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Abstract In the last 30 years, twin studies have indicated a strong genetic contri-

bution to Autism Spectrum Disorders (ASD). The heritability of ASD is estimated

to be 50 %, mostly captured by still unknown common variants. In approximately

10 % of patients with ASD, especially those with intellectual disability, de novo
copy number or single nucleotide variants affecting clinically relevant genes for

ASD can be identified. Given the function of these genes, it was hypothesized that

abnormal synaptic plasticity and failure of neuronal/synaptic homeostasis could

increase the risk of ASD. In parallel, abnormal levels of blood serotonin and

melatonin were reported in a subset of patients with ASD. These biochemical

imbalances could act as risk factors for the sleep/circadian disorders that are

often observed in individuals with ASD. Here, we review the main pathways

associated with ASD, with a focus on the roles of the synapse and the serotonin-

NAS-melatonin pathway in the susceptibility of ASD.
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Sorbonne Paris Cité, Human Genetics and Cognitive Functions, University Paris Diderot,

Paris, France

FondaMental Foundation, Créteil, France
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Introduction

Autism Spectrum Disorders (ASD) are a group of neuropsychiatric disorders

characterized by problems in social communication as well as the presence of

restricted interests and stereotyped and repetitive behaviors (Kanner 1943;

Asperger 1944; Coleman and Gillberg 2012). Epidemiological studies estimate

that more than 1 % of the population could receive a diagnosis of ASD (Elsabbagh

et al. 2012; Developmental Disabilities Monitoring Network Surveillance Year

Principal 2014). Individuals with ASD can also suffer from other psychiatric and

medical conditions, including intellectual disability (ID), epilepsy, motor control

difficulties, Attention-Deficit Hyperactivity Disorder (ADHD), tics, anxiety, sleep

disorders, epilepsy, depression or gastrointestinal problems (Gillberg 2010;

Moreno-De-Luca et al. 2013). The term ESSENCE, for ‘Early Symptomatic Syn-

dromes Eliciting Neurodevelopmental Clinical Examinations,’ was coined by

Christopher Gillberg to take into account this clinical heterogeneity and syndrome

overlap (Gillberg 2010). There are four to eight times more males than females with

ASD (Elsabbagh et al. 2012), but the sex ratio is more balanced in patients with ID

and/or dysmorphic features (Miles et al. 2005). Autism can be studied as a category

(affected vs. unaffected) or as a quantitative trait using auto- or hetero-

questionnaires such as the Social Responsiveness Scale (SRS) or the autism quo-

tient (AQ) (Ronald et al. 2006; Skuse et al. 2009; Constantino 2011). Using these

tools, autistic traits seem to be normally distributed in clinical cases as well as in the

general population (Ronald et al. 2006; Skuse et al. 2009; Constantino 2011).

The causes of autism remain largely unknown, but twin studies have constantly

shown a high genetic contribution to ASD. Molecular genetics studies have iden-

tified more than 100 ASD risk genes carrying rare and penetrant deleterious

mutations in approximately 10–25 % of patients (Huguet et al. 2013; Gaugler

et al. 2014; Bourgeron 2015). In addition, quantitative genetics studies have

shown that common genetic variants could capture almost all the heritability of

ASD (Huguet et al. 2013; Gaugler et al. 2014). The genetic landscape of ASD is

shaped by a complex interplay between common and rare variants and is most

likely different from one individual to another (Gardener et al. 2011; Hallmayer

et al. 2011; Bourgeron 2015). Remarkably, the susceptibility genes seem (Huguet

et al. 2013) to converge in a limited number of biological pathways, including

chromatin remodeling, protein translation, actin dynamics and synaptic functions

(Bourgeron 2009; Toro et al. 2010; Huguet et al. 2013; Bourgeron 2015). In

addition, several studies have pointed to a dysfunction of the serotonin-NAS-

melatonin pathway in patients with ASD. Abnormalities of this pathway might

increase the risk of circadian/sleep disorders often observed in patients with ASD.

In this chapter, we will detail the advances in the genetics of ASD (Fig. 1) with a

focus on the role of both synapses and biological rhythms in the susceptibility of

ASD (Abrahams and Geschwind 2008; Bourgeron 2009; Toro et al. 2010; Devlin

and Scherer 2012; Huguet et al. 2013).

102 G. Huguet et al.



Twin and Family Studies in ASD

Based on more than 13 twin studies published between 1977 and 2015, researchers

have estimated the genetic and environmental contribution to ASD (Fig. 2). In

1977, the first twin study of autism by Folstein and Rutter (1977) reported on a

cohort of 11 monozygotic (MZ) twins and 10 dizygotic (DZ) twins. This study

showed that MZ twins were more concordant for autism—36 % (4/11)—compared

with 0 % (0/10) for DZ twins. When a “broader autism phenotype” was used, the

concordance increased to 92 % for MZ twins and to 10 % DZ twins (Bailey

et al. 1995). Since this first small scale study, twin studies have constantly reported

a higher concordance for ASD in MZ compared with DZ (Ritvo et al. 1985;

Steffenburg et al. 1989; Bailey et al. 1995; Le Couteur et al. 1996). Between

2005 and 2009, three twin studies with relatively large groups of twins

(285–3419) have reported high concordances for ASD in MZ twins (77–95 %)

compared with DZ twins (31 %; Ronald et al. 2005; Taniai et al. 2008; Rosenberg

et al. 2009). Notably, MZ concordances were similar to those reported in the

previous studies, but DZ concordances were higher. In 2010, Lichtenstein

et al. reported a relatively low concordance for ASD in 39 % of the MZ twins

compared with other studies (the concordance for DZ twins in this study was 15 %).

However, as previously indicated by studies using the “broader autism phenotype,”

all discordant MZ twins of this cohort had symptoms of ESSENCE (e.g., ID,

ADHD, language delay, etc.). A significant proportion of the genetic contribution

to ASD was shown to be shared with other neurodevelopmental disorders such as

ADHD (>50 %) and learning disability (>40 %; Lichtenstein et al. 2010; Ronald

et al. 2010; Lundstrom et al. 2011; Ronald and Hoekstra 2011). In summary, when

all twin studies are taken into account, concordance for ASD is roughly 45 % for
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Fig. 1 The history of the genetics of autism from 1975 to 2015. The increase in the identified

genes associated with ASD (SFARI—March 2015) is represented together with the prevalence of

ASD (data taken from the Center for Disease Control and Prevention), the different versions of the

Diagnostic Statistical Manual (from DSM II to DSM 5.0) and the advance in genetics technology

(Adapted from Huguet and Bourgeron 2016)
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MZ twins and 16 % for DZ twins (Ritvo et al. 1985; Steffenburg et al. 1989; Bailey

et al. 1995; Le Couteur et al. 1996).

Family studies also showed that the recurrence of having a child with ASD

increases with the proportion of the genome that the individual shares with one

affected sibling or parent (Constantino et al. 2010; Risch et al. 2014; Sandin

et al. 2014). In a population-based sample of 14,516 children diagnosed with

ASD (Sandin et al. 2014), the relative risk for ASD (compared to the general

population) was estimated to be 153.0 [95 % confidence interval (CI):

56.7–412.8] for MZ twins, 8.2 (3.7–18.1) for DZ twins; 10.3 (9.4–11.3) for full

siblings, 3.3 (95 % CI, 2.6–4.2) for maternal half siblings, 2.9 (95 % CI, 2.2–3.7) for

paternal half siblings, and 2.0 (95 % CI, 1.8–2.2) for cousins.

Heritability is the proportion of the phenotypic variation in a trait of interest,

measured in a given studied population and in a given environment, that is

co-varying with genetic differences among individuals in the same population. In

1995, based on a twin study, Bailey et al. estimated the heritability of autism to be

91–93 %. Since then, the estimation of heritability has differed from one study to

another, but the genetic variance has accounted for at least 38 % and up to 90 % of

the phenotypic variance (Hallmayer et al. 2011; Ronald and Hoekstra 2011; Sandin

et al. 2014). Using a large cohort of 14,516 children diagnosed with ASD Sandin

et al. (2014), estimated the heritability to be 0.50 (95 % CI, 0.45–0.56) and the

non-shared environmental influence was also 0.50 (95 % CI, 0.44–0.55).
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Fig. 2 The main twins studies in ASD. A total of 13 twins studies and 17 heritability studies are

depicted. Means of concordance and heritability weighted by sample size are presented on the

right of the figure (Adapted from Huguet and Bourgeron 2016)

104 G. Huguet et al.



Surprisingly, only the additive genetic component and the non-shared environment

seemed to account for the risk of developing ASD (Sandin et al. 2014).

In summary, epidemiological studies provide crucial information about the

heritability of ASD. However, they do not inform us about the genes involved or

the number and frequency of their variants. In the last 15 years, candidate genes and

whole-genome analyses have been performed to address these questions.

From Chromosomal Rearrangements to Copy Number

Variants in ASD

The first genetic studies that associated genetic variants with ASD used observa-

tions from cytogenetic studies (Gillberg and Wahlstrom 1985). However, because

of the low resolution of the karyotypes (several Mb), it was almost impossible to

associate a specific gene to ASD using this approach. The prevalence of large

chromosomal abnormalities is estimated to be less than 2 % (Vorstman et al. 2006).

Thanks to progress in molecular technologies such as Comparative Genomic

Hybridization (CGH) or SNP arrays, the resolution in the detection of genomic

imbalances has dramatically increased. Depending on the platforms, Copy Number

Variants (CNVs) of more than 50 kb are now robustly detected (Pinto et al. 2011).

Since the first articles published in 2006, a very large number of studies have

investigated the contribution of CNVs to ASD (Jacquemont et al. 2006; Sebat

et al. 2007). Several studies using the Simons Simplex Collection could even

provide an estimation of the frequency of the de novo CNVs in patients with

ASD compared with their unaffected siblings (Sanders et al. 2011). All together,

de novo CNVs are present in 4–7 % of the patients with ASD compared to 1–2 % in

the unaffected siblings and controls (Glessner et al. 2009; Sanders et al. 2011; Pinto

et al. 2014). The studies have also indicated that de novo CNVs identified in patients
are most likely altering genes and most especially genes associated with synaptic

functions and/or regulated by FMRP, the protein responsible for the fragile X

syndrome (Pinto et al. 2010, 2014). Beyond ASD, large CNVs (>400 kb) affecting

exons are present in 15 % of patients with Developmental Delay (DD) or ID

(Cooper et al. 2011). Most of the CNVs are private to each individual, but some

are recurrently observed in independent patients. For example, three loci on chro-

mosomal regions 7q11, 15q11.2–13.3, and 16p11.2 have been strongly associated

with ASD (Ballif et al. 2007; Kumar et al. 2008; Weiss et al. 2008; Szafranski

et al. 2010; Sanders et al. 2011; Leblond et al. 2014).

In summary, large chromosomal rearrangements and CNVs increase the risk of

having ASD in 5–10 % of the individuals (Vorstman et al. 2006; Pinto et al. 2010,

2014). To go further in the identification of the ASD risk genes, candidate genes and

whole exome/genomes studies were performed.
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From Candidate Genes to Whole Exome/Genome

Sequencing Studies in ASD

The first approach to associate a gene with ASD was to select specific candidate

genes based on data coming from functional or genetic studies or a combination of

the two. This approach was successful in identifying several synaptic genes asso-

ciated with ASD such as NLGN3, NLGN4X, SHANK3 and NRXN1 (Jamain

et al. 2003; Durand et al. 2007; Szatmari et al. 2007). Thanks to the advance in

Next Generation Sequencing (NGS), we can now interrogate all genes of the

genome in an unbiased manner using Whole Exome/Genome Sequencing (WES,

WGS).

To date, more than 18 WES studies of sporadic cases of ASD (O’Roak
et al. 2011, 2012a; Chahrour et al. 2012; Iossifov et al. 2012; Neale et al. 2012;

Sanders et al. 2012; He et al. 2013; Lim et al. 2013; Liu et al. 2013, 2014; Willsey

et al. 2013; Yu et al. 2013; An et al. 2014; De Rubeis et al. 2014; Iossifov

et al. 2014; Samocha et al. 2014; Chang et al. 2015; Krumm et al. 2015) have

been performed, comprising altogether more than >4000 families (Table 1). In

almost all these studies, the authors have especially focused their analysis on the

contribution of de novo Single Nucleotide Variants (SNVs) in ASD. All together,

the average number of de novo coding SNVs per individual (including missense,

splicing, frameshift, and stop-gain variants) is estimated to be approximately 0.86

in female patients, 0.73 in male patients, and 0.60 in unaffected male and female

siblings (Krumm et al. 2014; Ronemus et al. 2014). Interestingly, de novo SNVs

were three times more likely to be on the paternal chromosome than on the maternal

one (Kong et al. 2012; O’Roak et al. 2012a) with an increase of almost two de novo
mutations per year and doubled every 16.5 years (Kong et al. 2012).

Based on these studies (Iossifov et al. 2012; Neale et al. 2012; O’Roak
et al. 2012a; Sanders et al. 2012), 3.6–8.8 % of the patients were shown to carry

a de novo causative mutation (Iossifov et al. 2012) with a twofold increase of

deleterious mutations in the patients compared with their unaffected siblings. In a

meta-analysis, using more than 2500 families, Iossifov et al. (2014) found that de

novo Likely Gene Disrupting (LGD) mutations (frameshift, nonsense and splice

site) were more frequent in patients with ASD compared with unaffected siblings

(P¼ 5� 10�7). The carriers of these de novo LGDs were more likely diagnosed

with a low non-verbal IQ. The de novo LGDs are significantly enriched in genes

involved in chromatin modeling factors (P¼ 4� 10�6) and in genes regulated by

the FMRP complex (p¼ 4� 10�7). Following these whole exome studies, targeted

re-sequencing studies of the most compelling candidate genes were performed

(O’Roak et al. 2012b). All together, 10 genes carrying de novo mutations were

significantly associated with ASD: CHD8, DYRK1A, GRIN2B, KATNAL2, RIMS1,
SCN2A, POGZ, ADNP, ARID1B and TBR1.

Only a few studies have analyzed the contribution of inherited SNVs in ASD. In

2013, Lim et al. analyzed whole exome sequencing of 933 cases (ASD) and

869 controls for the presence of rare complete human knockouts (KO) with homo-

zygous or compound heterozygous loss-of-function (LoF) variants (�5 %
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frequency). They observed a significant twofold increase in complete KOs in

patients with ASD compared to controls. They estimated that such complete KO

mutations could account for 3 % of the patients with ASD. For the X chromosome,

there was a significant 1.5-fold increase in complete KO in affected males com-

pared to unaffected males that could account for 2 % of males with ASD (Lim

et al. 2013). The same year, Yu et al. (2013) analyzed 104 consanguineous families

including 79 families with a single child with ASD (simplex families) and 25 fam-

ilies with more than one affected individual (multiplex families) collected by the

Homozygosity Mapping Collaborative for Autism (HMCA). They identified

biallelic mutations in AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1. Finally,
a very recent study by Krumm et al. (2015) ascertained the relative impact of

inherited and de novo variants (CNVs or SNVs) on ASD risk in 2377 families.

Inherited truncating variants were enriched in probands (for SNV odds ratio¼ 1.14,

P¼ 0.0002; for CNV odds ratio¼ 1.23, P¼ 0.001) in comparison to unaffected

siblings (Krumm et al. 2015). Interestingly, they also observed a significant mater-

nal transmission bias of inherited LGD to sons. New ASD-risk genes were also

identified such as RIMS1, CUL7 and LZTR1.
To date, few whole genome sequencing studies have been published for ASD

(Table 1). Michaelson et al. (2012) analyzed 40 WGS of monozygotic twins

concordant for ASD and their parents. They proposed that ASD-risk genes could

be hot spots of mutation in the genome and confirmed the association between ASD

and de novo mutations in GPR98, KIRREL3 and TCF4. Shi et al. (2013) analyzed a
large pedigree with two sons affected with ASD and six unaffected siblings,

focusing on inherited mutations. They identified ANK3 as the most likely candidate

gene. In 2015, Yuen et al. analyzed 85 families with two children affected with

ASD. This study represents the largest published WGS data set in ASD. They

identified 46 ASD-relevant mutations present in 36 of 85 (42.4 %) families. Only

16 ASD-relevant mutations of 46 (35 %) identified were de novo. Very interest-

ingly, for more than half of the families (69.4 %; 25 of 36), the two affected siblings

did not share the same rare penetrant ASD risk variant(s).

Whole genome sequencing is also very efficient to identify mutations in regions

of the human genome that are wrongly annotated and in regions that are highly GC

rich. For example, mutations on the SHANK3 gene were rarely identified using

whole exome sequencing, given its high GC content (Leblond et al. 2014). In

contrast, whole genome sequencing could successfully identify SHANK3mutations

(Nemirovsky et al. 2015; Yuen et al. 2015).

The Common Variants in ASD

In the general population, one individual carries on average three million genetic

variants in comparison to the reference human genome sequence (Xue et al. 2012;

Fu et al. 2013; Genome of the Netherlands and Genome of the Netherlands 2014).

The vast majority of the variants (>95 %) are the so-called common variants shared
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with more than 5 % of the human population (Xue et al. 2012; Fu et al. 2013;

Genome of the Netherlands and Genome of the Netherlands 2014). While there is

not a clear border between common and rare variants, it is nevertheless interesting

to estimate the role of the genetic variants found in the general population in the

susceptibility to ASD.

Using quantitative genetics, Klei et al. (2012) estimated that common variants

were contributing to a high proportion of the liability of ASD: 40 % in simplex

families and 60 % in multiplex families. In 2014, a study by Gaugler et al. used the

same methodology (Yang et al. 2011) and provided an estimation of the heritability

(52.4 %) that is almost exclusively due to common variation, leaving only 2.6 % of

the liability to the rare variants. The contribution of common variants is therefore

important, but unfortunately the causative SNPs still remain unknown since they

are numerous (>1000) and each is associated with a low risk. To date, the largest

genome wide association studies (GWAS) performed on<5000 families with ASD

were underpowered to identify a single SNP with genome wide significance (Anney

et al. 2012; Cross-Disorder Group of the Psychiatric Genomics 2013).

The recruitment of larger cohorts of patients with dimensional phenotypes is

therefore warranted to better ascertain the heritability of ASD and to identify the

genetic variants, which explain most of the genetic variance.

The Genetic Architecture of ASD

Based on the results obtained from epidemiological and molecular studies, it is now

accepted that the genetic susceptibility to ASD can be different from one individual

to another with a combination of rare deleterious variants (R) and a myriad of

low-risk alleles [also defined as the genetic background (B)]. Most of the inherited

part of ASD seems to be due to common variants observed in the general popula-

tion, with only a small contribution from rare variants (Fig. 3). Importantly, while

the de novo mutations are considered per se as genetic factors, they do not

contribute to the heritability since they are only present in the patient (with the

relatively rare exception of germinal mosaicisms present in one of the parental

germlines and transmitted to multiple children). These de novo events could

therefore be considered as “environmental causes” of ASD but acting on the

DNA molecule. It is currently estimated that more than 500–1000 genes could

account for these “monogenic forms” of ASD (Iossifov et al. 2012; Sanders

et al. 2012), confirming the high degree of genetic heterogeneity.

The interplay between the rare or de novo variants R and the background B will

also influence the phenotypic diversity observed in the patients carrying rare

deleterious mutations. In some individuals, a genetic background B will be able

to buffer or compensate the impact of the rare genetic variations R. In contrast, in

some individuals, the buffering capacity of B will not be sufficient to compensate

the impact of R and they will develop ASD (Rutherford 2000; Hartman et al. 2001).

In the R‘n’B model, ASD can be regarded as a collection of many genetic forms of
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“autisms,” each with a different etiology ranging from monogenic to polygenic

models.

The presence of multiple hits of rare CNVs, SNVs or indels in a single individual

also illustrates the complexity of the genetic landscape of ASD (Girirajan

et al. 2010, 2012; Leblond et al. 2012). In addition, the analysis of the whole

genome sequence of multiplex families also indicates that clinically relevant

mutations can be different from one affected sib to another even in a single family

(Yuen et al. 2015). It is therefore still difficult to ascertain robust genotype-

phenotype relationships based on our current knowledge.

Fortunately, although the ASD-risk genes are numerous, they seem to converge

in a limited number of biological pathways that are currently scrutinized by many

researchers.

The Biological Pathways Associated with ASD

Unbiased pathway analyses indicated that ASD-risk genes seem to be enriched in

groups of proteins with specific functions (Voineagu et al. 2011; De Rubeis

et al. 2014; Ronemus et al. 2014; Uddin et al. 2014; Hormozdiari et al. 2015).

Pinto et al. (2014) analyzed the burden of CNVs in 2446 individuals with ASD and

Fig. 3 Relative contribution of the genetics and environment in ASD. Based on twin and familial

studies, it is estimated that the genetic and environmental contributions to ASD are approximately

50/50 %. Most of the heritable part seems to be due to common variants observed in the general

population, with a small contribution of rare variants. Importantly, the de novo mutations are

genetic causes of ASD but do not contribute to the heritability since there are only present in the

patient. These de novo events are therefore considered to be “environmental causes” of ASD, but

acting on the DNA molecule (Adapted from Huguet and Bourgeron 2016)
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2640 controls and found enrichment in genes coding post-synaptic density proteins

and FMRP targets. Ronemus et al. (2014) reviewed the results of four whole exome

sequencing studies and showed an enrichment of mutated genes in chromatin

modifier genes (P¼ 4� 10�6) and FMRP targets (P¼ 7� 10�6). Protein-protein

interactions (PPI) analyses of the genes carrying LGD mutations also showed

enrichment in proteins involved in neuronal development and axon guidance,

signaling pathways and chromatin and transcription regulation. De Rubeis

et al. (2014) also used the PPI network and showed enrichment in clusters of

proteins involved in the cell junction TGF beta pathway, cell communication and

synaptic transmission, neurodegeneration and transcriptional regulation.

In parallel to the genetic studies, several transcriptomic analyses were performed

using post-mortem brain of individuals with ASD (Voineagu et al. 2011; Gupta

et al. 2014). Several genes were differentially expressed or correlated between brain

regions. Two network modules were identified. The first module was related to

interneurons and to genes involved in synaptic function (downregulated in brains

from ASD patients compared to controls). The second module was related to

immunity and microglia activation (upregulated in brains from ASD patients

compared to controls).

Based on these results, neurobiological studies using cellular and animal models

have been performed to identify the main mechanisms leading to ASD. Remark-

ably, several studies showed that neuronal activity seems to regulate the function of

many of the ASD-risk genes, leading to the hypothesis that abnormal synaptic

plasticity and failure of neuronal/synaptic homeostasis could play a key role in the

susceptibility to ASD (Belmonte and Bourgeron 2006; Auerbach et al. 2011; Toro

et al. 2010). Here, we will only depict four main biological pathways associated

with ASD: chromatin remodeling, protein synthesis, protein degradation, and

synaptic function (Fig. 4). In parallel, several biochemical studies have indicated

a dysfunction in the serotonin-NAS-melatonin pathway.

Chromatin Remodeling Mutations in genes encoding key regulators of chromatin

remodeling and gene transcription (e.g., MECP2, MEF2C, HDAC4, CHD8 and

CTNNB1) have been reported in individuals with ASD (Fig. 4). Remarkably, a

subset of these genes is regulated by neuronal activity and influences neuronal

connectivity and synaptic plasticity (Cohen et al. 2011; Sando et al. 2012; Ebert

et al. 2013).

Protein Synthesis The level of synaptic proteins can be influenced by neuronal

activity through global and local synaptic mRNA translation (Ma and Blenis 2009).

Several genes involved in such activity-driven regulation of synaptic proteins have

been found to be mutated in individuals with ASD (Kelleher and Bear 2008). For

example, the mTOR pathway controls global mRNA translation and its deregula-

tion causes diseases associated with increased cell proliferation and loss of

autophagy, including cancer (Ma and Blenis 2009), but also increases the risk for

ASD. Remarkably, mutations in the repressor of the mTOR pathway such as NF1,
PTEN and SynGAP1 cause an increase of translation in neurons and at the synapse

(Auerbach et al. 2011). Mutations of the FMRP–EIF4E–CYFIP1 complex cause the
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fragile X syndrome and increase the risk of ASD (Budimirovic and Kaufmann

2011). This protein complex controls local translation of mRNA at the synapse and

acts downstream of the Ras-ERK signaling pathway. This complex regulates the

translation of more than 1000 specific genes, many of which are ASD risk genes

(De Rubeis et al. 2013; Fernandez et al. 2013; Gkogkas et al. 2013; Santini

et al. 2013). An alteration of this FMRP–EIF4E–CYFIP1 complex should therefore

create an imbalance in the level of many synaptic proteins that are associated

with ASD.

Protein Degradation The Ubiquitin-Proteasome System (UPS) is central for the

degradation of the proteins and, consequently, for the regulation of synapse com-

position, assembly and elimination (Mabb and Ehlers 2010). The UBE3A gene

encodes a ubiquitin ligase, is mutated in patients with Angelman syndrome and is

duplicated on the maternal chromosome 15q11 in individuals with ASD. Neuronal

activity increases UBE3A transcription through the MEF2 complex and regulates

excitatory synapse development by controlling the degradation of ARC, a synaptic

protein that decreases long-term potentiation by promoting the internalization of

AMPA receptors (Greer et al. 2010).

Synaptic Functions Many proteins encoded by ASD-risk genes participate in

different aspects of neuronal connectivity, such as glutamatergic (e.g., GRIN2B),

GABAergic (e.g., GABRA3 and GABRB3) and glycinergic (e.g., GLRA2) neuro-

transmission, neuritogenesis (e.g., CNTN), the establishment of synaptic identity

(e.g., cadherins and protocadherins), neuronal conduction (CNTNAP2) and perme-

ability to ions (CACNA1, CACNA2D3 and SCN1A). Some of these proteins are

directly involved in activity-driven synapse formation, such as the neurexins

(NRXNs) and neuroligins (NLGNs). Some are scaffolding proteins involved in

the positioning of cell-adhesion molecules and neurotransmitter receptors at the

synapse (Sheng and Kim 2011; Choquet and Triller 2013). For example, deletions,

duplications and coding mutations in the three SHANK genes (SHANK1, SHANK2
and SHANK3) have been recurrently reported in individuals with ASD (Leblond

et al. 2014). SHANK proteins assemble into large molecular platforms in interac-

tion with glutamate receptors and actin-associated proteins (Grabrucker

et al. 2011). In vitro, SHANK3 mutations identified in individuals with ASD reduce

actin accumulation in spines affecting the development and morphology of den-

drites as well as the axonal growth cone motility (Durand et al. 2012). In mice,

mutations in SHANK3 decrease spine density in the hippocampus but also increase

dendritic arborizations in striatal neurons (Peca et al. 2011). Mice mutated in

SHANK present with behavior resembling autistic features in humans. Shank1
knockout mice display increased anxiety, decreased vocal communication,

decreased locomotion and, remarkably, enhanced working memory, but decreased

long-term memory (Hung et al. 2008; Silverman et al. 2011; Wohr et al. 2011).

Shank2 knockout mice present hyperactivity, increased anxiety, repetitive

grooming, and abnormalities in vocal and social behaviors (Schmeisser

et al. 2012; Won et al. 2012). Shank3 knockout mice show self-injurious repetitive
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grooming, and deficits in social interaction and communication (Bozdagi

et al. 2010; Peca et al. 2011; Wang et al. 2011; Yang et al. 2012).

The Serotonin-NAS-Melatonin Pathway

In parallel to the genetic investigations pointing to the biological pathways

described above, several biological abnormalities have been reported in individuals

with ASD, including neurochemical, immunological, endocrine or metabolic traits

(Lam et al. 2006; Rossignol and Frye 2012), which may provide insights into the

pathophysiology of ASD. Among these, elevated blood serotonin is one of the most

replicated findings (Pagan et al. 2012) (Fig. 5). A deficit in melatonin (which

chemically derives from serotonin) in the blood or urine of individuals with ASD

has also been described in several studies (Tordjman et al. 2005; Melke et al. 2008)

and is associated with increased peripheral N-acetylserotonin (NAS), the interme-

diate metabolite between serotonin and melatonin. Several mutations affecting this

pathway were identified but the mechanisms of these biochemical impairments

remain mostly unexplained. Melatonin is a neurohormone mainly synthesized in

Fig. 5 The serotonin-NAS-melatonin pathway in ASD. (a) The serotonin-NAS-melatonin syn-

thesis pathway consists of two enzymatic steps involving first the N-acetylation of serotonin to N-
acetylserotonin (NAS) by the rate-limiting enzyme AANAT and the methylation of NAS by the

ASMT (also known as HIOMT). Different alterations such as higher serotonin or low melatonin

levels were observed in the blood of patients with ASD. The enzymes are represented in gray and
metabolites are in white. Alterations of the biochemical parameters are shown with red arrows. (b)
A schematic view of the pineal gland with the pinealocytes that contain the “melatoninosome.”

This complex includes at least four proteins: AANAT, ASMT, 14-3-3 and S-antigen. The

immunofluorescence confocal image of AANAT (green) and 14-3-3δ/ε (red) in the pinealocytes

is adapted from Maronde et al. (2011). The structure of the 14-3-3ζ homodimer binding to

AANAT is adapted from Obsil et al. (2001). (c) Main sources of serotonin (blue) and melatonin

(green) and the symptoms or comorbidities of ASD relevant to alterations in serotonin and

melatonin levels observed in ASD (Adapted from Pagan et al. 2012)
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the pineal gland during the night. It is a biological signal of light/dark cycles and is

considered to be a major circadian synchronizer. It is also a modulator of metab-

olism, immunity, reproduction and digestive function. Furthermore, it displays

antioxidant and neuroprotective properties and can directly modulate neuronal

networks (Bourgeron 2007). Melatonin appears as a therapeutic target of the

frequently reported sleep disorders associated with ASD (Andersen et al. 2008;

Wright et al. 2011; Malow et al. 2012). NAS displays intrinsic biological proper-

ties: it is an agonist of the TrkB receptor and may thus share the neurotrophic

properties of brain-derived neurotrophic factor (BDNF), the canonical TrkB ligand

(Jang et al. 2010; Sompol et al. 2011). Serotonin conversion into melatonin

involves two sequential enzymatic steps: N-acetylation of serotonin into NAS by

arylalkylamine N-acetyltranferase (AANAT, EC: 2.3.1.87) followed by methyla-

tion by acetylserotonin O-methyltransferase (ASMT, also called hydroxyindole

O-methyltransferase HIOMT, EC: 2.1.1.4) (Fig. 5a). We previously showed that

deleterious mutations of the ASMT gene could disrupt melatonin synthesis in a

subset of patients with ASD. Nevertheless, the frequency of such a deleterious

mutation is too low (2 % of the cases) to explain the relatively high frequency of

melatonin deficit in ASD (>50 % of the patients, taking as a threshold the fifth

percentile of the controls). More recently, we observed a low level of the 14-3-3

proteins both in the blood platelet and pineal gland of patients with ASD (Pagan

et al. 2014). These ubiquitous chaperone proteins are known to form a protein

complex, the ‘melatoninosome,’ involving AANAT and ASMT in pinealocytes

(Obsil et al. 2001; Maronde et al. 2011). This interaction between 14-3-3 and

AANAT and/or ASMT might be essential for the production of melatonin and an

adequate balance of the serotonin-NAS-melatonin pathway. Indeed, a low level of

14-3-3 could eventually lead to a deficit in enzyme activity, contributing to the

global disruption of the serotonin-NAS-melatonin pathway observed in ASD.

Studies investigating the regulation of the complex 14-3-3/ASMT/AANAT in

ASD and controls are in progress.

Perspectives

In the last 30 years, very significant progress has been made in the genetics of ASD.

We now have a better knowledge on the genetic architecture of this heterogeneous

syndrome and some of the biological pathways have been investigated using

different approaches such as cellular and animal models. There are, however,

many aspects of the genetics of ASD that remain largely unknown.

The first challenge concerns the role of the common variants. These variants are

most likely playing a key role in the susceptibility to ASD and in the severity of the

symptoms. But, because the impact of each single SNP is very low, it is currently

impossible to identify the risk alleles using conventional GWAS. In human quan-

titative traits such as height, neuroanatomical diversity or intellectual quotient, very
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large cohorts of many thousands of individuals are necessary to identify the main

causative SNPs (Toro et al. 2014; Yang et al. 2010; Deary et al. 2012).

The second challenge concerns the stratification of the patients and the role of

the ASD-risk genes during brain development/function. Based on our current

knowledge, the genetic architecture of ASD seems to be different from one indi-

vidual to another, with possibly contrasting impact on when and where neuronal

connectivity could be atypical compared to the general population. For example, in

animal models, several mutations lead to higher connectivity whereas other muta-

tions alter synaptic density. It is therefore crucial to increase our knowledge from a

basic research perspective about the biological roles of the ASD-risk genes and

their partners.

Finally, while we all agree that biological research is necessary to improve the

quality of life of the patients and their families (for example, to alleviate the

comorbidities associated with ASD like sleep and gastrointestinal problems), pro-

gress should also be made toward better recognition and inclusion of people with

neuropsychiatric conditions in our societies (no mind left behind). Hopefully,

increasing knowledge in genetics, neurology and psychology should allow for

better diagnosis, care for and integration of individuals with autism.
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