1991, pp. 129–139.

[9] M.J. Pont, Patterns for Time Triggered Embedded Systems,

Addison Wesley, 2001.

[10] M. Short, Analysis and redesign of the ‘TTC’ and ‘TTH’

schedulers, J. Syst. Architect. 58 (1) (2012) 38–47.

[11] J.A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo,

Deadline Scheduling for Real-Time Systems: EDF and Related

Algorithms, Kluwer Academic Publishing, 1998.

[12] L. George, N. Rivierre, M. Supri, Preemptive and Non-

Preemptive Real-Time Uni-Processor Scheduling Research

Report RR-2966, INRIA, Le Chesnay Cedex, France, 1996.

[13] M. Short, Improved task management techniques for enforcing

EDF scheduling on recurring task sets, in: Proceedings of the

16th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2010), Stockholm, Sweden,

2010, pp. 56–65.

[14] S. Allworth, Introduction to Real-time Software Design,

Springer-Verlag, 1991.

[15] K.G. Shin, H. Kim, Derivation and application of hard

deadlines for real time control systems, IEEE Trans. Syst.

Man Cybern. 22 (1992) 1403–1413.

[16] C.R. Elks, J.B. Dugan, B.W. Johnson, Reliability analysis of

hard real-time systems in the presence of controller faults, in:

Proceedings of the Annual IEEE Reliability and Maintainability

Symposium, 2000, pp. 58–64.

[17] N. Ignat, Y. Nicolescu, G. Savaria, G. Nicolescu, Soft-error

classification and impact analysis on real-time operation

systems, Proceedings of the Design Automation & Test in

Europe Conference (DATE), vol. 1, 2006, pp. 47–52.

[18] M.J. Pont, R.H.L. Ong, Using watchdog timers to improve the

reliability of single-processor embedded systems: seven new

patterns and a case study, in: Proceedings of the First Nordic

Conference on Pattern Languages of Programs, Otaniemi,

Finland, 2003.

[19] M. Short, Development guidelines for dependable real-time

embedded systems, in: Proceedings of the 6th IEEE/ACS

International Conference on Computer Systems and

Applications (AICCSA 2008), Doha, Qatar, 2008, pp. 1032–

1039. April.

[20] D. Mosse, R. Melham, A nonpreemptive real-time scheduler

with recovery from transient faults and its implementation,

IEEE Trans. Softw. Eng. 29 (8) (2003) 752–767.

[21] M.R. Garey, D.S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W.H. Freeman & Co

Ltd, 1979.

[22] I. Broster, A. Burns, Timely use of the CAN protocol in critical

hard real-time systems with faults, in: Proceedings of the 13th

Euromicro Conference on Real-Time Systems (ECRTS), Delft,

The Netherlands, 2001.

[23] Z. Hughes, M.J. Pont, Reducing the impact of task overruns in

resource-constrained embedded systems in which a time-

triggered software architecture is employed, Trans. Inst. Meas.

Control 30 (5) (2008) 427–450.

[24] M. Short, I. Sheikh, Timely recovery from task failures in non-

preemptive, deadline–driven schedulers, in: Proceedings of the

http://refhub.elsevier.com/S2210-8327(16)30018-7/h0005
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0005
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0005
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0010
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0010
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0010
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0015
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0015
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0015
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0020
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0020
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0020
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0025
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0025
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0025
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0025
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0025
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0030
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0030
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0030
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0030
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0035
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0035
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0035
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0035
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0035
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0035
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0040
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0040
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0040
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0040
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0045
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0045
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0045
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0050
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0050
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0055
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0055
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0055
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0055
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0060
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0060
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0060
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0060
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0065
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0065
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0065
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0065
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0065
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0065
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0070
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0070
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0070
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0075
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0075
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0075
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0080
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0080
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0080
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0080
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0080
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0085
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0085
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0085
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0085
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0085
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0090
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0090
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0090
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0090
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0090
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0090
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0095
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0095
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0095
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0095
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0095
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0095
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0100
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0100
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0100
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0105
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0105
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0105
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0105
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0110
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0110
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0110
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0110
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0110
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0115
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0115
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0115
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0115
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0120
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0120


Timing analysis for embedded systems using EDF scheduling 139
7th IEEE International Conference on Embedded Software and

Systems (ICESS 2010), Bradford, UK, pp. 1856–1863.

[25] M.K. Gardner, J.W.S. Liu, Performance of algorithms for

scheduling real-time systems with overrun and overload, in:

Proceedings of the 11th Euromicro Conference on Real-Time

Systems (ECRTS), York, UK, 1999.

[26] M. Caccamo, G.C. Buttazzo, L. Sha, Handling execution

overruns in hard real-time control systems, IEEE Trans.

Comput. 51 (7) (2002) 835–849.
[27] E. Normand, Single event effects in avionics, IEEE Trans. Nucl.

Sci. 43 (2) (1996) 461–474.

[28] E. Bini, G.C. Buttazzo, Measuring the performance of

schedulability tests, Real-Time Syst. 30 (2005) 127–152.

[29] S. Andrei, A. Cheng, V. Radulescu, An improved upper-bound

algorithm for non-preemptive task scheduling, in: Proceedings

of 17th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, September 21–24, IEEE

Computer Society, Timisoara, Romania, 2015.

http://refhub.elsevier.com/S2210-8327(16)30018-7/h0120
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0120
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0120
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0125
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0125
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0125
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0125
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0125
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0130
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0130
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0130
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0135
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0135
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0140
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0140
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0145
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0145
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0145
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0145
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0145
http://refhub.elsevier.com/S2210-8327(16)30018-7/h0145

	Timing analysis for embedded systems using�non-preemptive EDF scheduling under bounded�error arrivals
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Contributions and structure

	2 Related work
	3 System and error model
	3.1 System model
	3.2 Error model

	4 npEDF schedulability analysis of fault-tolerant task sets
	4.1 Preliminaries
	4.2 Schedulability conditions
	4.3 Illustrative example

	5 Computational study
	5.1 Task parameter generation/experiment design
	5.2 Results and observations

	6 Conclusions and further work
	Acknowledgment
	References


