
Chapter 2
One-Dimensional Calcium Release

The contraction of a single cardiac cell is initiated by an increase in the transmem-
brane potential leading to opening of the so-called L-type calcium channels (LCCs).
When these channels are open, calcium flows into a rather small space called the
dyadic cleft (often simply referred to as the dyad), leading to a locally increased
concentration of Ca2C ions. This increased concentration leads to the opening of
the ryanodine receptors (RyRs), which control the flow of calcium from the internal
stores referred to as the sarcoplasmic reticulum (SR). This process is referred to
as the calcium-induced calcium release (CICR) and is of vital importance in the
functioning of the heart. A schematic description of the process is given in Fig. 2.1.

This CICR process is one of the focal points of interest in these notes. We shall
develop a model coupling the effects alluded to in Fig. 2.1. However, in this first
chapter we shall simplify the process quite a bit by assuming that we just have three
spaces: the SR, the dyad, and the cytosol (see Fig. 2.2). This simplification means
that we assume that there is very fast diffusion between the network SR (NSR)
domain and the junctional SR (JSR) domain such that the associated concentrations
are identical. Furthermore, we ignore the L-type channels and assume that the
concentrations in both the SR and the cytosol are constant. This leads to a one-
dimensional model, in the sense that only the concentration of the dyad changes.
The model is useful because it helps illustrate the tools we need in our analysis of
the full CICR process and illustrates the properties of optimal drugs that will be
more or less inherited in more complex models.

Our aim is therefore to understand in some detail what is going on in the process
illustrated in Fig. 2.1. However, this figure is in itself a huge simplification of the
complex CICR process. The cell consists of 10,000 to 20,000 dyads, each dyad
having up to 100 RyRs, and human ventricles consist of billions of cells. Our aim is
to focus entirely on a very small but essential element in the CICR mechanism.

We model the release of Ca2C ions from the SR to the dyad by formulating
a stochastic differential equation governing the concentration of Ca2C ions in the
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Fig. 2.1 This figure illustrates the components involved in the CICR: the T-tubule, the dyad, the
SR represented by the JSR and NSR, and the cytosol. Calcium ions can enter the dyad from the
T-tubule through LCCs and from the SR through the RyRs. The figure is taken from Winslow et
al. [105]. In this chapter, we concentrate on the dynamics in the box surrounded by a thin red
line. Thus we assume that the concentration of the JSR and NSR are identical and constant and
we ignore the LCCs. We also assume that all the RyRs are in the same state and therefore can be
treated as one channel (see also Notes at page 53)

dyad. The model will be studied both numerically and analytically and we show
how the solution’s properties depend on the parameters defining the model. Next, we
will derive a deterministic partial differential equation (PDE) giving the probability
density function of the states of the Markov model. Although the transition from
a stochastic model to a deterministic model for the probability density functions is
classical by now, we will spend some time deriving the equations in detail because
the transition from stochastic to deterministic is such a wonderful piece of insight.
Furthermore, we will provide detailed comparisons of Monte Carlo simulations
based on the stochastic model and the probability density functions. In subsequent
chapters, we will develop the model further by using two small spaces, the dyad and
the JSR (see Fig. 2.1), allowing for different concentrations of Ca2C ions. This leads
to a two-dimensional (2D) problem.

Finally, we will take the LCCs into account. This leads to a 2D problem
depending on one parameter: the transmembrane potential.

In these notes, we will use the concept of dimension in two different, but related,
ways. In the first version of the stochastic model of CICR, we will model only the
concentration of Ca2C in the dyad and we will refer to the model as one dimensional
(1D). When a deterministic model governing the probability density function of the
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states of the Markov model is derived, that model is also 1D in the sense that it
depends on one spatial variable; the concentration of Ca2C. Next we move to two
concentrations (in the dyad and the JSR), leading to a 2D stochastic model in the
sense that it is a 2 � 2 system of stochastic ordinary differential equations. The
associated model governing the deterministic probability density functions is also
2D in the sense that the model depends on two spatial variables: the concentration
of Ca2C in the dyad and in the JSR. So the general rule is that the number of
different concentrations allowed in the system of stochastic ordinary differential
equations carries over to the spatial dimension of the deterministic system of PDEs
governing the probability density functions of the states involved in the Markov
model. Furthermore, the number of states in the Markov model decides the number
of equations in the deterministic system of PDEs.

2.1 Stochastic Model of Calcium Release

Suppose that the cytosolic Ca2C concentration is given by c0 and the SR concentra-
tion is given by c1; we assume both to be constant and that c1 � c0. We want to
model the concentration Nx D Nx.t/ in the dyad located between the cytosol and the
SR (see Fig. 2.2). Throughout these notes, we will use a bar to indicate stochastic
variables.

We assume that there is stochastic release from the SR to the dyad, and diffusion
from the dyad to the cytosol. Let vr denote the speed of release (when the channel is
open) and let vd be the speed of diffusion; both are non-negative. Then a stochastic
model of the concentration Nx D Nx.t/ in the dyad is given by

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/; (2.1)

where the function N� D N�.t/ takes on the value zero (closed) or one (open), and the
dynamics of the function are governed by a Markov model of the form

C
koc

�
kco

O; (2.2)

Cytosol, c0 Dyad, x (t) SR, c1

Fig. 2.2 Illustration of the model studied in the present chapter: The Ca2C concentration is high
in the SR and low in the cytosol. Release from the SR is governed by a Markov model and the
concentration can be diffused from the dyad to the cytosol
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with koc and kco as reaction rates that may depend on the concentration. Markov
models were introduced on page 4 but let us recall that the reaction rates koc and
kco basically indicate the tendency of a channel to change state. So, if the channel is
open, the probability that the channel changes from open to closed in a very short
time interval �t is given by �tkoc and, similarly, if the channel is closed, �tkco is the
probability that it becomes open in the time interval �t. This means that the higher
the rate kco, the more likely it is that the channels are open. This property will be
used repeatedly in what follows.

2.1.1 Bounds of the Concentration

Suppose that at time t D t0; the channel is closed (� D 0/, that the concentration is
given by x.t0/ D x0; and that the channel remains closed for t 6 t0 C �t: Then, in
the interval t0 6 t 6 t0 C �t; the dynamics are given by the deterministic equation1

x0.t/ D vd.c0 � x/

and thus

x.t/ D c0 C evd.t0�t/ .x0 � c0/

in this time interval. Therefore, for a closed channel, the concentration x.t/ of the
dyad approaches c0 (the cytosolic concentration) at an exponential rate. The decay
is faster for larger values of the diffusion velocity vd: By consulting Fig. 2.2 we see
that this is quite reasonable; if we close the release from the SR, the concentration
of the dyad will gradually approach the concentration of the cytosol.

Next, we consider the case of an open channel,

x0.t/ D vr.c1 � x/ C vd.c0 � x/; (2.3)

and again we assume that x.t0/ D x0: We can rewrite this in the form

x0.t/ D .vr C vd/ .cC � x/ ;

where

cC D vrc1 C vdc0

vr C vd
;

1Note that when we consider the case of a given value � , the model becomes deterministic and we
remove the overbar that indicates a variable is stochastic.



2.1 Stochastic Model of Calcium Release 27

and find that the solution is given by

x.t/ D cC C e.vrCvd/.t0�t/ .x0 � cC/ :

Therefore, when the channel is open, we observe that the concentration x.t/ of
the dyad approaches cC at an exponential rate. Furthermore, we note that the rate
increases with vr C vd. Note also that

cC D c1 C vd .c0 � c1/

vr C vd
< c1: (2.4)

So, to summarize, when the channel is open, the concentration approaches cC < c1

and when it is closed, the concentration approaches c0.
For a given state of the channel (open or closed), the concentration profile is

monotone and therefore there is no way the solution can become less than c0 or
larger than cC. We therefore have

c0 6 Nx.t/ 6 cC (2.5)

for all time, provided that this bound holds initially.
Note that since c1 � c0; we have

cC � vr

vr C vd
c1

and therefore cC approaches c1 if

vd

vr
�! 0:

Suppose, for instance, that we keep vr fixed and we let vd approach zero. Then cC
approaches c1, which is reasonable since calcium will be poured into the dyad, but
the connection to the cytosol is almost closed and thus the dyadic concentration will
increase until it reaches an equilibrium with the SR concentration.

2.1.2 An Invariant Region for the Solution

The invariant region (2.5) deserves a comment, since it will become quite useful
later. Suppose that the initial concentration of the dyad is somewhere in the interval
defined by c0 and cC. Then, we have seen that if the channel is either closed or open,
the solution remains in this interval as long as the channel does not change state.
When the channel changes state, say, at time t D �t, we have a new initial condition
in the interval c0 and cC and we can solve the equation deterministically once more
and the solution will remain in the interval. The process can be repeated over and
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over and the solution will always remain in the interval c0 and cC. This property is
useful, because it directly implies that the probability of being outside this interval
is zero, which is what we need when we want to define boundary conditions for the
model defining probability density functions.

2.1.3 A Numerical Scheme

To perform stochastic simulations, we discretize the equation

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/ (2.6)

to obtain the explicit scheme

xnC1 D xn C �t .�nvr.c1 � xn/ C vd.c0 � xn// (2.7)

where �n takes on the value zero (closed) or one (open). The value of �n is computed
as follows: Let �n be a random number in the unit interval. Assume that �n�1 D 0.
Then, if kco�t > �n, we set �n D 1, but if this condition does not hold, we set
�n D 0. Similarly, assume that �n�1 D 1. Then, if koc�t > �n, we set �n D 0, but if
this condition does not hold, we set �n D 1.

2.1.4 An Invariant Region for the Numerical Solution

We want to ensure that the numerical scheme provides solutions mimicking the
properties of the analytical solutions. Therefore, we want to confirm that the
invariant region for model (2.6) also holds for the numerical solutions. For this to
hold, we have to assume that the time step is restricted as follows:

�t <
1

vr C vd
: (2.8)

To derive the invariant region, we define

F.x/ D x C �t .�nvr.c1 � x/ C vd.c0 � x//

and note that

F0.x/ D 1 � �t .�nvr C vd/ > 1 � �t .vr C vd/ > 0:
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If we assume that c0 6 xn 6 cC, we obtain

xnC1 D F.xn/ > F.c0/ D c0 C �t .�nvr.c1 � c0// > c0

and

xnC1 D F.xn/

6 F.cC/

D cC C �t .�nvr.c1 � cC/ C vd.c0 � cC//

6 cC C �t .vr.c1 � cC/ C vd.c0 � cC//

D cC;

where we have used the fact that

cC D vrc1 C vdc0

vr C vd
:

Therefore, by induction, we have c0 6 xn 6 cC for all time.

2.1.5 Stochastic Simulations

We use the scheme (2.7) to compute the concentration governed by the model (2.6),
using the parameters given in Table 2.1. The numerical results are given in Fig. 2.3
for time running from 0 to 100 ms. In Fig. 2.4, we show the same solution but
focus on the time interval from 20 to 30 ms. The lower graph indicates when the
channel is open (high value) and when it is closed (low value). We observe from
the concentration profile that the solution increases whenever the channel is open
and reduces whenever the channel is closed and we also observe that the solution
remains in the interval Œc0; cC� for all time, where

cC D vrc1 C vdc0

vr C vd
D 91 	M:

Table 2.1 Parameter values
for model (2.6) used in the
computations presented in
Figs. 2.3 and 2.4

vd 1 ms�1

vr 0.1 ms�1

c0 0.1 	M

c1 1,000 	M

kco.x/ 0:1x ms�1 	M�1

koc 1 ms�1
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Fig. 2.3 Code: 1D/figure_mc.m. The calcium concentration of the dyad as a function of time. The
numerical solution is computed using scheme (2.7) using �t D 1 	s and x.0/ D .cC C c0/=2 D
45:55 	M. Furthermore, we assume that the channel is closed initially, so �.0/ D 0
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Fig. 2.4 The concentration profile is taken from Fig. 2.3 above. Here we show the solution
restricted to the time interval ranging from t D 20 to t D 30 ms. In the lower part of the figure
we indicate whether the channel is open (high value) or closed (low value). Seen together, the
figure illustrates that the concentrations increase when the channel is open, and decrease when the
channel is closed

2.2 Deterministic Systems of PDEs Governing
the Probability Density Functions

We have seen that model (2.6) can be studied using Monte Carlo simulations
based on the numerical scheme (2.7). Such simulations clearly give some insight
into the dynamics. In addition to the simulations shown above, we can use the
numerical scheme to see the effect of changing the rates of the Markov model and

1D/figure_mc.m
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the other parameters of the model. However, it is tricky to compare solutions of
simulations based on stochastic processes because the results vary from simulation
to simulation anyway. So we are faced with the following question: Is the difference
in solutions from one computation to another due to stochastic effects or are they
due to changes of parameters? This matter becomes especially pertinent when we
introduce theoretical drugs, because we want to compare solutions with and without
application of the theoretical drug. It is tempting to derive some sort of statistics
based on the simulation results and then compare the solutions computed based on
two sets of parameters based on the statistics.

By running numerous simulations, we can add the results and compute proba-
bility density functions based on the stochastic simulations. Exactly how this can
be done will be explained below. However, it turns out that the probability density
functions can also be computed by solving a deterministic system of PDEs. In this
section we show how to derive this system of PDEs. We will see below that this
is quite useful, because it is much easier to compare solutions of deterministic
differential equations than stochastic solutions. By analyzing the deterministic
system of PDEs we can also, analytically, derive properties of the process that would
be very hard to derive based on direct analysis of the stochastic model (2.6).

2.2.1 Probability Density Functions

Let 
o D 
o .x; t/ be the probability density functions of the channel being in an
open state. This means that, at time t; the probability of the channel being open and
the concentration Nx D Nx.t/ being in the interval .x; x C �x/ is given by

Po fx < Nx.t/ < x C �xg D
Z xC�x

x

o .�; t/ d�: (2.9)

Similarly, the probability of the concentration Nx D Nx.t/ being in the interval .x; x C
�x/ and the channel being closed is given by

Pc fx < Nx.t/ < x C �xg D
Z xC�x

x

c .�; t/ d�; (2.10)

where 
c is the probability density function of the channel being in the closed state.
Note that

Z
.
o .�; t/ C 
c .�; t// d� D 1; (2.11)

where the integral is over all possible concentrations. In particular, if the initial
concentration is in the invariant region given by Œc0; cC� ; then the integral goes over
this interval.
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The probability density functions 
o and 
c contain a great deal of information
about the process under consideration. At every point in time, we can understand
how likely it is that the concentration is in a certain interval for a given state of the
channel. It is therefore of great interest to be able to compute these functions.

2.2.2 Dynamics of the Probability Density Functions

Now, we are interested in understanding how 
o and 
c change dynamically.
Consider 
o and suppose that, for a given x and t, the density 
o.x; t/ is known.
Over a small time interval, several things can happen that will affect the density: a)
the channel can change from open to closed (reducing 
o/, b) the channel can change
from closed to open (increasing 
o/; and, finally, c) the concentration can move from
outside the interval .x; x C �x/ to inside this interval or the concentration can move
from inside the interval .x; x C �x/ to outside this interval.

Here cases a) and b) are handled by the Markov model and we will return to that
issue below, but we will start by taking care of the change in probability density
due to changes in concentration. It turns out that this part will be governed by
an advection2 equation and we will start by considering two very special cases
illustrating how the probability is advected in the absence of a Markov model.

2.2.3 Advection of Probability Density

We start by considering two very special cases in which we just assume that the
channel is always open or the channel is always closed.

2.2.3.1 Advection in a Very Special Case: The Channel Is Kept Open for
All Time

Let us also assume that the probability density function is known at time t D 0 and
that it is given by a very simple function,


o.x; 0/ D 1=h for x 2 Q� D ŒQc � h=2; Qc C h=2�; (2.12)

2Advection means the transport of a conserved quantity.
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and 
o D 0 for values of x outside the interval Q�. Here h is assumed to be a given
positive number and Qc D 1

2
.c0 C cC/, where we recall that

cC D vrc1 C vdc0

vr C vd
:

Note that, since we know that channel is open, we have 
c D 0 for all values of x
and, since we have somehow forced the channel to remain open, nothing will happen
to 
c.

If we pick any initial concentration x0 in the interval Q�, we know that the
concentration will develop according to the ordinary differential equation

x0
o.tI x0/ D ao.x/ D .vr C vd/ .cC � x/ ; (2.13)

whose solution is given by

xo.tI x0/ D cC C e�t.vrCvd/ .x0 � cC/ I

see the discussion on page 26. In Fig. 2.5 we plot xo.tI x0/ as a function of t for ten
values of initial data x0 in the interval Q�, using h D 20 	M. The figure illustrates
that the probability density function 
o, in this special case of a forced open channel,
is simply advected in time and the advection is clearly governed by the speed of
x D x.t/, which is given by x0.t/ D ao.x/.
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Fig. 2.5 Ten solutions of the ordinary differential equation (2.13) with data from Table 2.1. The
figure illustrates that when the channel is kept open and the initial data are of the form given
by (2.12) (with h D 20 	M), the probability density is simply advected toward greater values of
the concentration x
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2.2.3.2 Advection in Another Very Special Case: The Channel Is Kept
Closed for All Time

We can certainly repeat the considerations above for the probability density function
of the closed state. In that case we assume that


c.x; 0/ D 1=h for x 2 Q� D ŒQc � h=2; Qc C h=2� (2.14)

and 
c D 0 for values of x outside the interval Q�. Again we pick any initial
concentration x0 in the interval Q� and recall that the concentration evolves as

x0
c.tI x0/ D ac.x/ D vd .c0 � x/ ; (2.15)

whose solution is given by

xc.tI x0/ D c0 C e�tvd .x0 � c0/ :

In Fig. 2.6 we plot xc.tI x0/ as a function of t for ten values of initial data x0 in
the interval Q�. Again we observe that the probability density function is simply
advected according to the speed of x D x.t/, which is given by x0 D ac.x/.

2.2.3.3 Advection: The General Case

We have seen how the probability density functions evolve in two very special cases.
Next we consider the general case of how the probability density functions are
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Fig. 2.6 Ten solutions of the ordinary differential equation (2.15) . The figure illustrates that when
the channel is kept closed and the initial data are of the form given by (2.14), the probability density
is advected toward smaller values of the concentration x. As above we have used h D 20 	M
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advected when the state of the channel is kept fixed, and we focus on the probability
density function of the open state.

Let Jo.x; t/ denote the flux per time of the probability across the point x at time t:
A positive flux at x indicates a flux of probability into the domain .x; x C �x/ and a
positive flux at x C �x indicates a flux of probability out of the interval. This gives

d

dt
Po fx < Nx.t/ < x C �xg D Jo.x; t/ � Jo.x C �x; t/: (2.16)

It now follows from (2.9) that

Jo.x; t/ � Jo.x C �x; t/

�x
D d

dt

1

�x

Z xC�x

x

o .�; t/ d�

D 1

�x

Z xC�x

x

@
o

@t
.�; t/ d�

and, therefore, by going to the limit in �x; we have

@
o .x; t/

@t
D �@Jo.x; t/

@x
: (2.17)

The flux is given by the product of velocity times density: Jo D 
ov, where in our
case the velocity is given by v D x0.t/, so the flux will be

Jo D 
o.x; t/x0.t/:

By recalling that, when the channel is open, we have

x0.t/ D ao.x/ D vr.c1 � x/ C vd.c0 � x/;

we obtain

Jo D ao.x/
o D .vr.c1 � x/ C vd.c0 � x// 
o: (2.18)

It follows from (2.17) and (2.18) that we have the conservation equation

@
o .x; t/

@t
C @

@x
.ao
o/ D 0; (2.19)

where we account only for the advection of probability.
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2.2.4 Changing States: The Effect of the Markov Model

We have now handled the advection of the probability listed as c) above and how
changes due to the opening or closing of the channel affect the probability density
function remains to be seen. Recall that the reaction scheme of the Markov model
is given by

C
koc

�
kco

O (2.20)

and suppose that the channel is open at time t. If we ignore the advection of
concentration, handled above, we find that the probability density changes as
follows from time t to time t C �t W


o.x; t C �t/ D 
o.x; t/ � �tkoc
o.x; t/ C �tkco
c.x; t/:

By going to the limit in �t and combining this result with the conservation equation
above, we obtain

@
o .x; t/

@t
C @

@x
.ao
o/ D kco
c.x; t/ � koc
o.x; t/;

which governs the dynamics of the open probability density function.

2.2.5 The Closed State

We can carry out the same derivation of an equation modeling the dynamics of the
probability density function of the closed state. The only change is that in the closed
state we have

x0.t/ D vd.c0 � x/

and therefore the associated flux is given by

Jc D vd.c0 � x/
c: (2.21)
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2.2.6 The System Governing the Probability Density Functions

To summarize, we have the coupled system

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.22)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c;

where

ao D vr.c1 � x/ C vd.c0 � x/; (2.23)

ac D vd.c0 � x/:

This is a coupled system of PDEs; it is linear and first order and special care
must be taken in solving it numerically, since it develops steep gradients. For ease
of reference, we will sometimes call this the PDF system and its solutions are
sometimes labeled the PDF solutions.

2.2.6.1 Boundary Conditions

The boundary conditions are set up to avoid the leak of probability across the
boundary. Hence we need the fluxes ao
o and ac
c to be zero for x D c0 and x D cC:

Note that ao.cC/ D ac.c0/ D 0; so we require that 
o.c0/ D 0 and 
c.cC/ D 0:

These conditions are fine as long as we know that the concentration is always in
the interval bounded by c0 and cC. However, we may be interested in studying initial
concentrations outside this interval.3 Then we can extend the computational domain
and use zero Dirichlet boundary conditions on the new computational domain.

2.3 Numerical Scheme for the PDF System

The dynamics of the probability density functions are governed by system (2.22),
a system of linear advection-reaction equations. Numerical methods for such
equations are thoroughly covered by LeVeque [48]. To describe the method, we

3We have seen above that the interval bounded by c0 and cC is invariant in the sense that if
the initial condition of the stochastic model (2.1) is in this interval, then the solution remains
in the same interval for all time. We may, of course, however, pick an initial condition outside that
interval, which motivates examination of the probability density functions using a larger domain.
In these notes, however, we will stick to the invariant region.
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consider the simple model


t C .a
/x D h
; (2.24)

where a and h are smooth functions of x. We let 
n
i denote an approximation of 
 at

time t D n�t for x 2 Œxi�1=2; xiC1=2/, where xi D c0 C i�x, with

�x D cC � c0

M

for an integer M > 1. The numerical approximation is defined by the scheme


nC1
i D 
n

i � �t

�x

�
.a
/n

iC1=2 � .a
/n
i�1=2

�
C �thi


n
i ; (2.25)

where

.a
/n
iC1=2 D max.aiC1=2; 0/
n

i C min.aiC1=2; 0/
n
iC1 (2.26)

and aiC1=2 D a.xiC1=2/. In an appendix to this chapter (see page 50), we will go a
bit deeper into the problem of computing solutions to the problem (2.22).

2.4 Rapid Convergence to Steady State Solutions

The PDF solutions rapidly reach a steady state solution. This is illustrated in
Fig. 2.7. As initial conditions, we have 
o.x; 0/ D 
c.x; 0/ D 0, except 
c.x; 0/ D
1=h for x 2 Q� D ŒQc�h=2; QcCh=2�; with h D .cC�c0/=20; and where we recall that
Qc D 1

2
.c0 C cC/. We have used �x D 0:1136 mV and �t D 11:36 ns. Furthermore,

discrete initial conditions are normalized in order to ensure that

�x
X

i;j


i;j D 1; (2.27)

where 
 D 
o C 
c. In the upper panel, we show the solution for the first 10 ms and
we observe rapid convergence toward a steady state solution. In the lower panel,
we show the same results but for a small (and interesting) part of the concentration
ranging from 80 to 91 	M. The solution seems to be almost in steady state after 6–8
ms. Because of this property of the solution of PDF system (2.22), we will often
concentrate on steady state solutions.

In Fig. 2.8 we show the solution for 
c.x; t/. Here we have plotted the logarithm
of the distribution to highlight the small but significant probability densities for the
channel being closed at high concentrations and again we note rapid convergence
toward equilibrium.
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Fig. 2.7 Convergence to the steady state solution of 
o for PDF system (2.22). Upper panel:
Dynamics of the open probability for all relevant values of the calcium concentration. Lower panel:
Solution for concentrations in the interval 80–91 	M. Convergence to steady state is quite rapid
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Fig. 2.8 The figure shows the probability density function of the closed state. In order to highlight
small values of the probability densities, we show log.
c.x; t//

2.5 Comparison of Monte Carlo Simulations and Probability
Density Functions

We are now in a position to study the release process illustrated in Fig. 2.2 using two
different approaches: We can use Monte Carlo simulations and solve the stochastic
differential equation (2.1) or we can compute the probability density functions of
the process by solving system (2.22). In Fig. 2.9, we compare the numerical results
obtained using these two approaches. Here, the probability density functions are
computed using scheme (2.25) and the Monte Carlo simulations are based on the
numerical scheme given by (2.7). In the figure, we show the solution of the PDF
system at time t� D 1 s. The Monte Carlo-based solution is computed by dividing
the interval Œc0; cC� into 100 intervals and then counting the number of open states in
each interval. The counting is performed over a period of time where we assume that
the histogram has reached a stationary shape. In Fig. 2.9 the counting is based on
the time interval running from t D t�=2 to t D t�, with t� D 1 s. By considering the
simulations shown in Fig. 2.7, we know that in this interval the probability density
functions have reached their steady state solutions. In the figure, the histogram is
computed running 500 Monte Carlo simulations. The figure clearly shows that the
probability density approach gives the average of a large number of Monte Carlo
simulations. We will see this repeated over and over in this text.

At steady state, we observe that it is quite unlikely that we have a low
concentration combined with an open channel and it is quite likely that we have a
large concentration (close to cC D 91 	M) combined with an open channel. There
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Fig. 2.9 Numerical solution of PDF system (2.22) (red) at time t D t� D 1 s compared with the
result of Monte Carlo simulations based on scheme (2.7) (histogram)

is a boundary layer close to the upper possible concentration, which means that the
channel tends to be open and the concentration tends to be close to its maximum
value.

In order to further illustrate the connection between the Monte Carlo simulations
and the solution of the PDF system, we show four arbitrary solutions in the
time interval from 900 to 1000 ms computed by the stochastic scheme (2.7). The
solutions are given in Fig. 2.10 and we note that all the solutions are quite close to
the upper level cC of the calcium concentration and the channel tends to be open.

2.6 Analytical Solutions in the Stationary Case

In the stationary case, we can derive analytical solutions of the PDF system. We
start the derivation by recalling that the open and closed probability densities are
governed by the following system of PDEs:

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.28)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c; (2.29)



42 2 One-Dimensional Calcium Release

900 910 920 930 940 950 960 970 980 990 1000
40

60

80

100

120
C

a 
( μ

M
)

900 910 920 930 940 950 960 970 980 990 1000
40

60

80

100

120

C
a 

(μ
M

)

900 910 920 930 940 950 960 970 980 990 1000
40

60

80

100

120

C
a 

(μ
M

)

900 910 920 930 940 950 960 970 980 990 1000
40

60

80

100

120

Time (ms)

C
a 

(μ
M

)

Fig. 2.10 Four simulations based on the stochastic scheme (2.7) where the solutions are plotted
from 900 to 1;000 ms. The lower curves give the concentrations and we note that the concentrations
are quite large but limited above by the upper limit given by cC D 91 	M. The upper two lines
indicate whether the channel is open (upper) or closed (lower); we see that the channel is open
most of the time. These results fit well with the results presented in Fig. 2.9, where the probability
density functions are plotted

where

ao D vr.c1 � x/ C vd.c0 � x/; (2.30)

ac D vd.c0 � x/:

We consider the system for x 2 Œc0; cC�, where

cC D c1 C vd .c0 � c1/

vr C vd
:
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In the computations reported above, we saw that the solutions converge rapidly
toward steady state solutions. The steady state solutions are given by the system

@

@x
.ao
o/ D kco
c � koc
o; (2.31)

@

@x
.ac
c/ D koc
o � kco
c: (2.32)

By adding these equations, we find that

@

@x
.ao
o C ac
c/ D 0: (2.33)

Therefore, by invoking the boundary conditions, we have

ao
o C ac
c D 0: (2.34)

Here it is useful to recall that ac < 0 and ao > 0 for x 2 .c0; cC/ and thus we have


c D �ao

ac

o: (2.35)

The system can therefore be reduced to a scalar equation of the form

@

@x
.ao
o/ D �

�
kco

ao

ac
C koc

�

o: (2.36)

By differentiation, we can write this equation in the standard form


0
o D �a.x/
o; (2.37)

with

a.x/ D kco

ac
C koc

ao
C a0

o

ao
:

We define the function A D A.x/ as

A0.x/ D �a.x/;

and find that

�
e�A.x/
o

�0 D 0
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and therefore


o D ceA.x/;

where c is a constant. We can find c by observing that

1 D
Z cC

c0

.
o C 
c/ dx

D
Z cC

c0

�
1 � ao

ac

�

odx

D c
Z cC

c0

�
1 � ao

ac

�
eA.x/dx

and therefore

c D
�Z cC

c0

�
1 � ao

ac

�
eA.x/dx

��1

: (2.38)

Recall that vd D 1 ms�1, c0 D 0:1 	M, vr D 0:1 ms�1, c1 D 1;000 	M, koc D
1 ms�1, and kco D .x=10/ ms�1.	M/�1 and that the fluxes are defined by (2.30).
For these data, we have the analytical solution


o.x/ D Kex=10.91 � x/� 0:1
1:1 .x � 0:1/0:01;


c.x/ D 1:1Kex=10.91 � x/
1

1:1 .x � 0:1/�0:99;

where K � 1:0073 � 10�5.

2.7 Numerical Solution Accuracy

Since we have a steady state analytical solution, we can evaluate the accuracy of the
numerical method under consideration. However, to do so, we will first clarify how
we compute stationary solutions using the numerical scheme.

2.7.1 Stationary Solutions Computed by the Numerical Scheme

The numerical scheme (2.25) can be written in matrix form:


nC1 D .I C �tA/ 
n:
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The scheme is constructed such that if a discrete version of the integral condi-
tion (2.11) holds at time t D 0, it will hold for all subsequent time steps. More
precisely, if we define

rn D �x
MX

iD1

.
n
o;i C 
n

c;i/; (2.39)

and r0 D 1, then, by the construction of the scheme, we have rn D 1 for all n � 1.
Since the solution we are considering converges rapidly to a stationary solution, it is
useful to be able to compute the stationary solution directly. The stationary version
of the scheme reads


 D .I C �tA/ 


but here we have to make sure that the condition rn D 1 is added to obtain a unique
solution. When this condition is added, the stationary version of the system can be
written in the form

B D b:

An alternative to this method is to observe that the stationary solution is character-
ized by A
 D 0. Therefore, using Matlab terminology, we can find the stationary
solution by first computing

z D null.A/

and then set


 D z

�x
P

i zi
:

2.7.2 Comparison with the Analytical Solution: The Stationary
Solution

The numerical and analytical solutions are compared in Fig. 2.11. In the numerical
scheme, we use �x D 0:909 	M and we observe that the analytical and numerical
solutions are almost indistinguishable. In Table 2.2, we show the error as the mesh
is refined. In the table, we measure only the errors of inner nodes to avoid evaluating
the analytical solution at singular points. We define Œc0 C ıx; cC � ıx� as the inner
interval, where ıx is the mesh parameter �x used in the coarsest simulation in the
convergence study. The difference between the analytical solution 
 and numerical
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Fig. 2.11 Comparison of the numerical and analytical solutions of the steady state problem (2.31)
and (2.32). Numerical solutions are marked with �
Table 2.2 Error of the
numerical computations as
the mesh is refined. The
convergence is first order

� x Error Error/�x

0.909 0.086 0.095

0.455 0.036 0.078

0.227 0.016 0.072

0.114 0.008 0.069

0.057 0.004 0.066

0.028 0.002 0.064

0.014 0.001 0.063

solution O
 is measured by

k O
 � 
k D j O
o � 
oj=j
oj C j O
c � 
cj=j
cj (2.40)

where jxj D
qP

i x2
i and i runs over the nodes in the inner interval.

2.8 Increasing the Reaction Rate from Open to Closed

In Fig. 2.12 (upper panel), we increase the reaction rate koc from one to three.
This means that the channel is much more prone to be closed and we see that this
changes the probability density function 
o considerably. For completeness, we also
plot the closed probability density functions (lower panel) and observe that, when
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Fig. 2.12 Upper panel: Comparison of the open probability density function for the cases koc D 1

ms�1 and koc D 3 ms�1. When koc is increased, the open probability is significantly reduced
for high concentrations. Lower panel: Comparison of the closed probability density function for
the cases koc D 1 ms�1 and koc D 3 ms�1. When koc is increased, the closed probability is
significantly increased for low concentrations

koc is increased, there is a high probability of the channel being closed and the
concentration being quite low. All the other parameters used in the model are as
specified on page 29.
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2.9 Advection Revisited

In the derivation of system (2.22) above governing the probability density functions
of the states of the Markov model, we found it useful to consider a case representing
the pure advection of probability density. Let us now see that we can find the same
solution using system (2.22), that is,

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.41)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c;

where, as usual,

ao D vr.c1 � x/ C vd.c0 � x/; (2.42)

ac D vd.c0 � x/I

see page 37. Let us assume that 
c.x; 0/ D 0 and that


o.x; 0/ D 1=h for x 2 Q� D ŒQc � h=2; Qc C h=2� (2.43)

and 
o D 0 for values of x outside the interval Q�; for other notation see page 32.
Furthermore, we assume that koc D 0 ms�1 (if the channel is open, it remains
open) and kco D 1 ms�1. Then, the solution of system (2.41) with the given initial
conditions is given by4

.
o; 
c/ D .r; 0/ (2.44)

where r solves the pure advection equation

rt C .ar/x D 0 (2.45)

with a.x/ D ao.x/ and the initial condition r.x; 0/ D 
o.x; 0/:

In Fig. 2.13 we show the solution 
o of this problem in the left panel and in the
right panel we repeat the solution given in Fig. 2.5, where the pure advection case
was studied by solving a series of ordinary differential equations; see page 33.

For completeness, we also consider pure advection in the case where the channel
is always closed. In this case we put kco D 0 ms�1 and koc D 1 ms�1 and we use
the initial conditions given by (2.14). In Fig. 2.14 we show (left panel) the solution

4To see that .
o; 
c/ given by (2.44) solves system (2.41), it is sufficient to insert .
o; 
c/ into the
system to verify that it is a solution.
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Fig. 2.13 Left panel: Solution of system (2.41) using koc D 0 ms�1 and kco D 1 ms�1 and the
initial condition (2.43) computed by solving (2.45) using the mesh parameters �x D 0:114 	M
and �t D 0:0114 �s. Right panel: Ten solutions of (2.13) given in Fig. 2.5 above

Time (ms)

x 
(μ

M
)

ρc(t,x)

0 1 2 3
0

10

20

30

40

50

60

0 1 2 3
0

10

20

30

40

50

60

Time (ms)

C
a 

(μ
M

)

xc(t,x0)

Fig. 2.14 Left panel: Solution of system (2.41) using kco D 0 ms�1 and koc D 1 ms�1 and the
initial condition (2.14) computed by solving (2.45) using the mesh parameters �x D 0:114 	M
and �t D 0:0114 	s. Right panel: Ten solutions of (2.15) given in Fig. 2.6 above
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c of this problem computed by solving the pure advection problem

rt C .ar/x D 0 (2.46)

with a.x/ D ac.x/ and r.x; 0/ D 
c.x; 0/: We also show (right panel) the solution
of the pure advection problem computed by solving a series of ordinary differential
equations, as explained on page 34.

2.10 Appendix: Solving the System of Partial Differential
Equations

In this chapter, we derived the system

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.47)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c;

where

ao D vr.c1 � x/ C vd.c0 � x/; (2.48)

ac D vd.c0 � x/I

see page 37. We also briefly sketched a numerical method for solving it; see (2.25).
The numerical solution of systems of this form is used repeatedly in these notes, so
solution methods deserve a little more attention. In this appendix we will present
one way of solving the system; by consulting literature in numerical methods for
solving PDEs, the reader will find a huge number of alternatives. The numerical
solution of systems of this form is an active field of research and we will by no
means argue that the method we present here is any better than other methods. Our
focus is simplicity.

2.10.1 Operator Splitting

By breaking this system down into smaller parts, we will see that it is actually quite
straightforward to solve numerically. Let us start by writing the system in the form


t C .A
/x D K
 (2.49)
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where


 D
�


o


c

�
; A D

�
ao 0

0 ac

�
; and K D

��koc kco

koc �kco

�
: (2.50)

Then one way of solving this system is to introduce operator splitting. Using first-
order operator splitting, we can solve the system (2.49) in two steps. Assume that
the solution is given by 
n at time tn D n�t: Then the first step is to solve the system


t C .A
/x D 0 (2.51)

from t D tn to t D tn C �t using 
.tn/ D 
n as the initial condition. Next we define
the initial condition u.tn/ D 
.tnC1/ (which we just computed) and then solve the
system of ordinary differential equations given by

ut D Ku (2.52)

from t D tn to t D tn C �t. Finally, we define


nC1 D u.tnC1/ (2.53)

and thereby we have an approximate solution at time t D tnC1 and the procedure
can be repeated.

Now the problem of solving system (2.47) is reduced to solving a linear
hyperbolic problem of the form (2.51) and a linear system of ordinary differential
equations of the form (2.52). Methods for solving the latter can be found in any
introductory text in numerical methods for PDEs. The explicit and implicit Euler
methods are particularly popular because of their simplicity (see, e.g., [96]). In our
computations, we use either the explicit or the implicit Euler method or we use the
ODE15s method provided by Matlab (www.mathworks.com).

2.10.2 The Hyperbolic Part

Systems of hyperbolic equations can in general be hard to solve, but the present
system takes on a particularly simple form. We observe that the two equations
in (2.51) simply decouple and take the form

@
o

@t
C @

@x
.ao
o/ D 0; (2.54)

@
c

@t
C @

@x
.ac
c/ D 0I

www.mathworks.com
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thus it is sufficient to discuss how to solve a scalar equation of the form

ut C .au/x D 0: (2.55)

This problem is further simplified by the fact that the function a has a uniform sign.
This is obviously true for a D ac D vd.c0 � x/ since x 2 .c0; cC/, where we recall
that

cC D vrc1 C vdc0

vr C vd
(2.56)

and therefore ac � 0 for all relevant values of x: Similarly,

a D ao D vr.c1 � x/ C vd.c0 � x/ D .vr C vd/ .cC � x/ (2.57)

and therefore ao � 0 for all relevant values of x:

We mentioned above that a scalar equation of the form

ut C .au/x D 0 (2.58)

can be solved using the scheme

unC1
i D un

i � �t

�x

�
.au/n

iC1=2 � .au/n
i�1=2

�
; (2.59)

where

.au/n
iC1=2 D max.aiC1=2; 0/un

i C min.aiC1=2; 0/un
iC1 (2.60)

and aiC1=2 D a.xiC1=2/; see (2.25) on page 37. For the probability density function
of the open state 
o with a D ao � 0, we obtain

.ao
o/n
iC1=2 D ao;iC1=2


n
o;i (2.61)

and for the probability density function of the closed state 
c with a D ac � 0, we
obtain

.ac
c/
n
iC1=2 D ac;iC1=2


n
c;iC1: (2.62)

The numerical schemes of the hyperbolic part given by (2.51) therefore read


nC1
o;i D 
n

o;i � �t

�x

�
ao;iC1=2


n
o;i � ao;i�1=2
n

o;i�1

�
(2.63)
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and


nC1
c;i D 
n

c;i � �t

�x

�
ac;iC1=2


n
c;iC1 � ac;i�1=2
n

c;i

�
: (2.64)

2.10.3 The Courant–Friedrichs–Lewy Condition

For hyperbolic problems of the form

ut C .au/x D 0 (2.65)

it is well known that a certain condition must be imposed on the time step in order
to avoid spurious oscillations. The condition states that

�t

�x
max

x
ja.x/j � 1I (2.66)

see LeVeque [48] for a derivation of the Courant–Friedrichs–Lewy condition. Note
that in our case the condition

�t � �x

.vr C vd/.cC � c0/
(2.67)

covers both the equations of the decoupled system (2.54). This is a stability
condition for the hyperbolic part of the problem. If we solve the ordinary differential
equation part (2.52) using an implicit scheme, that part is unconditionally stable.
Nevertheless, the ordinary differential equation part usually requires smaller time
steps than the hyperbolic part in order to obtain sufficient accuracy.

2.11 Notes

1. Figure 2.1 is taken from Winslow et al. [105]. The figure will be used many
times in this text as we gradually consider more complex models of CICR. A
detailed description of the CICR mechanism and associated models is given by
Winslow, Greenstein, Tankskanen, and Chen in [105] and [104].

2. A review of possible pathological changes arising in the vicinity of the
dyad is given by Louch et al. [55] and calcium signaling in the developing
cardiomyocyte is reviewed by Louch et al. [54]. Cardiac calcium signaling is
reviewed by Bers [5].

3. The goal of the calcium dynamics of a cardiac cell is to enable the well
coordinated contraction of cardiac muscle. Cardiac excitation contraction is
reviewed by Bers [3, 4].
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4. A detailed model of a calcium release unit is presented by Hake et al. [30] and
Chai et al. [9] used the largest computer in the world (in 2013) to simulate the
calcium dynamics of a single sarcomere at the nanometer scale. Simulations
of the calcium dynamics of a whole cardiac cell are presented by Nivala et al.
[60] and Li et al. [49, 51]. The dynamics was analyzed in [98] using a model
developed by Swietach et al. [95].

5. The derivation in Sect. 2.2 of the system of deterministic differential equations
based on the stochastic release equations is motivated by the derivation of
Nykamp and Tranchina [63].

6. The probability density function approach used to model calcium concentra-
tions is taken from Huertas and Smith [35].

7. As mentioned in the beginning of this chapter, the model illustrated in Fig. 2.2
relies on a series of simplifying assumptions. One additional simplification
underlying the model given in (2.1) is that we assume that there is just one
channel. In reality, the RyRs come in clusters of 10–20 channels, but here
we assume that the effect of these channels can be added together in one big
channel taking on the states of the Markov model in question. This is a major
simplification that makes it possible to deal with the problem. The case of many
interacting channels is dealt with by Bressloff [6] (page 112) for the case of a
Markov model consisting of only two states (closed and open).

8. For readers who need to refresh basic notions of differential equations, we
recommend a look at the books by Logan [53], Strauss [91] or [96, 100].
As mentioned several times above, we recommend LeVeque [48] for an
introduction to the numerical solution of hyperbolic problems.

9. Systems of PDEs written in the form (2.22) appear in many different applica-
tions; see Bressloff [6], where other methods of analysis are also presented.

10. An introduction to operator splitting and an explanation of why it works are
given by, for example, LeVeque [48]. Operator splitting for the monodomain
equation of electrophysiology was used by Qu and Garfinkel [70] and the
accuracy was analyzed by Schroll et al. [80]. Application to the bidomain model
was presented by Keener and Bogar [45] and by Sundnes et al. [94].
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