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Abstract The ‘‘near-repeat” effect is a well-known criminological phenomenon in which the occur-

rence of a crime incident gives rise to a temporary elevation of crime risk within close physical prox-

imity to an initial incident. Adopting a social network perspective, we instead define a near repeat in

terms of geodesic distance within a criminal social network, rather than spatial distance. Specifi-

cally, we report a statistical analysis of repeat effects in arrest data for Chicago during the years

2003–2012. We divide the arrest data into two sets (violent crimes and other crimes) and, for each

set, we compare the distributions of time intervals between repeat incidents to theoretical distribu-

tions in which repeat incidents occur only by chance. We first consider the case of the same arrestee

participating in repeat incidents (‘‘exact repeats”) and then extend the analysis to evaluate repeat

risks of those arrestees near one another in the social network. We observe repeat effects that dimin-

ish as a function of geodesic distance and time interval, and we estimate typical time scales for

repeat crimes in Chicago.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Criminological studies have shown that crime is not uniformly

distributed among victims, arrestees and places, with repeat
crimes playing a fundamental role [5]. In fact, about half of
all crimes in the United States are committed by repeat arrest-

ees [19]. Moreover, some reports [4] have suggested a high
degree of overlap between victim and arrestee populations,
and research has already demonstrated that victims of per-
sonal or property crimes and of gun violence experience ele-

vated crime risks within months of an instigating incident
[8,16]. Thus, it is reasonable to expect the same effect to exist
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among the arrestee population, which has implications for the
prevention of crime [10,21].

In the field of criminology there is a well-known phe-

nomenon known as the near-repeat effect, which refers to a
tendency for crime risk to be temporarily increased within
the near vicinity of recent crime incidents (i.e., incidents that

have taken place nearby in both space and time; e.g., [10,20]).
In this paper, we hypothesize the existence of a different

kind of near-repeat effect, in which we modify the definition

of ‘‘near” to refer not to geographical relationships among
crime incidents, but rather to crime-related interpersonal rela-
tionships among the individuals involved in these incidents.
We measure the notion of interpersonal distance by using

the well-established concept of ‘‘degrees of separation,” which
is known technically as geodesic distance. In this paper we
define geodesic distance in a criminal social network as follows:

If Person A and Person B have been arrested previously in con-
nection with the same crime incident (co-arrested), they are said
to have one degree of separation. If, in turn, Person C has been

co-arrested with Person B, then Person C is said to be separated
from Person A by two degrees, and so on. Thus, we hypothesize
that a crime incident involving Person A, will temporarily

increase the crime risk for individuals such as Persons B and
C, who are near Person A in this specific sense that we have
defined. Later we show that the hypothesized effect does indeed
exist within crime data for the city of Chicago.

The immediate motivation for our study is to inform an ongo-
ing collaborative effort between the Chicago Police Department
and our research team at the Illinois Institute of Technology.

In this initiative, we have successfully developed and deployed
prediction algorithms that estimate the risk of future violence
for persons with extensive criminal records. We anticipate that

our prediction algorithms will be enhanced by exploiting the
probabilistic relationship, if it exists, that would be implied by
the aforementioned interpersonal near-repeat effect. Thus, the

present work not only informs our fundamental understanding
of crime behavior, but is also expected to have practical implica-
tions for the prediction of crime, which is a rapidly emerging field
[18]. We next review basic concepts of the near-repeat effect and

social networks so as to place our work in context.
Repeat crimes may occur for various reasons, including

event dependence linked to the psyche, actions, and environ-

ment of arrestees [10], with some facet of the arrestee’s
previous experience increasing the chances of participation in
a subsequent incident, with the possibility of the effect

spreading to others in the same environment and social groups
as the original arrestee [16]. With victims and arrestees
tending to belong to similar populations, event dependence
suggests the formation of crime patterns establishing positive

feedback, eventually escalating into situations involving an
excess of dangerous persons or groups, and areas of high crime
density. Effective policing strategies would identify these

situations as they are forming, thus ceasing the spread of
further crime.

Repeat crimes can be characterized as either exact-repeat or

near-repeat, depending on whether consecutive incidents occur
at the same location, or at a nearby location. [10] considered
the spread of repeat effects to neighboring locations by using

Monte Carlo methods to determine the likelihood of the
observed patterns occurring if no correlation between spatial
and temporal distributions exists. Similarly, Ratcliffe and
Rengert [20] investigated repeat effects in shootings in
Philadelphia, PA, using a modification of a standard Knox test
[12]. Short et al. [22] showed that repeat effects exist among

burglaries in Long Beach, CA, and further showed that these
effects decrease with distance in space and time.

Social networks have recently been used to investigate the

influence that an individual has on his peers [16,17]. There
are many reasons to suspect the spreading of repeat effects
in a criminal social network. First, many violent crimes are dri-

ven by emotions created by social relationships and thus occur
between persons who know one another [9]. Second, condi-
tions favoring the participation in crime incidents are spread
through peer influence [7]. Third, physical objects such as

drugs or weapons are usually dispersed through interpersonal
connections, implying that the illegal selling and use of these
objects also occur through these connections [6].

For the remainder of this paper, we will present repeat anal-
yses on crimes that occurred in Chicago, IL, during the years
2003–2012, by integrating statistical techniques with a social

network perspective. Unlike previous repeat studies that have
been concerned with spatial locations and geographical dis-
tances of crime incidents, we will focus on arrestees and rela-

tionships among arrestees. Each incident in our dataset
includes a unique identification number for each arrestee tak-
ing part in a crime incident, the date of the incident and the
type of crime. Of particular interest to police is the behavior

of violent criminals [4], so we divide our data into two mutu-
ally exclusive datasets – one containing only violent crimes
and the other containing all other crimes – and we perform

analyses on the two datasets separately. We refer to these data-
sets as the violent dataset and the non-violent dataset, respec-
tively. The former consists of 6630 arrestees, while the latter

consists of 941,029 arrestees.
Through the construction and analysis of social networks

and application of statistical techniques, this paper aims to dis-

cover patterns by repeat arrestees in Chicago. In Section 1 we
use a Poisson model to describe the situation in which events
are independent of one another and occur only by chance,
referring to this as the null model. We describe and apply

our counting technique to test our datasets against the null
model, and show that Chicago’s exact-repeat incidents are
not due to chance alone. We describe the social network in

Section 2, where we measure the spread of repeat effects
through the network by keeping track of the geodesic distance
between incidents – that is, the network separation of the two

arrestees – and applying well-established spatiotemporal
descriptive statistics. We show that repeat effects in our data
diminish with time and geodesic distance. We conclude the
paper with a summary and discussion.
2. Exact-repeat effects

If there were no repeat effects, an individual’s participation in

a crime incident would be statistically independent of partici-
pation in other crime incidents. This model is contradictory
to the existence of repeat effects and will serve as our null

hypothesis. Moreover, an arrestee cannot participate in simul-
taneous criminal incidents, as such incidents would simply be
thought of as a single event. Independence of the incidents

implies a Poisson process [21], as reviewed next.
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2.1. The null hypothesis

In a homogeneous Poisson process the probability that k crim-
inal incidents occur within a time interval from t to Dt is

PkðDtÞ ¼ ðkDtÞke�kDt

k!
; ð1Þ

where k is the rate parameter.
It is easy to show that, for this distribution, the wait time s

between incidents obeys an exponential probability law, i.e.,

PðsÞ ¼ ke�ks: ð2Þ
Therefore, if the null hypothesis is correct, and crime incidents
are indeed statistically independent, then the time intervals

between incidents in which an arrestee participates should be
exponentially distributed, with shorter times occurring more
frequently, in accordance with Eq. (2).

2.2. Testing for event dependence

In this section we describe the methodologies used to test for
event dependence. For our finite-length data, we employed a

moving-window counting method [22] that produces a distri-
bution of the observed wait time s, which can be compared
to the null distribution in Eq. (2) to test for the presence of

event dependence. We applied this method to our violent and
non-violent datasets separately.

2.2.1. The moving-window counting method

In the moving-window technique, a time window of width smax

weeks is defined, beginning at the time of the first crime inci-
dent in the dataset. If one or more arrestees in this initial inci-

dent participate in a secondary incident within the time
window, the time interval (wait time) s between the initial
and secondary incidents is recorded. The time window then

shifts to the next crime incident in the dataset, and the wait
time between that incident and the following one is again
recorded. This process continues until the entire data record
has been analyzed. The wait time observations obtained at

the various time-window positions are assigned to bins to form
a histogram of counts, and normalized to obtain a probability
distribution, which can be compared to the null distribution in

Eq. (2). Note that, in general, the number of observations is
greater than the number of repeat arrestees because not all
arrestees will participate in a second incident. Hence, order-

one arrestees (i.e., arrestees who are arrested only once in the
study period) influence the probabilities not by contributing
time intervals s, but by increasing the count. Incidents occur-
ring within the final smax weeks of the data record – the so-

called ‘‘buffer period” – are not counted and do not contribute
to the probability distribution, because any incident occurring
during that period will have its associated time window falling

beyond the end of the data record and thus no data can be
observed for such incidents.

The exact choice of smax is not critical, but extreme choices

will not allow sufficient data for the opportunity to disprove
the null hypothesis. One extreme is to choose smax as the length
of the study’s time frame. In this case, all of the data fall within

the buffer period and are discarded. The other extreme,
smax ¼ 0, only allows for measurements of s ¼ 0 nothing lar-
ger. For our study, we choose smax ¼ 104 weeks (two years,
or one-fifth of the study’s time frame) corresponding to a buf-
fer period of the years 2011–2012.

The counting scheme with smax ¼ 104 weeks, applied to a

single arrestee, is illustrated by way of an example timeline
in Fig. 1, in Supplementary material. The first incident occurs
212 weeks into the study period, and an observation is con-

ducted to determine whether a repeat incident occurs within
the following 104 weeks. In this example, a repeat incident
has indeed occurred, so the time interval s ¼ 96

(308� 212 ¼ 96) is recorded, and the analysis continues
through the timeline. The next incident to occur is the one fol-
lowing 308 weeks; this was the repeat incident for the previous
measurement and is now a potential instigating incident.

Again, an observation is made, but this time a repeat incident
does not occur within the time window of smax ¼ 104 weeks.
The analysis continues up to the incident occurring 413 weeks

into the study, and it is observed that two later incidents fall
within the time window. Since we are counting inter-arrival
times of a possible Poisson process, we use the first of these

two events, and the time interval s ¼ 7 (420� 413 ¼ 7) is
added to the record. The buffer period begins after week
416; any possible instigating incident during this period cannot

be checked for secondary incidents over the entire time win-
dow, and so no further observations are made.

The counting scheme in the preceding example is repeated
incident by incident for every arrestee in the dataset. The

records of s are combined into one master record, and the
numbers of observations are summed across all arrestees,
yielding the total number of observations N0. We applied this

method to the violent and non-violent datasets separately; a
graph of the respective histograms is shown in Fig. 2, in Sup-
plementary material. For the violent dataset, we made a total

of N0 ¼ 4975 observations, 398 of which were followed by a
repeat incident in the following 104 weeks. N0 ¼ 261; 006
observations were made for the non-violent dataset, and

130,503 observations were followed by a repeat incident within
the 104-week time window. Both histograms exhibit more
short time intervals than long ones.
2.2.2. Observed data versus the null hypothesis

First consider the violent dataset and the upper histogram in

Fig. 2, containing N0 ¼ 4975 observations. Normalizing the
histogram to obtain a probability distribution yields the solid
blue line in the upper graph of Fig. 3, in Supplementary mate-

rial. By summing the probabilities, we see that about 8% of all
violent crimes are followed by an exact repeat occurring within
104 weeks of the instigating incident. Next, we determined the

least-squares fit of Eq. (2) to the observed data to estimate the
rate parameter. For the violent dataset, the least-squares esti-

mate of k was found to be k̂ ¼ 6:989� 10�4. The function

pðsÞ ¼ k̂e�k̂s

is shown as the dashed red curve in the upper graph of Fig. 3.
We applied the same procedure to the non-violent histogram
with N0 ¼ 261; 006 observations. Its probability distribution

is shown in the bottom of Fig. 3 along with its best-fit curve,

determined to have k̂ ¼ 6:400� 10�3. Again, summation of
the probabilities reveals that 50% of non-violent crimes are fol-
lowed by an exact-repeat incident occurring within 104 weeks
of the instigating incident. As we will establish quantitatively
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in the next section, the null hypothesis distribution poorly

describes the observed data for small values of s, indicating
that event dependence is present in the data.

2.2.3. The Kolmogorov–Smirnov test

To test the validity of the exponential distribution in Eq. (2) as
a model of our Chicago repeat data, we use the well-known
Kolmogorov–Smirnov (K–S) goodness-of-fit test [14,11], the

basic premise of which is to compare the observed cumulative
distribution function (CDF) with the CDF of the assumed null
distribution. If the maximum discrepancy between the
observed and null CDFs is larger than a specific confidence

threshold for a given sample size, the null distribution is
deemed an unacceptable model of the data. On the other hand,
if the discrepancy is less than the threshold, the null distribu-

tion cannot be rejected.
Let FðsÞ be the CDF of the null distribution in Eq. (2),

that is

FðsÞ ¼
Xs

t¼0

pðtÞ;

and similarly let bFðsÞ be the CDF of the observed data. The

test statistic of the K–S test is the maximum absolute differ-

ence between FðsÞ and bFðsÞ. Let this maximum difference be

denoted by

DN0
¼ max

s
j bFðsÞ � FðsÞj:

K–S test of size a compares DN0
with the confidence thresh-

old value Da
N0

defined by

PrðDN0
6 Da

N0
Þ ¼ 1� a;

where N0 is the number of degrees of freedom (histogram nor-
malization factor).

If the observed value of DN0
is greater than the threshold

Da
N0
, the null hypothesis can be rejected at the

ð1� aÞ � 100% confidence level. In our study, we chose
a ¼ 0:05 corresponding to a 95% confidence interval. The

degrees of freedom for our violent and non-violent datasets
were N0 ¼ 4975 and N0 ¼ 261; 006, respectively. Significance
thresholds for a ¼ 0:05 and for N0 > 50 are given in Ang

and Tang [1] as Da
N0

¼ 1:36
ffiffiffiffiffiffi
N0

p�
, which yields Da

N0
¼ 0:019

and Da
N0

¼ 0:003 for our two datasets.

Fig. 4, found in Supplementary material, shows, for each

dataset, the observed CDF, bFðsÞ, and the null CDF, FðsÞ,
for s 6 104; as well as the maximum difference DN0

between

the two. Our violent dataset yielded a K–S test statistic of
0.0251, which is greater than the confidence threshold of

0.019, and so we can reject the null hypothesis that violent inci-
dents are statistically independent. We can draw a similar con-
clusion with our non-violent dataset, which produced a K–S

test statistic of 0.016, which is greater than the threshold of
0.003. It should be noted that one cannot infer conclusions
about the precise value of s for which DN0

occurs (which

may not even be unique); the test can only reject the null

hypothesis and does not provide insight as to the time frame
of elevated repeat risk. However, finding a s for which

j bFðsÞ � FðsÞj > Da
N0

means, at the very least, that a sufficiently

large time window smax was chosen.
3. Social network repeat effects

Social networks are graph structures composed of nodes (in
our case, arrestees), and edges, which form links between these

nodes. Social networks can help explain observed local and
global patterns within these structures, and identify nodes
from which other nodes draw influence.

In this study each arrestee in a dataset defines a node hav-
ing a unique label within the social network. For purposes of
anonymization, we refer to each arrestee using a unique inter-
nal record (IR) number. When two or more subjects are

arrested as part of the same incident, their respective nodes
become connected in the social network. The edge connecting
this pair of nodes forms on the day the incident occurred; thus,

the social network is constantly evolving. The network is an
undirected graph, as there is an inherent symmetry between
co-arrestees: if IR1 is arrested with IR2, then IR2 is arrested

with IR1. For simplicity in this initial investigation, the edges
are unweighted (two subjects are either connected or not, and
no connection strength is assigned to the edge that connects

them). Although our network is dynamic, unweighted, and
undirected, the analysis to follow can readily be adapted to
other types of networks.

Although we will separately analyze the repeat behavior of

violent and non-violent crimes, we use a single, common social
network for all arrestees. We measure the separation between
two subjects in the social network using the geodesic distance

between their nodes, i.e., the minimum number of edges that
must be traversed to move between the nodes. It should be
noted that the network contains isolated cliques, i.e., subsets

of nodes having edges that do not connect to any node outside
the subset. Our network contains nearly three million nodes
and 900,000 edges. The largest geodesic distance between any

two connected nodes is 37, the largest isolated clique contains
474 nodes, and the smallest isolated cliques consist of just one
node.
3.1. Near-repeat counting method

Our process of measuring near-repeat time intervals is a com-
plicated one that is best explained by way of an example.
Fig. 5, found in Supplementary material, shows the incident

timelines of two subjects, IR1 and IR2, who become immedi-
ate neighbors in the network after becoming linked by a co-
arrest 100 weeks into the time period studied. In our study,

we used the first four years (208 weeks) of data as an initial
network setup, or ‘‘burn-in” period, during which the network
evolves without taking measurements. This is to ensure that

the measurements are taken from a network in steady state.
In the example in Fig. 5, after the burn-in period, IR1 is
arrested in week 209, and his immediate neighbor in the net-
work, IR2, is arrested in week 245. Thus we obtain a measure-

ment of the wait time between arrests of s ¼ 36
ð245� 209 ¼ 36Þ, indicated in Fig. 5 with a blue line connect-
ing the two incidents. The next arrest occurs in week 212, again

involving IR1, after which the soonest arrest of IR2 is again in
week 245. Therefore the next measurement of wait time is
s ¼ 33 (245� 212 ¼ 33). Now the arrest of IR2 in week 245

becomes the instigating incident for the arrest of IR1 in week
275, and s ¼ 30 is recorded (275� 245 ¼ 30). Both of the sub-
jects are arrested in week 275, and in this scenario, we count
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each arrest as being the instigating incident for the other and
hence, s ¼ 0 is recorded twice. The counting procedure contin-
ues in this manner.

An absence of network data for IR1 and IR2 in week 275
indicates that the two arrests are related to separate crime inci-
dents (as is the case for the two arrests in week 201). This is

significant because we keep track of the elapsed time since
the two were linked and allow the link to expire if this time
exceeds four years. By removing connections that become

‘‘stale” after several years, we maintain a network with relevant
relationships. A link may be renewed should the subjects be
arrested together again. In the present example, IR1 and IR2
are linked in week 100 and the link is never renewed. Thus, their

link expires in week 308, shown as a vertical dashed line in the
figure, and no measurements are taken beyond that time. By
choosing an expiration time equal in duration to that of the net-

work burn-in time, the network temporal window is held con-
stant in duration; it is never longer or shorter than four years.

This example illustrates the counting method for arrestees

separated by a geodesic distance of n ¼ 1 in the social network,
but the method is similar for greater values of n. Algorithm 1
in Supplementary material gives the pseudocode algorithm to

obtain the wait time distribution for any n P 1.
In a near-repeat analysis (in contrast to our exact-repeat

analysis), we would not expect the time intervals to be expo-
nentially distributed should the null hypothesis of event inde-

pendence be true. This is because the arrests of two subjects
in a single incident violate the requirement of non-
simultaneity. If independent events are allowed to occur simul-

taneously, then the time intervals between events will not be
exponentially distributed [21]. Nevertheless, statistical testing
of our observed distributions can be done using Monte Carlo

simulations to estimate a null distribution.

3.2. Testing for elevated clustering in time and geodesic distance

The goal of this section is to determine whether the observed
near-repeat distributions for different geodesic distances
pnðsÞ exhibit elevated clustering when compared to the null

hypothesis of no event dependence across time and geodesic
distance. Originally developed to detect only spatial clustering,
the O-ring statistic [13,23] and Ripley’s K [23] are spatial

descriptive statistics, with roots in epidemiology, that can be
extended to detect clustering in a spatiotemporal sense [2,15].
We calculated both statistics using our observed distributions,
and in order to compare the statistics to those under the null

hypothesis, we performed Monte Carlo simulations in which
the dates of the subject-date 2-tuples are randomly permuted.
Reshuffling the date data is a common strategy in this situation

when the null distribution is unknown. Originally applied in
Besag and Diggle [3], this strategy was also implemented in
Ratcliffe and Rengert [20] to evaluate near-repeat shooting

patterns in the city of Philadelphia, PA.

Let sijn be the time interval between incidents i and j given

that the arrestees are separated by geodesic distance n. The
O-ring statistic for distance n is given by the following:

OnðsÞ ¼ 1

~kN

X
i–j

Iðsijn ¼ sÞ; ð3Þ

where N is the total number of incidents, ~k is the so-called
‘‘point density,” and Ið�Þ is the indicator function
Iða ¼ bÞ ¼ 1; a ¼ b;

0; a – b:

�

In the traditional spatial case, the point density ~k is usually

chosen as the average number of points per unit area. Doing
so gives the researcher a meaningful and convenient way to
quantify the spatial clustering relative to that expected by a
Poisson process. However, as explained earlier, there is no rea-

son to believe our data follow a Poisson process; however,

analogous to the spatial case, we can still define ~k as a rate esti-
mated as N divided by the total number of subjects divided by
the total number of weeks in the study.

In the context of near repeats, the summation in Eq. (3) is

simply a count of the number of pairs of arrests occurring
exactly s weeks apart involving subjects separated by geodesic
distance n. We have already performed this count; it is

Nn � pnðsÞ. Therefore, we can express the O-ring statistic in
Eq. (3) as

OnðsÞ ¼ 1

~kN
Nn � pnðsÞ: ð4Þ

The closely related Ripley’s K function is a cumulative count

of time intervals and can be expressed similarly as

KnðsÞ ¼ 1

~kN

X
i–j

Iðsijn 6 sÞ ¼
Xs

t¼0

OnðtÞ: ð5Þ

The K and O-ring statistics, while similar, answer slightly
different questions. For example, if we hypothesize that
near-repeat effects only last for a certain duration and then

‘‘expire,” and the accumulating nature of the K statistic should
identify the time at which the effect expires. In this case, we
would expect elevated K statistics at short time intervals and

moderate K statistics falling within confidence intervals at lar-
ger time intervals. The O-ring is more of an instantaneous met-
ric identifying specific times of heightened near-repeat risk. An
elevated O-ring statistic at, say, s ¼ 4 weeks would imply clus-

tering of near-repeat incidents four weeks after instigating inci-
dents and does not confound with the O-ring statistics at larger
values of s. Both statistics are of interest to us; therefore we

consider both in our analysis.
We first consider our violent dataset, and plot the observed

O-ring and K statistics for n ¼ 1; 2; 3 and 0 6 s 6 208 in Fig. 6,

in Supplementary material. For comparison to the null
hypothesis, we randomly permute the dates of all arrests while
holding the subjects fixed, and, with the new data, calculate

and plot the O-ring and K statistics. This process is repeated
for 95 random permutations for the sake of constructing a
95% confidence envelope, also plotted in Fig. 6. Randomly
permuting the dates has the effect of observing how O-ring

and K statistics would appear should there be no spatiotempo-
ral relationships [20].

We observe from Fig. 6 elevated O-ring and K statistics

within the first 25 weeks for the cases of n ¼ 1; 2 neighbors,
with the effect extending past 80 weeks for the K statistic.
For the n ¼ 3 case, the figure shows that the statistics are com-

pletely within the envelope of what can be expected under the
null hypothesis and are therefore not statistically significant at
the 95% confidence level. Not shown are the statistics for
n ¼ 4 neighbors for which we also found no significant

dependence.
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Next we consider the non-violent dataset for which we con-
ducted the same analysis as for the violent dataset. The results
are shown in Fig. 7, in Supplementary material. For n ¼ 1; 2,
the figure shows that the O-ring statistic falls outside of the
95% confidence envelope for small values of s during which
the statistic exceeds the upper limit of the confidence interval.

For larger n, the O-ring statistic falls entirely within the
confidence envelope and is therefore not statistically signifi-
cant at those values of n. The figure also shows an elevated

K statistic for n ¼ 1; 2; 3; 4 and a K statistic values that are
not significant for n ¼ 5. We repeated the analysis for n ¼ 6
and n ¼ 7 and found that neither the O-ring nor the K
statistic showed significant event-dependence effects in either

case.

3.3. Discussion

The above pioneering approach of fusing the O-ring and K
statistics with a social network analysis provides knowledge
of the temporary influence one has on his peers within the net-

work. This influence may be described by the strength of the
influence – that is, the maximum geodesic distance for which
the influence is observed – and its persistence, i.e., for how

long, temporally, the influence is observed.
Since the O-ring statistic is, as explained previously, a mea-

sure of instantaneous effect, it provides insight concerning the
time scales of repeat incidents in our Chicago datasets. For

instance, the O-ring statistic is elevated for our violent dataset
during roughly the first 25 weeks for n ¼ 1, indicating (possibly
for the reasons outlined in the introduction) an increased

chance of a violent repeat crime occurring within about six
months of an initial violent crime for subjects directly con-
nected in the network. During this time, we observe 58% more

repeat incidents than expected by chance. The K statistic
reaches a maximum separation from its confidence envelope
during this time period before it begins to approach and finally

penetrates the envelope at about 90 weeks. Thus the total num-
ber of violent repeat crimes separated by less than 90 weeks is
more than what would be expected by chance alone.

A similar argument can be made for the violent n ¼ 2 case

in which the O-ring statistic in Fig. 6 implies an elevated prob-
ability of violent repeat crimes occurring within just two
months of an initial violent crime. During this time, we observe

70% more repeat incidents than expected by chance. The K
statistic demonstrates an elevation in the total number of vio-
lent repeat crimes separated by less than 80 weeks. Finally, our

results for n ¼ 3 and n ¼ 4 (n ¼ 4 not shown in the figure)
demonstrate no statistically significant violent near-repeat
effects; thus the concept of ‘‘near” for violent crimes may be
limited to arrested individuals within two degrees of network

separation.
For the non-violent dataset, the O-ring statistic falls outside

of the confidence envelope for neighbors of distances n ¼ 1

and n ¼ 2; and is entirely contained within the envelope for
larger n. For n ¼ 1; the elevated O-ring statistic at s ¼ 0 and
s ¼ 1 demonstrates an increased risk during the first and sec-

ond weeks following an instigating incident. In fact, there
are 28% more near-repeat incidents in the first two weeks in
the dataset than is predicted by the null hypothesis. Similarly,

for n ¼ 2 neighbors, the elevated statistic at s ¼ 0 implies an
increased risk during the first week following an instigating
incident. There are 17% more near-repeat incidents in the first
week than predicted by the null hypothesis.

The K statistics in Fig. 7 show a near-repeat effect which

decreases in both time and network space. For n ¼ 1 neigh-
bors, more near-repeat crimes are observed within 22 weeks
of instigating incidents than would be expected by chance;

however, this time frame decreases as subjects become further
separated. For example, there are more repeat crimes than
expected only for the first 20 weeks for n ¼ 2, 10 weeks for

n ¼ 3, and 8 weeks for n ¼ 4, and the number of crimes are
as expected for n ¼ 5 and n ¼ 6 (n ¼ 6 not shown in the fig-
ure). During these time frames, we see 10.47% more crimes
than expected for n ¼ 1, 4.91% for n ¼ 2; 3.06% for n ¼ 3,

and 2.96% for n ¼ 4. The K statistics show repeat effects at
n ¼ 3 and n ¼ 4 while the O-ring statistics do not. This is
because the two statistics answer slightly different questions.

The K statistic finds elevated crimes for the n ¼ 3 and n ¼ 4
cases accumulated up to 10 weeks and 8 weeks, respectively;
however, according to the O-ring statistic, there is no single

week during these periods in which we should expect an ele-
vated number of repeat crimes.

4. Conclusion

This work is motivated by our interest in identifying factors
that may be predictive of an individual’s involvement in future

violence to enhance the predictive models we have developed
as part of the Chicago Police Department’s predictive policing
program. Specifically, we have developed a very successful pre-
diction model that evaluates the crime risk of individuals with

very severe patterns of involvement in crime.
This paper demonstrates conclusively that an individual’s

crime risk increases for a period of roughly 25 weeks (about

6 months) following a crime involving a person within two
or less degrees of separation from an individual involved in
that crime. To make practical use of this finding, we are cur-

rently in the process of revising our prediction model by
including new variables pertaining to first- and second-degree
connections, as well as a weighting function that gives greater

emphasis to the effect of recent crime incidents, as opposed to
those in the more distant past. In addition to the practical sig-
nificance for our current project, the findings of this paper pro-
vide us with fundamental insights about patterns of crime and

its temporal and interpersonal behavior, for both violent and
non-violent crime types.

In this work, to test for the presence of a social-network

near-repeat effect, we conducted statistical analyses of arrest
data to measure exact-repeat and near-repeat effects within
Chicago’s criminal social network for both violent and non-

violent crimes. For exact-repeats, we modeled the situation
in which arrests are independent of one another as a Poisson
process, and therefore inter-arrival times were compared to
an exponential distribution. We selected the distribution’s rate

parameter to minimize the residual sum of squares and quan-
tify the goodness-of-fit using the popular K–S test. The K–S
test rejects the null hypothesis of independence for both of

our datasets with 95% confidence.
We measured near-repeat effects by considering how the

effects spread through a social network. Each node in the net-

work is a unique arrestee, and two nodes become connected
should two subjects be arrested as part of the same unlawful
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incident. With the network in place, we recorded the time
intervals between repeat incidents, this time keeping track of
‘‘distances”, or the degree separation between graph nodes.

By recording these geodesic distances, we allowed for the sep-
arate examination of temporal and spatial effects using Rip-
ley’s K and O-ring statistics. In order to compare these

statistics to those of a null distribution of no dependence
among incidents (across time and geodesic distance), we ran-
domly permuted arrest dates and then recalculated the test

statistics. The results showed elevated repeat effects that
decrease over time and geodesic distance within the network.

For violent crimes in particular, we have observed that the
near-repeat effect extends to neighbors separated by a geodesic

network distance of n ¼ 2, with the effect most prominent for
neighbors of n ¼ 1. Further, we have seen that this effect
expires at most 25 weeks after an instigating crime. Therefore,

when considering the role one individual’s crime plays on the
risk of a second individual, we must only concern ourselves
with crimes from n ¼ 1 and n ¼ 2 neighbors, from at most

25 weeks ago. As explained earlier, these findings will inform
future predictive models for identifying individuals at high risk
for future violence.
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