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Abstract Inter-oscillator communication modulates and sustains the circadian

locomotor rhythms in flies and rodent animal models. In Drosophila, the multi-

oscillator network that controls sleep-wake cycles includes about 150 clock neu-

rons. A subset of lateral neurons (LNs) expressing the Pigment-dispersing factor

(PDF) appears to act as a master clock in constant darkness (DD). In light–dark

(LD) cycles, flies show a bimodal distribution of their activity, and the

PDF-expressing LNs play a major role in the control of the morning bout of

activity. In contrast, a subset of PDF-negative LNs can generate evening activity

in the absence of other functional oscillators. How these oscillators interact in a

fully functional network to shape the sleep-wake cycle remains debated. The PDF

neurons strongly influence the PDF-negative ones in DD and, to a lesser extent, in

LD. The extent of hierarchy depends on environmental conditions and the way the

dominance of PDF neurons is exerted on the different types of PDF-negative

neurons is unclear. The recent discovery of light- and temperature-dependent

oscillators in the dorsal neurons (DNs) sheds new light on the circuits that control

the Drosophila diurnal behavior and its adaptation to environmental changes.

Background

The fruit fly Drosophila melanogaster displays rest-activity rhythms that rely on a

circadian clock located in the brain. In light–dark (LD) cycles, adult flies show a

bimodal activity with morning and evening peaks at dawn and dusk. Activity

rhythms persist in constant darkness (DD), indicating the circadian nature of this

behavior. Like peripheral clocks, the brain clock depends on a molecular feedback

loop where the CLOCK (CLK) and CYCLE (CYC) transcriptional factors drive the

expression of the PERIOD (PER) and TIMELESS (TIM) proteins that repress

CLK/CYC activity. The negative feedback loop operates in about 150 neurons,
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the so-called clock neurons, which account for about 0.1 % of the total CNS neural

population. The numerical simplicity of these 150 neurons that form a network is

remarkable in comparison to central circuits for other hardwired behaviors such as

courtship or learning and memory. The Drosophila clock neuronal network is also

remarkably simple in comparison to circadian control circuits in vertebrates, where

several brain areas, including the hypothalamus, pituitary gland, pineal gland,

olfactory bulb, etc., harbor numerous bona fide clock neurons. This smaller number

of neurons offers the potential to manipulate oscillators at the single-cell level

in vivo, through well-defined genetic handles.

There are two broad populations within the 150 clock neurons of the fly brain;

one population is laterally placed and another is located along the dorsal margin of

the brain. The lateral neurons (LNs) lie near the interface of the central brain and the

optic lobe and are organized into a ventral cluster that include small (s-LNvs) and

large (l-LNvs) cells, a dorsal cluster (LNds) and a posterior cluster (LPNs). The

dorsal neurons (DNs) are in turn subdivided into three clusters designated as DN1,

DN2 and DN3 (Fig. 1). Such anatomical categorization frequently has neurochem-

ical and functional bases; for example, the four most ventral s-LNvs express the

Pigment-dispersing factor (PDF) neuropeptide and promote morning activity in

LD. Based on strong functional data, mostly behavioral and some neurophysiolog-

ical in nature, a wiring diagram of these differentiated clusters of brain clock

neurons has begun to materialize over the past 10 years. In the following section

we will summarize the logic of organization of this circuit.
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Fig. 1 The clock neurons of the Drosophila brain. Left panel: seven groups of clock neurons have
been defined on an anatomical basis. The lateral neurons are organized into a ventral cluster that

include small (s-LNvs) and large (l-LNvs) cells, a dorsal cluster (LNds) and a posterior cluster

(LPNs). The dorsal neurons include three clusters designated as DN1, DN2 and DN3. Several

neuropiles are indicated: Medulla (ME) and Lobula (LOB) in the optic lobe and Pars

Intercerebralis (PI), Mushroom Bodies (MB) and Ellipsoid Body (EB) in the central brain. Central
panel: projections of the different clock neuron subsets: s-LNvs and l-LNvs (orange), LNds and
fifth PDF-negative s-LNv (red), DN1s (blue). Right panel: communication between neuronal

clusters involves PDF from s-LNvs to LNds and DN1s as well as from l-LNvs to LNds, and

glutamate from DN1s to s-LNvs
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Layout of the Network in Constant Conditions

In the absence of cycling environmental cues, the fly clock circuit has been shown

to adopt a functionally minimalist organization. In flies that experienced light–dark

cycles and were subsequently kept in constant darkness, the presence of

PDF-expressing s-LNvs was required to drive robust rhythmic behavior

(Helfrich-F€orster 1998; Renn et al. 1999) and a clock restricted to the

PDF-expressing cells was sufficient to drive 24-h rhythms (Grima et al. 2004). In

contrast, PDF-negative neurons drove behavioral rhythmicity under constant light

if light inputs were reduced by the absence of the cell-resident photopigment

cryptochrome (CRY). The precise location of these neurons that act as the pace-

maker in constant light (LL) has been suggested to be either within the LNd cluster

(Picot et al. 2007) or within the DN1s (Murad et al. 2007; Stoleru et al. 2007). In

spite of running a functioning oscillator, the s-LNv neurons fail to influence the

behavioral period in LL (Picot et al. 2007; Stoleru et al. 2007). The predominant

contribution of the s-LNvs to behavioral rhythmicity, as evident in DD, becomes

dramatically corroded in LL as ambient light inhibits their behavioral output (Picot

et al. 2007). Under constant conditions the operation of the clock circuit remains

highly centralized, but depending on the sustained presence or absence of light, this

central position is occupied by either the PDF-negative clock neurons or the

PDF-positive s-LNv neurons, respectively. Notably, in DD, the s-LNvs operate at

the pinnacle of a hierarchy as they enforce a majority of other oscillators to realign

their clock program in accordance with the sLNv pace (Stoleru et al. 2005). In

contrast, messages from the non-PDF clocks have considerably subdued influence

on the running of the master pacemaker in DD (Stoleru et al. 2005; Picot et al. 2007;

Collins et al. 2014).

Recently, however, the existence of a centralized monopolar circuit organization

in DD has been seriously challenged. The PDF clock has been shown to coherently

change behavioral period only over a limited range, which is distributed asymmet-

rically around the 24-h focal point (Yao and Shafer 2014; Beckwith and Ceriani

2015). When the PDF neurons were forced to run at a pace beyond this specified

range, multiple peaks of behavioral period emerged within a single fly, likely as a

result of internal desynchronization among multiple oscillators (Yao and Shafer

2014; Beckwith and Ceriani 2015). Because these oscillators are coupled to the

PDF clock with differing strength and range of entrainment, they are differentially

affected by speed changes in the PDF clock (Yao and Shafer 2014). Thus, the

behavioral period in DD is determined by the pace of not only the s-LNv clock but

also by other oscillators enjoying different degrees of independence, although they

were formerly thought to uniformly behave as slaves of the s-LNv pacemaker. As

opposed to direct manipulation of individual oscillator pace, a parallel line of

research was to putatively increase the excitability of different subsets of clock

neurons to enhance their contribution in the network. This study raised the inter-

esting possibility that the CRY-negative clock neurons, e.g., the DN2s, may have

the potential to affect behavioral period like the well-known s-LNvs (Dissel

Control of Sleep-Wake Cycles in Drosophila 73



et al. 2014). Going one step further, it was proposed that the DD behavioral period

is constructed by integrating the slightly longer period dictated by the s-LNvs and

the slightly shorter period imposed by the DN2s, with other clock neurons modu-

lating the contributions of these two oscillators (Dissel et al. 2014). The behavioral

period would thus depend on the interactions between differently paced oscillators

whose endogenous period and influence in the network vary according to environ-

mental conditions. However, speed changes in all clock neurons excluding the PDF

cells fell short of altering the behavioral period (Yao and Shafer 2014), in fact

bolstering the older idea that PDF oscillators are the predominant determinant of

the behavior period in DD. In absence of PDF signaling, the output from the s-LNvs

was compromised, thereby allowing secondary oscillators to strongly influence the

behavior period (Yao and Shafer 2014). Precisely which oscillators are coupled,

whether coupling is directional, how the coupling strength is determined and what

are the relative weights of different oscillators to behavioral period according to

environmental conditions are some of the questions that fly chronobiologists will

probably resolve in next few years. We predict that the existing momentum on

neuronal mechanisms of behavioral period determination will be extended to

understand the other fundamental parameters of rhythm, such as phase and

waveform.

Network Architecture Under LD Cycles

Depending on the constraints of physiological thermal limit and light availability,

animals evolved few basic patterns of diel activity: diurnal, nocturnal, crepuscular

or cathemeral (Bennie et al. 2014). In mammals, a given animal can stably and

predictably switch back and forth between different patterns in context-dependent

ways (Kas and Edgar 1999; Mrosovsky 2003). The choice of a temporal niche takes

place downstream of the suprachiasmatic nucleus (SCN) clock and is strongly

influenced by light inputs (Mrosovsky and Hattar 2005; Doyle et al. 2008). A

comparable plasticity is observed in flies. For example, a typically crepuscular

male fly will become nocturnal in the presence of a mate or during moonlit nights

(Bachleitner et al. 2007; Fujii et al. 2007) and will be more diurnal when daylight is

low (Schlichting et al. 2015). At first glance, the similar phasing of molecular

oscillations in the different clock neuron subsets of the brain suggests that shaping

the sleep-wake cycle occurs downstream of the clock, but results obtained from

manipulating these different subsets support a more complex model.

Flies in the standard laboratory condition of 12:12 LD cycles show a bimodal

profile with peaks of activity coinciding with the putative twilight transitions. Very

nicely, the behavioral sub-routines of generating a morning peak and an evening

peak are orchestrated by two separable subsets of oscillator neurons, the s-LNvs and

the LNds, respectively, providing concrete experimental support for the dual-

oscillator model of Daan and Pittendrigh (Pittendrigh and Daan 1976; Grima

et al. 2004; Stoleru et al. 2004) (Fig. 2). Of note, this dual-oscillator ground plan
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contrasts with the predominantly monopolar hierarchical organization prevailing in

DD. The rather autonomous operation of two oscillators under LD cycles is abetted

by their independent access to light information through redundant pathways—in-

house CRY signaling and the visual system—whose output impinges on the clock

circuit probably at multiple nodes, including the LNvs (Cusumano et al. 2009;

Zhang et al. 2009). However, network interaction between oscillator neuron clus-

ters could still be evident in LD. In the absence of PDF secretion by the LNvs, the

evening peak of activity is advanced by a couple of hours (Renn et al. 1999). In the

absence of both CRY and PDF, the evening peak vanishes and the phase of the

molecular oscillations in the LNds is strongly altered (Cusumano et al. 2009; Zhang

et al. 2009; Im et al. 2011). The phasing of the evening activity thus increasingly

depends on PDF signaling when autonomous CRY-dependent photoreception

decreases at the end of the day because of less intense and more reddish light. So

far, the role of DNs in shaping the LD activity pattern seems to be largely secondary

to the LNs (Grima et al. 2004; Stoleru et al. 2004; Zhang et al. 2010a, b). A

functional clock restricted to the DN1s is sufficient to drive both morning and

evening activity bouts in low light LD conditions, whereas high light permits

morning activity only (Zhang et al. 2010b). These outputs are affected by temper-

ature, and the DN1 neurons thus appear to be capable of integrating certain light and

temperature information from the ambient environment (Zhang et al. 2010a, b).

Although the expression of PDFR in the DN1s is important for their proper function

(Zhang et al. 2010a), how they modulate the clock network’s collective output

remains unknown.

In summary, under periodic environmental cues, multiple, highly autonomous

oscillators with distinct behavioral contributions collaboratively sculpt the organ-

ism’s activity profile. In line with the ‘internal coincidence model’ of photoperiod-
ism (Pittendrigh and Minis 1964), flexible changes in the clock network favoring

the contribution of particular oscillators under certain ambient environmental

conditions have been put forward as the mechanistic basis of seasonal adaptation

in flies (Stoleru et al. 2007). The Daan/Pittendrigh model proposed that light

Fig. 2 Contribution of different clock neuron subsets to the LD behavior. Activity plots show the

contribution of neuronal groups to morning and evening LD behavior. s-LNvs promote morning

activity (left) whereas LNds and the fifth PDF-negative s-LNv promote evening activity (center).
DN1s can promote morning activity and evening activity (right). The evening output of the DN1s

is very weak in high light but strongly increases in low light (dashed line)
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accelerates morning oscillators and decelerates evening oscillators to adapt the

bimodal activity to the changing photoperiod. Fast- and slow-running neuronal

oscillators were described in flies displaying split rhythms in LL (Yoshii

et al. 2004). However, short and long period components were observed to derive

from the LD evening bout, suggesting that light-accelerated clock neurons contrib-

ute to the evening activity (Yoshii et al. 2004; Rieger et al. 2006), in contrast to the

prediction of the model. As indicated above, light was shown to promote the output

of the LNd-based evening oscillator while inhibiting the morning oscillator carried

by the PDF-expressing s-LNvs (Picot et al. 2007). The importance of PDF-negative

cells in the presence of light is also shown by experiments comparing the relative

influence of PDF-positive and PDF-negative neuronal subsets in different photo-

periods. This work was done by looking at morning and evening activity peaks of

flies with accelerated PDF-positive or PDF-negative neurons. Under long photope-

riods, the evening oscillator located in PDF-negative cells was proposed to control

the speed of the morning oscillators, whereas in short photoperiod conditions the

morning oscillator of PDF cells would take the lead (Stoleru et al. 2007). The

discovery of other subsets contributing to morning and evening activity bouts, in

particular the DN1s contributing to evening activity in low light only, suggest that

the adaptation to photoperiod changes might be more complex. Indeed, we have

data indicating that new groups of oscillators are recruited when flies are confronted

with summer-like conditions. Such laboratory-based simplified environmental

parameters are probably inadequate to explain the working of the network under

the complex natural conditions that exist in the spatiotemporal niche inhabited by

Drosophila in the wild (Menegazzi et al. 2012, 2013; Vanin et al. 2012; De

et al. 2013). In particular, daily temperature variations have a strong impact on

the sleep-activity pattern and can even induce some morning and evening antici-

patory activity in clockless flies (Vanin et al. 2012; Menegazzi et al. 2013). But the

principles and logic of circuit operation learned from a severely artificial set-up

could well be valid and applicable for the same network’s functionality under more

complex natural conditions.
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