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Abstract Tuberculosis is a social, re-emerging infectious disease with medical implications

throughout the globe. Despite efforts, the coverage of tuberculosis disease (with HIV prevalence)

in Nigeria rose from 2.2% in 1991 to 22% in 2013 and the orthodox diagnosis methods available

for Tuberculosis diagnosis were been faced with a number of challenges which can, if measure not

taken, increase the spread rate; hence, there is a need for aid in diagnosis of the disease. This study

proposes a technique for intelligent diagnosis of TB using Genetic-Neuro-Fuzzy Inferential method

to provide a decision support platform that can assist medical practitioners in administering accu-

rate, timely, and cost effective diagnosis of Tuberculosis. Performance evaluation observed, using a

case study of 10 patients from St. Francis Catholic Hospital Okpara-In-Land (Delta State, Nigeria),

shows sensitivity and accuracy results of 60% and 70% respectively which are within the acceptable

range of predefined by domain experts.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis (TB) is a social, re-emerging infectious disease

that has medical implications throughout the globe [1]. The
largest single cause of adult illness and death from the commu-
nicable disease is caused by Mycobacterium Tuberculosis [2].

Nigeria has made great strides in increasing access to Directly
Observed Therapy Short-course (DOTS) for TB yet, coverage,
which was 45% in 1999, had reached 75% by 2005 while treat-
ment success for 2005 cohort was 75% [3]. Although TB inci-

dence in Nigeria is below the normal level for Sub-Saharan
Africa, but it remains high at a rate of 311 cases per 100 grand
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Figure 1 Incidence of TB in Nigeria and other Sub-Saharan

African countries [39].
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population members in 2006. The trends for both Nigeria and
Sub-Saharan Africa, as depicted in Fig. 1, show a slight down-
ward turn of TB incidence since 2003. Still with 250 grand new

cases each year, a mortality rate of 81 deaths per 100,000 spells
the disease as high burden on Nigeria [4].

The World Health Organization (WHO) estimated in 2006,
that each year, more than 8 million new cases of TB occur and

approximately 3 million persons die from the disease [4,5] and
estimated that between 19% and 43% of the world’s popula-
tion will be infected with Mycobacterium Tuberculosis. Within

the past decade it has become clear that the spread of HIV
infection and the immigration of persons from areas of high
incidence have resulted in increased numbers of TB cases. It

has always occurred disproportionately among disadvantaged
populations such as the homeless, malnourished, and over-
crowded [6]. Today, several methods for the diagnosis of TB
have been proposed. Tuberculin Test, Radiological Examina-

tion, and Sputum Smear Microscopy are common conven-
tional approaches however in the last 10 years, several
molecular methods have been developed for direct detection,

identification and susceptibility testing of mycobacteria [7].
Orthodox methods of diagnosing TB are primarily through

physical examination and laboratory tests. The former

involves asking patients certain questions for prognosis pur-
poses while tests are carried out to affirm physical examina-
tion. Diagnosis can be stopped if medical practitioner is

totally convinced after physical examination however, this is
not advised. This orthodox method is currently faced with a
number of challenges such as lack of medical facilities in most
medical centers and as a result, inhibiting the management of

TB in developing countries.
The strength of IT in providing an effective and efficient

solution to real life problems has been explored to aid scientific

discoveries and advancement of different fields of medicine [8].
Hence, to reduce the morbidity and mortality rates in human
as a result of TB, there is need to incorporate IT into its diag-

nostic approach. This study, therefore, proposes a decision
support model for intelligent diagnosis of TB using Genetic-
Neuro-Fuzzy Inferential technique. The model is aimed at pro-

viding a decision support platform that can aid medical prac-
titioners in administering accurate, timely, and cost effective
diagnosis of TB in developing countries.

2. Literature review

This section presents a review of literature on the concept of
Expert System (ES). Description of major tools for building
such adaptive systems including is briefed while review of
hybrid and decision support systems is also presented.

2.1. Artificial intelligence

Research on Artificial Intelligence (AI) in the last two decades
has greatly improved performance of both manufacturing and

service systems [9]. AI, first coined by John McCarthy in the
fifties is concerned with the ‘hows’ and the ‘whys’ of human
intelligence; however, it has become an important area of

research in virtually all fields including engineering, science
and education, and as well as its applications in accounting,
marketing, stock market and law, among others [10,11].

AI is the intelligence deployed by machines to handle com-
plex imprecise tasks that require intelligence if done by
humans. The central problems of AI include reasoning, pro-
gramming, artificial life, belief revision, knowledge representa-

tion, machine learning, natural language understanding, and
theory of computation [12,13,38]. It achieved greater feats in
practical application despite, some setbacks, its success is being

revived with the commercial success of ES [39]. Fuzzy Logic,
Neural Networks, and Genetic Algorithms, are such tech-
niques used in modeling intelligence.

2.2. Expert systems

Expert Systems (ESs) is a branch of AI that employs the use of
human knowledge to solve problems that require human’s

expertise and it helps to solve complex problems by reasoning
about knowledge rather than following developers’ procedures
as in the case of conventional programming [14]. ES continues

to evolve for specific applications in medical diagnosis due to
influx of new and massive information that requires experts
to be specialized.

The basic steps in ES development have been reported in
[15]. Many AI systems have been developed for the purpose
of enhancing healthcare delivery, providing better healthcare

facilities, and reducing the cost associated with quality health-
care services. Early studies in intelligent systems have been
shown to outperform manual practices of medical diagnosis.
Examples of such systems are as follows: INTERNIST, a

rule-based expert system for the diagnosis of complex prob-
lems in general internal medicine; MYCIN, a rule-based expert
system to diagnose and recommend treatment for certain

blood infections; CASNET, an expert system for the diagnosis
and treatment of glaucoma, EXPERT, an extension general-
ization of the CASNET formalism which was used in creating

consultation systems in rheumatology and endocrinology [16].

2.3. Soft computing tools

The intervention of soft computing tools (techniques) in med-
ical analysis has greatly reduced the cost of human support
and medical diagnosis, with increase in accuracy of diagnosis
results. Fuzzy Logic, Neural Networks, and Genetic Algo-

rithm are common tools adopted in developing ESs [17].

2.3.1. Fuzzy logic

Fuzzy Logic (FL) is one of AI techniques that deals with
uncertainty in knowledge and simulates human reasoning in
an incomplete or fuzzy data. FL is defined as a nonlinear map-
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ping of an input data set to a scalar output data set, basically it
is aimed at providing approximate reasoning. This technique
has attracted growing attention and interest in modern IT, pat-

tern recognition, and decision making among others [18]. FL
theory provides a mathematical strength to capture uncertain-
ties associated with human cognitive processes, such as think-

ing and reasoning. It is a suitable and applicable basis for
developing knowledge-based systems in varying sectors of life
such as health. It has been applied to interpret sets of medical

findings; syndrome differentiation in eastern medicine and
diagnosis of diseases in western medicine; and for real-time
monitoring of patient data [19].

In fuzzy set theory, linguistic terms are used to illustrate the

correlation of Membership Function (MF) which describes the
membership of an element within the base of a fuzzy set. Each
element has a unit value that characterizes the grade of mem-

bership of a set and such element can simultaneously belong to
another set, possibly, at varying degrees. Ref. [20] emphasize
that a number of different types of MFs have been proposed

for fuzzy control systems though [21] concluded triangular
and trapezoidal MFs as the mostly used. Triangular MF is a
particular case of MF that is specified by three parameters

(a, b, c) and shows the degree of membership of each class
of a linguistic term as possibility distribution [22]. Fig. 2a rep-
resents a typical Triangular MF of input and output variables
while Fig. 2b uses four parameters to describe the membership

of an element in a fuzzy set using Trapezoidal MF.
The trapezoidal MF of a fuzzy set F with each element hav-

ing tolerance interval [a,b], left width a and right width b is

determined using Eq. (1). If notation F= (a, b, a, b) is used,
then ½F�c ¼ ½a� ð1� cÞa; bþ ð1� cÞb�, Vce½0; 1� hence the sup-
port of A is (a �a, b +b).

FðxÞ ¼

1� ða� xÞ=a if a� a 6 x 6 a

1 if a 6 x 6 b

1� ðx� bÞ=b if a 6 x 6 bþ b

0 otherwise

8>>><
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Figure 2a Triangular MF of input and output variables.
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Figure 2b Trapezoidal MF of input and output variables.
In fuzzy set, an element can belong to both its set and its
compliment set or to neither of them. This principle preserves
the structure of the logic and avoids the contradiction of ele-

ment. However, fuzzy logic is highly abstract and employs
heuristic requiring human experts to discover rules about data
relationship [19]. FL has been widely adopted in developing

ESs for health management. For instance, [18] proposed model
ES for typhoid fever, while [23] for malaria diagnosis, and
lastly, [24] developed a diagnostic ES for cardiovascular dis-

eases. In [19], the use of Fuzzy Cluster Means was applied to
diagnose HIV/AIDS shortly after [25] proposed the use of
fuzzy sets for diagnosing low back pain in computer users.
2.3.2. Neural network

Neural Network (NN) is a group of interconnected artificial
neurons that mimic the properties of biological neurons. It fol-

lows analog and parallel computing system made up of simple
processing elements that communicate through a rich set of
interconnections with varying contributory weights. Artificial
Neural Network (ANN), is synthetic nervous systems loosely

inspired to simulate functions of human brain [26]. ANN
attempts to abstract the complexity of biological nervous sys-
tem so as to focus on what may hypothetically matter most

from an information processing point of view.
Medicine has always benefited from forefront of technology

as it has boosted medicine to extraordinary levels of achieve-

ment. ANN has been successfully used in various areas of med-
icine such as biomedical analysis, imaging systems, and drug
development but extensively used in diagnosis to detect ail-

ments such as cancer and heart problems in human [27]. The
term network in ANN arises because of the function f(x)
defined as a composition of other function gi(x) which are fur-
ther used as composition of more functions.

Fig. 3 shows a simple NN which comprises of three layers.
The figure comprises of input units connected to hidden units
which in turn is connected to a layer of ‘‘output” units. The

activity of the input unit represented the raw information that
is fed into the network; the activity of the hidden units is deter-
mined by the activity of the input units and the weights

between the hidden and output units. The hidden units are free
to construct their own representation of the input; the weights
between the input and hidden units determine when each hid-
den unit is active and so by modifying the weights, a hidden

unit can choose what it represents.
ANN employs learning paradigm that includes supervised,

unsupervised and reinforced learning. One good thing is it does

not require details on how to recognize disease but it has a self-
learning and self-tuning feature which helps it to attain that
[28]. Finally, it cannot handle linguistic information and vague

information.
2.3.3. Genetic algorithm

Genetic Algorithm (GA) is simply a search algorithm based on

the observation of sexual reproduction and principle of sur-
vival of the fittest, which enables biological species to adapt
to their environment and compete effectively for resources.

GAs are search algorithms which use principles inspired by
natural genetics to evolve solutions to problems. The basic idea
is to maintain population of chromosomes that represents can-

didate solutions to a problem, and the candidate will evolve
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over a period of time through competition and controlled
variation.

GAs have got a great measure of success in search and opti-

mization problems. While the algorithm is relatively straight
forward, it is an effective stochastic search method, proven
as a robust problem solving technique that produces better
than random results [29]. GAs are robust and powerful in dif-

ficult situations where the space is usually large, discontinuous,
complex and poorly understood [30], it has been applied in a
wide range of problem areas, though it just guarantee finding

an acceptable solution in a quick and not a global optimum
solution to a problem.

2.3.4. Review of hybrid and decision support systems

A Decision Support System is an interactive computer-based
information system that utilizes database models to solve ill-
structured problems and come up with a valuable decision.

In the late 1980s, DSS was confirmed to have assisted in man-
agerial positions using suitable available technologies to
improve effectiveness of academic and professional activities

[38] but over the years, it has migrated to an interactive system
that assists users in taking quick appropriate decisions in any
given context [31]. In a related study, Ref. [32] developed a
fuzzy expert system as a platform for diagnostic support for

hypertension management. The system is composed of four
major components for fuzzy processes while Root Sum Square
and Center of Gravity were employed as fuzzy inference and

defuzzification methods respectively. A case study of 30
patients with tuberculosis was used to validate the ES. [33]
combined NN, FL and Case Based Reasoning to model DSS

for diagnosis of depression disorders. The NNs were con-
structed to imitate intelligent human biological processes of
learning while FL provides a means for dealing with impreci-

sion, vagueness and uncertainties in the medical data and
CBR entails the use of past situations to solve new occur-
rences. Finally, this study proposes a Genetic-Neuro-Fuzzy
inferential technique for diagnosis of tuberculosis.
3. Proposed decision support system

This section presents design of the system’s architecture and
procedures performed by each component of the architecture
during diagnosis. Components of the architecture, as presented

in Fig. 5, are Knowledge Base, Genetic-Neuro-Fuzzy Inference
Engine, and Decision Support Engine.

3.1. Knowledge base

Knowledge base stores both static and dynamic interpreted
information about the decision variables involved in the diag-

nosis of TB. The component, comprising of the Database,
Fuzzy Logic, Neural Network, and Genetic Algorithm, serves
as a repository for operational data that are to be processed.

3.1.1. Database

Structured database presents quantitative data about facts and
the established rules in the field of medicine focusing on diag-

nosis of TB. The facts comprise of signs and symptoms of TB,
while rules are patterns to draw deductions based on available
information [18]. Unstructured database is heuristic in nature

and hence gathered by experience, good practices, guesses,
and judgments [34]. The database comprises of Patient-Bio-
Data, Disease-Physical-Signs, Disease-Symptoms, Medical-
History, Physical Examination, results of diagnostic tests and

Patient Diagnosis.

3.1.2. Fuzzy logic

The diagnosis process harnesses the strength of fuzzy logic

component in the following operational sequence:

3.1.2.1. Fuzzification of input variables. Given a fuzzy set A,

defined as Eq. (2), represents TB diagnosis variables with ele-
ment denoted by xi, the fuzzification process involves trans-
forming raw input value of each variable to a fuzzy term
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obtained from set [very mild, mild, moderate, severe, very sev-
ere] defined over the variables. That is, such values are derived
from functions defined to determine the degree of membership

of each variable in the fuzzy set.

A ¼ fðxi; lAðxiÞÞjxi 2 V; lAðxiÞ 2 ½0; 1�g ð2Þ
Fuzzification is done using function defined in Eq. (3)

lAðxiÞ ¼

1 if xi < a
xi�a
b�a

if a 6 xi < b
c�xi
c�b

if b 6 xi < c

0 if c < xi

8>>><
>>>:

ð3Þ

where lAðxiÞ is the MF of xi in A using triangular MF while lA

is the degree of membership of xi in A. a, b and c are the

parameters of the MF governing its triangular shape and each
attribute is described with linguistic terms.

3.1.2.2. Establishment of fuzzy rule base. The rule base for TB

diagnosis is characterized by a set of IF–THEN rules in which
the antecedents (IF parts) and consequents (THEN parts)
involve linguistic variables. The rules can be formulated with

assistance of experts in the management of TB, or on consul-
tation to existing standard literature. A rule can only fire if
any of its precedence parameters such as very mild, mild, mod-

erate, severe, and very severe evaluates to TRUE, otherwise it
does not fire.

3.1.2.3. Fuzzy inference engine. This component controls the
decision making logic by applying suitable composition proce-
dure from rule base to values of variable inputs received. The
inference engine applies composition procedure on the inputs

to produce desired output, and Root Sum Square (RSS), is
applied to scale the functions at their respective magnitude
and computes a composite area. RSS is a method used to com-

bine the effects of fired rules in order to draw relevant infer-
ence. It is computed with Eq. (4).

RSS ¼
Xn
k¼1

ðR2
kÞ ð4Þ
Rk is a fired rule where k81; . . . ; n is the Id of fired rule

3.1.2.4. Defuzzification of output values. Defuzzification of out-
put values involves translating result from the inference engine

into crisp values which are, mostly, required by medical
experts for proper analysis and interpretation, this aids effi-
cient diagnosis. This research employs Centroid of Area

(CoA) technique for its defuzzification. This interface receives
the output of inference engine as its input and finalizes compu-
tation by applying Eq. (5).

CoA ¼
Pn

i¼1lYðxiÞxiPn
i¼1lYðxiÞ ð5Þ

where lYðxiÞ is degree of i in a membership function and xi is

the center value in function.
The computational simplicity and intuitive plausibility of

this approach gives rise to its adoption. For a complete medi-

cal evaluation of TB disease, the variables considered after
consultations with medical experts and other standard literal
sources are categorized as presented in Table 1.

3.1.3. Neural network

Neural Network has the capability of capturing domain

knowledge from available indicators and can readily handle
both continuous and discrete data. NN is used to train and test
the designed fuzzy system to optimize the performance of the

overall system. The NN component of Fig. 6 is made up of
variables from Physical Examination (PE), Medical History
(MH), Laboratory Investigation (LI), and Chest Radiology
(CR) of patients. Each diagnosis variable has a weight Wi

which shows its contribution in the diagnosis process.
The raw information obtained from patients is fed into NN

via input layer and participation of each category of variables

is determined at a hidden layer of the network using:

CATi ¼
Xn
i

Ai �WAi
ð6Þ

CATi is ith category of variable, n is count of variables in
CATi, and Ai is the ith diagnosis variable with weight WAi

.



Table 1 Categorization of diagnosis variables for tuberculosis.

Category Diagnosis variables Code Category Diagnosis variables Code

Physical Examination (PE) Swollen lymph nodes A1 Medical History (MH) Meningitis B9

Blood pressure A2 Hoarseness B10

Rale breathe A3 Laboratory Investigation (LI) Sputum test C1

Abnormal breast sounds A4 Cerebrospinal fluid test C2

Medical History (MH) Loss of appetite B1 Pus test C3

Confusion B2 Tuberculin skin test C4

Cough B3 Blood test C5

Fever B4 Biopsy test C6

Chest pain B5 Chest Radiography (CR) Plefus D1

Weight loss B6 Pulede D2

Night sweat B7 Cardrat D3

Fatigue B8 Zanflo D4
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Figure 6 Block diagram of NN for the diagnosis of TB diseases.
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Result of the output layer represents an overall output of diag-

nosis by the NN component of the architecture shown in
Fig. 5. The output result is given by:

OutputNN ¼
Xn
i

CATi �WCATi
ð7Þ

where WCATi
is the connection weight of CATi

3.1.4. Genetic algorithm

Actually, NN provides a structure for combining the diagnos-
tic parameters which could serve as a platform for the infer-

ence engine, but a specific issue with NN is lack of definite
way of determining the connection weights for hidden layers
when dealing with a particular problem. A number of medical
diagnosis had been assisted by neuro-fuzzy systems though

such systems had been built based on trial and errors, this
increases computation cost. In this study, genetic optimization
is performed to choose optimal values from a group of diag-
nostic parameters which serve as input. Fig. 6 shows there

are 24 diagnostic parameters in the NN but the task is to
decide which parameters are taken as input in order to mini-
mize complexity.

An individual chromosome consists of 24 genes and each
gene represents the connection weight of a diagnosis variable
in a length of 1 bit. One feasible solution is to generate an ini-

tial population holding a set of possible solutions from ran-
dom chromosomes. A chromosome is represented as a vector
C= (CA, . . . , CX) of binary decision variables Ci=0,2,3;
encoded in binary representation as string consisting {0,1}

genes. A gene Ci = 1 if the ith variable is included in a solution
set of a diagnostic process otherwise 0. Fitness function is used
to optimize each chromosome by evaluating the genes that

constitute the chromosome using their fitness value.



1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 C 1

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0C 2

0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1C 3

1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0C K

A B C D E F G H I J K L M N O P Q R S T U V W X Fitness

F1

F2

F3

Fk

Figure 7 Chromosomes of the selected individual candidates and corresponding fitness value.

A Genetic-Neuro-Fuzzy inferential model 33
As evolutionary algorithm continues through its cycle, fit-

ness value of each chromosome keeps improving till it reaches
an optimum value when it can no longer improve. Fig. 7 shows
chromosomes of some candidates and their fitness values. A

number of constraints have been considered in carrying out
appropriate management of disease in medical diagnosis,
therefore fitness evaluation of chromosome must be done with
proper constraint validation. Constraints can be termed as

objectives that must be achieved in which some render most
of the solutions from the search space hence, its application
in GA is problem specific. Ordering constraint proposed in

[35] is adopted in this study. The fitness evaluation of an indi-
vidual F(i) is done as:

Fi ¼ 1þ
Xn
i¼0

Wi � CiðpÞ
 !�1

ð8Þ

where n is the number of diagnosis variables, Wi is the weight
associated with ith variable and CiðpÞ is the number of viola-

tions for ith constraint at solution p.
This fitness function has a range of [0,1] and an optimal

solution occurs when we have 0 violations thusPn
i¼0Wi � CiðpÞ which results in Fi ¼ 1. Chromosomes with

higher fitness value are selected as parents for mating in order

to produce outstanding candidates and maximize the fitness
function. The probability of choosing an individual for genetic
operation is proportional to its fitness, that is, if the fitness
value of an individual is Fi, then the probability, Pi, of choos-

ing the individual is:

Pi ¼ FiPn�1
i¼0 Fi

ð9Þ

This process is repeated until an optimal connection weight is

achieved.

3.2. Genetic-Neuro-Fuzzy Inference System (GENFIS)

Genetic-Neuro-Fuzzy Inference System (GENFIS) is an infer-
ential technique proposed to integrate GA, NN and FL com-
ponents of Fig. 4 to provide a self-learning and adaptive

system for handling uncertain and imprecise data for diagnosis
of tuberculosis. The inference system employs feed forward
propagation learning technique made up of seven layers of
neurons as shown in Fig. 8. Both hidden and output layers

consist of active nodes where computations take place, while
the nodes at input layer are passive.

The inference engine consists of reasoning algorithm driven

by the production rules based on Mamdani’s Inference Mech-
anism. Of the seven layers, the first one consists of active nodes
which denote inputs to the system. The inputs are numeric val-

ues representing how severe a patient feels the diagnosis vari-
ables. The output of this layer is the linguistic labels
corresponding to each input value. The second layer is made

up of adaptive nodes that receive the output of preceding layer
as input, and produce their corresponding membership grade
determined as:

L2ðxiÞ ¼ lAiðXiÞ ð10Þ
The fuzzy value of each variable is computed using triangu-

lar MF, given as:

lAiðxiÞ ¼ xi � b

a� b
ð11Þ

where a and b are the variables of the triangular MF that
bounds its shape such that b 6 xi 6 a.

Third layer act as multipliers and their operations are fixed
and labeled as M. These nodes compute the firing strengths of

associated rules as:

L3ðXiÞ ¼ lAiðXiÞ � lBiðXiÞ � lCiðXiÞ ð12Þ
In the fourth layer, nodes fixed but they do normalize the

firing strength of each rule. The normalized strength of a kth

rule is determined as:

L4ðXiÞ ¼ WkP3
j¼1Wj

ð13Þ

The product of normalized firing strength of a rule and its
corresponding output value is observed in the fifth layer to
determine the variable’s contribution to the diagnosis pro-
cesses. This is done with Eq. (14).

L5ðXiÞ ¼ L4ðXiÞ � L3ðXiÞ ð14Þ
The sixth layer consists of a single fixed node labeled Y

which represents the GENFIS’s final output. It obtains the
cumulative sum of all incoming signals as shown in Eq. (15).

Y ¼
Xn
i¼1

L5ðxiÞ ð15Þ

Finally, we employed Eq. (16) to classify the crispy numeric

value in Eq. (15) as the system’s output, which represents the
patient’s diagnosis result.

Output ¼

Very Mild Y 6 0:2

Mild 0:2 6 Y < 0:4

Moderate 0:4 6 Y < 0:6

Severe 0:6 6 Y < 0:8

Very Severe 0:8 6 Y 6 1:0

8>>>>>><
>>>>>>:

ð16Þ
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Figure 8 Combinatorial model for Genetic-Neuro-Fuzzy Inference System.

Table 2 Intensity of diagnosis variables.

Linguistic

term

Very

mild

Mild Moderate Severe Very

severe

Intensity 1 2 3 4 5
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3.3. Decision support engine

The decision made by GENFIS is optimized by Decision Sup-
port Engine (DSE) which takes the output of GENFIS as
input and tunes to fit any diagnostic case at hand [37]. The sup-
porting components of DSE are cognitive filter which objec-

tively influences the result of GENFIS on conformance basis
with knowledge extracted from medical personnel, holding
assumptions and beliefs with heuristics in medical field and

emotional filter that refers to subjective feelings of a medical
personnel based on physical and psychological elicited from
patient. Emotional filter provides information that helps med-

ical personnel to decide whether a diagnostic result from GEN-
FIS is as a result of the patient’s situation or environmental
inhibiting factors.

4. Model simulation and evaluation

Simulation of the proposed model was done with a case study

of 10 patients from Saint Francis Catholic Hospital Okpara-
In-Land, Delta State, Nigeria. The procedure was observed
in Matrix Laboratory (MATLAB) Version 7.9 environment,
the result and evaluation of the simulations are reported in this

section.

4.1. Simulation

In order to evaluate the performance of the proposed model,
medical records of 100 patients’ representing their state of
health with respect to TB were formulated and stored as rules

in the database. Each rule is made up of 24 input variables and
an output variable. To determine the output value of each rule,
the records were retrieved and assessed by domain experts in
human respiratory diseases. Assessment was based on intensity

of the input variables and the expertise of the (human) expert.
Intensity of each variable represents its contribution to TB
infection, rating was thereafter done based on linguistic terms

shown in Table 2.
Result obtained from fuzzification of variables serves as

input to the neural network. Each node in the network is a

three-layered feed forward architecture which interacts with
each other as shown in Fig. 8. Back-propagation algorithm
with sigmoid function is used to train the NN for hidden
and output layer neurons’ transformation. The NN trained

by the subsystem consists of 24 nodes at the input layer, each
representing unique TB variables considered in this study. To
determine an optimal number of variables needed for a diag-

nosis, GA component of the proposed GENFIS takes all vari-
ables as input and optimizes them into just N variables whose
values have role to play in the diagnosis. Hence, the genotype

is represented by a sequence of symptoms as described earlier.
During simulation, binary-matrix vectors with length n

were created. Each element of the vector corresponds to speci-
fic diagnostic parameters in NN. The binary bit of a diagnostic

parameter is determined using:

bi ¼
1 Selected

0 Ignored

�
ð17Þ



Table 3 Parameters used in finding optimal solution.

S/No Parameters Value

1 Number of generations 20

2 Number of individuals 40

3 Crossover probability 0.55

4 Mutation probability 0.35
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Hence, if the value of a parameter is equal to 1 then the
variable will be selected otherwise not. In this simulation, the

GA used selected values given in Table 3 to find optimal solu-
tion and once a complete set of optimal value for the parame-
ters is reached, the GA processes stops. High mutation

probability used in the parameter settings is a brain behind
bringing new individuals at each stage hence, to avoid a sce-
nario whereby best combination will only be from initial indi-

viduals who passed first selections.

4.2. Result and evaluation

Medical records of 10 patients from the Hospital of our case

study were taken as testing data for the system. Result
obtained from simulation indicates that GA component of
the proposed model can extract a maximum of 13 out of 24

parameters as the best combination. As shown in Table 4,
selected parameters show that the model is sensitive to radio-
graphic variables. The variables were selected for all cases with

diagnosis result above 50%. Diagnosis of records R04, R09,
and R10 by the model shows that patients possessing such
attributes have tuberculosis infection.

Result of this simulation procedure was validated by
human experts and their response using metrics proposed in
some previous studies. Human responses presented in Table 5
shows an expert either accepts the model’s result by assigning

‘‘
p
” or rejects it with ‘‘x”. In [36], sensitivity is a quality of

Neuro-Genetic model used to check the effects of selected
parameters on a trained NN with evaluation function.
Table 4 Results from selected parameters in the proposed model.

Id A1 A2 A3 A4 B1 B2 B3 B4 B5 B6 B7 B8 B9

R01 0 1 0 0 0 0 1 0 0 0 1 0 0

R02 1 0 0 0 0 0 0 0 0 0 0 0 0

R03 0 1 0 0 1 0 1 0 1 0 0 0 0

R04 1 0 0 1 0 1 1 0 0 0 1 0 1

R05 0 0 0 0 0 0 0 1 0 0 0 0 0

R06 0 0 0 0 1 0 0 0 0 1 0 0 0

R07 0 1 0 0 0 1 0 0 0 0 0 0 1

R08 1 0 1 0 0 0 0 1 0 0 0 1 0

R09 0 0 0 1 0 0 1 0 0 0 1 0 0

R10 1 0 0 1 0 0 1 0 0 0 1 0 0

Table 5 Validation of GENFIS simulation results.

Record Id R01 R02 R03 R04 R05

Result 35.0% 29.6% 38.0% 81.4% 17.4

GENFIS
p p p p

x

Human x
p p p p
Given a True Positive value (TP) that represents the num-
ber of patients with tuberculosis as agreed by both model and
human expert, a True Negative value (TN) indicating the num-

ber of patients where agreement could not be reached by both
model and human expert, and TNR as the total number of
records; the sensitivity and accuracy of GENFIS are:

Sensitivity ¼ TP

TNR
� 100% ð18Þ

Accuracy ¼ TPþ TN

TNR
� 100% ð19Þ

From Table 5, the sensitivity and accuracy of the proposed

GENFIS are 60% and 70%.
5. Conclusion

The use of soft computing techniques in medical diagnosis can-
not be overemphasized as they have greatly imparted the pro-
cesses in medical diagnosis and aided an increase in diagnosis

accuracy. This novel study demonstrated how an aggregation
of such technique can assist in the diagnosis of TB. In the
approach, cognitive and emotional filters were adapted to take
care of contextual factors that often affectmedical expert during

diagnosis of diseases in the traditional and conventional ways.
This study shows that a combination of the soft computing

methods can offer a more effective system of medical diagnosis

with improved system accuracy. For instance, [32] validated a
fuzzy-based expert system for tuberculosis diagnosis with 61%
accuracy. Also, in [24], a neuro-fuzzy decision support model

for therapy of heart failure was conducted and a sensitivity
analysis conducted shows that diagnosis done by the model
has a high concordance of 60.72% with physician’s diagnosis

at an accuracy of 57.14%. Unlike the proposed model, existing
systems does not have a thorough scope in terms of data set or
diagnosis depth and on a general sense, the model exhibits a
relatively higher performance when compared with existing

systems hence, depicting a more reliable results.
B10 C1 C2 C3 C4 C5 C6 D1 D2 D3 D4 Result

0 1 0 0 1 0 0 0 0 1 0 0.350

0 1 1 0 0 0 0 0 0 0 0 0.296

1 0 0 1 0 0 0 1 0 0 0 0.381

0 1 0 0 1 0 1 1 1 1 1 0.814

0 0 0 0 0 0 0 0 0 0 0 0.174

0 0 1 0 0 0 0 1 0 0 0 0.313

0 0 0 0 0 0 0 0 0 0 0 0.280

1 0 0 1 0 0 0 0 0 0 0 0.412

0 1 0 0 1 0 0 1 1 1 1 0.660

0 1 0 0 1 0 0 1 1 1 1 0.717

R06 R07 R08 R09 R10

% 31.3% 28.0% 41.2% 66.0% 71.7%p
x x

p p
p

x
p p p
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So well so good, this study demonstrates how triangular
membership functions of fuzzy logic system can be employed
to define linguistic labels and neural networks were introduced

for self-tuning and adaptation in case of new situations. Also,
for effective selection of optimal input parameters, Genetic
Algorithm has been incorporated. Yet, the effectiveness of

the model has only been validated using casual TB records
because the rule base of the knowledge base was formulated.
To further validate the results of this model, sufficient real-

life records of TB patients can be obtained from medical clinics
in order to generate rules and training data sets.
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