
Chapter 15
Action Potentials: Summing Up the Effect
of Loads of Ion Channels

In this final chapter we will use the theoretical drugs developed in various chapters
above for whole cell simulations. So far we have studied very small parts of a cell.
We started by studying the dynamics going on in a single dyad; see Fig. 2.1. The
size of one dyad is less than 1/1,000 	m3[3] and we have been concerned with the
concentration of calcium ions in this small volume. We have also studied the voltage
dynamics in the vicinity of a single ion channel. The size of a single channel is about
1 nm. Now we address what is going on in a whole cell and it is important to realize
that, compared to the single dyad and the single ion channel, the whole cell is huge;
a normal ventricular cell is about 30,000 	m3 [3], or on the order of 30 million times
larger than the single dyad.

In the analysis of single channels, we have regarded the state of a channel as
a stochastic variable. In the whole cell, however, the effect of a huge number of
channels is added and the sum can be modeled using deterministic equations. We
will still use the same Markov model formalism in terms of reaction schemes to
formulate the models, but now we will use the associated master equations (see
page 5) to define the open probability of the channel. Thus we need to solve
deterministic systems of ordinary differential equations to find the open probability
as a function of time.

Since the state of the channels will be represented using Markov model reaction
schemes, we can study mutations in the same manner as we did for the single
channel case. Therefore, we can use the results we derived above regarding optimal
theoretical drugs for the single channel case for the whole cell case as well. The
reasoning behind this was indicated earlier: If a mathematical model of a cell is
constructed by using models of a huge number of single channels and we can repair
the function of each single channel, the whole cell will be repaired.

In this chapter we will start by introducing a model of the action potential of
the whole cell. We will focus on a simplified model that will merely represent the
action potential in a qualitatively relevant manner; it will not represent any particular
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238 15 Whole Cell Action Potentials

action potential in a quantitatively correct manner. Using numerical experiments, we
will show that the model provides reasonable results for both wild type and various
mutations. Finally, we will use the optimal theoretical drugs derived above and see
that the effect of various mutations can be repaired using the theoretical drugs.

15.1 Whole Cell Action Potential Model

Our aim is now to introduce a reasonably simple action potential model for a whole
cell. We will use the building blocks developed above and add some new features in
order to get an action potential that is qualitatively reasonable.

The model consists of six main variables: v; ce; cc; cd; cj, and cn: Here v; as
usual, denotes the transmembrane potential given in mV. All the other variables are
concentrations given in �M; ce is the extracellular calcium concentration, cc is the
cytosolic concentration, cd is the concentration of the dyad, cj is the concentration
of the JSR, and finally cn is the concentration of the NSR; see Fig. 15.1. In addition
to these six main variables, we will have variables associated with various Markov
models; all these variables are between zero and one; they also denote probabilities
and they have no unit. The transmembrane potential is governed by the equation

Cv0 D � .INa C ICa C IK C I0/ (15.1)

where the minus sign is according to convention in the field. Here C denotes the
capacitance and is simply a constant that will be specified below. The current I0

represents a stimulus of the cell and we will use it below to initiate action potentials.

Vd Vj Vn
Dyad jSR nSR

Jd,cJc,e
Vc

Ve
T-tubule

Extracellular space

Cytosol

Jd,e J j,d Jn,j J c,n

I0 ICa INa IK

Fig. 15.1 Sketch of the calcium dynamics and the fluxes and pumps involved. The volumes of
the cytosol, the dyad, the junctional sarcoplasmic reticulum (JSR) and the network sarcoplasmic
reticulum (NSR) are Vc; Vd; Vj; and Vn, respectively
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The sodium current INa; the calcium current ICa; and the potassium current IK need
some attention and will be handled separately.

In addition to the transmembrane potential, we need to keep track of all
five calcium concentrations. By considering Fig. 15.1, we see that the cytosolic
concentration can change in three ways1: (1) Calcium may diffuse into the cytosolic
space from the dyad,2 leading to an increase in the cytosolic concentrations; (2)
it can be pumped from the cytosol into the NSR and thereby reduce the cytosolic
concentration; or, finally, (3) it can be pumped out to the extracellular space, thereby
reducing the cytosolic concentration. The calcium concentration of the NSR, cn; will
be increased as calcium is pumped into this space from the cytosol and reduced by
diffusion into its neighboring space, the JSR. In the JSR the calcium concentration
will increase through diffusion from the NSR and be reduced when calcium is
released through the ryanodine receptor (RyR) into the dyadic space. Finally, the
concentration in the dyad will increase when calcium is released from the JSR to
the dyad; it will be reduced as calcium diffuses out to the cytosol and finally it will
be increased when calcium is released into the dyad through the L-type calcium
channels (LCCs). In mathematical terms, we get the following system of equations:

Vcc0
c D Jd;c � Jc;n � Jc;e; (15.2)

Vnc0
n D Jc;n � Jn;j; (15.3)

Vjc
0
j D Jn;j � Jj;d; (15.4)

Vdc0
d D Jj;d � Jd;c � Jd;e: (15.5)

Vec0
e D Jc;e C Jd;e: (15.6)

Here the notation Jx;y denotes a flux of calcium from space x to space y: So Jd;c

denotes the flux of calcium from the dyad (d) to the cytosol (c) and, similarly, Jd;e

denotes the flux of calcium from the dyad (d) to the extracellular (e) space. Here
Vx denotes the volume fraction occupied by the space x (see Table 15.1). The total
amount of calcium in the system is given by

c D Vccc C Vncn C Vjcj C Vdcd C Vece: (15.7)

1This is a major simplification; many other things can happen to calcium but this rough description
is sufficient for our purposes.
2It is important to recall here that when we talk about the dyad now, we really refer to a space
representing the sum of all the dyads of the cell. So what used to be a very tiny place is not so tiny
anymore.
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15.1.1 Conservation of Calcium

It follows from the system (15.2)–(15.6) that

c0 D 0; (15.8)

so the total amount of calcium is conserved no matter how the calcium dynamics of
the cell are organized.

15.1.2 Definition of Calcium-Related Fluxes

We need to define all the fluxes entering the system (15.2)–(15.6) and we start with
the simple diffusion fluxes. Some of them have been used in earlier chapters, but we
need a little more notation here, so we redefine all the terms.

15.1.2.1 Flux Jd;c from the Dyad to the Cytosol

We assume that the pure diffusion flux from the dyad to the cytosol can be written
as

Jd;c D kd;c .cd � cc/ : (15.9)

Here we assume that kd;c is a constant and the value used in our computations is
given in Table 15.2.

15.1.2.2 Flux Jn;j from the NSR to the JSR

Similarly, we assume that the diffusion flux from the NSR to the JSR can be
written as

Jn;j D kn;j
�
cn � cj

�
; (15.10)

where kn;j is assumed to be a constant (see Table 15.2).

Table 15.1 The table shows the relative size of the intracellular spaces. Note that the volume
fractions of the intracellular space add up to 100 %. In addition, Ve represents 100 % of the
extracellular space. We assume that both the extracellular space and the total intracellular space
are 30.4 pL

Vd 0.1 %

Vj 0.3 %

Vn 1 %

Vc 98.6 %
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Table 15.2 Constants used
to define the fluxes between
the different spaces. The
constants are in units of 1/ms

kc;n 0.01

kj;d 0:01

kd;c 0:001

kd;e 0:0001

kn;j 0:0001

kc;e 0:00001

Fig. 15.2 Markov model
including four possible states:
ClCr (both closed), ClOr

(LCC closed, RyR open),
OlOr (both open), and OlCr

(LCC open, RyR closed)

ClCr ClOr

OlCr OlOr

k rco

k lco

k roc
k lcok loc

k rco

k loc

k roc

Table 15.3 Reaction rates used in the Markov model illustrated in Fig. 15.2. As usual, � � 1

denotes the mutation severity index of the RyR and � � 1 denotes the mutation severity index of
the LCC

RyR LCC

kr
co.cd ; cj/ D �

c4
d

K.cj/4Cc4
d

ms�1 kl
co.v/ D � l1.v/=�l

kr
oc D 1 ms�1 kl

oc.v/ D .1 � l1.v//=�l

K.cj/ D 20 C 1000.
1000�cj

600
/2 l1.v/ D exp.�. v�55

10
/2/

�l D 1 ms

15.1.2.3 RyR Flux Jj;d from the JSR to the Dyad

The flux from the JSR to the dyad can be written in the form

Jj;d D oj;dkj;d
�
cj � cd

�
; (15.11)

where, as usual, oj;d is governed by a Markov model and kj;d is a constant giving the
speed of diffusion when the RyR channel (situated between the JSR and the dyad)
is open.

The variable oj;d is governed by the Markov model used in Chap. 8. For
convenience the Markov model is repeated here in Fig. 15.2 and the functions used
in the model are given in Table 15.3. Note that oj;d is the probability of being in the
state ClOr or the state OlOr of the Markov model given in Fig. 15.2.



242 15 Whole Cell Action Potentials

Table 15.4 Parameters
in (15.12)

F 96485:3 C mol�1

R 8:3145 J mol�1K�1

T 310 K

v0 13.357 mV

15.1.2.4 Flux from the Extracellular Space to the Dyad: Jd;e

This flux was introduced above (see page 128) and referred to as the Goldman-
Hodgkin-Katz (GHK) flux. In the present notation, we write

Jd;e D od;ekd;e
cd � cee� v

v0

1 � e� v
v0

v

v0

: (15.12)

Here F is Faraday’s constant, R is the gas constant, and T is the absolute temperature
and we have defined

v0 D RT

2F
:

The parameters involved in defining the Jd;e flux are given in Table 15.4. Further-
more, od;e is governed by the Markov model given in Fig. 15.2. Here od;e is the
probability of being in the state OlCr or the state OlOr of the Markov model in
Fig. 15.2.

15.1.3 Definition of Calcium Pumps

The terms Jc;e and Jc;n remain to be defined. These terms are active fluxes, or pumps,
that continuously remove calcium from the cytosol and out to the extracellular
domain .Jc;e/ and into the NSR .Jc;n/: These pumps transport calcium against a
considerable concentration gradient and the operation therefore requires energy. In
our model we do not track the energy consumption and we simply introduce the
pumps:

Jc;e D kc;e.cc � ce=18000/ (15.13)

and

Jc;n D kc;n.cc � cn=10000/: (15.14)
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15.1.4 Definition of the Currents

The currents INa; IK and ICa of (15.1) remain to be defined. Each current will be
written in the form

Ix D oxgx.v � vx/;

where ox is the open probability of the channel given by the continuous version of a
Markov model, gx is the maximum conductance of the channel, and vx is the resting
potential.

15.1.4.1 Sodium Current INa

The sodium current has been studied above; see Chaps. 12 and 14. The model takes
the form

INa D oNagNa.v � vNa/; (15.15)

where the open probability oNa is the sum of the probability of being in the O or the
O� state of the Markov model of Fig. 15.3.

15.1.4.2 Potassium Current IK

The potassium current is written in the form

IK D .oKgK.v/ C gK1.v//.v � vK/; (15.16)

I

C3 C2 C1 C0 O OB
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3 C∗

2 C∗
1 C∗

0 O∗ OB ∗
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Fig. 15.3 This figure is a copy of Fig. 14.9 and it illustrates a Markov model of the mutant sodium
channel. The model consists of the states O; I; OB; C0; C1; C2; and C3 of the normal mode and
OB�; O�; C�

0 ; C�
1 ; C�

2 ; and C�
3 of the burst mode (lower part)
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C O
β

α

Fig. 15.4 Markov model of a potassium channel consisting of one closed and one open state

where the open probability oK is given by the Markov model of Fig. 15.4 with rates

˛.v/ D e�7C0:03v;

ˇ.v/ D e�8�0:03v:

The voltage-dependent conductances are given by

gK.v/ D 0:1e�0:03v;

gK1.v/ D 1

1 C e0:1vC10
:

15.1.4.3 Calcium Current ICa

The calcium current is given by the calcium flux Jd;e from the dyad to the
extracellular space plus the flux Jc;e from the cytosol to the extracellular space. In
order to use these fluxes in the equation governing the transmembrane potential, we
need convert to current density,

ICa D 2F
V

A
.�Jd;e � Jc;e/: (15.17)

Here V D 30:4 pL is the cell volume and A D 1:4 � 10�4 cm2 is the cell area.

15.1.5 Markov Models in Terms of Systems of Differential
Equations

The model of the action potential for a whole cell is a system of ordinary differential
equations. For parts of the system this is clear from the equations, but for the Markov
models, this may seem unclear. In Sect. 1.3 we explained how to formulate a system
of ordinary differential equation associated with the reaction scheme defining a
Markov model. Since the Markov models considered in the present chapter are
considerably more complex, we will give one more example of this transition in
order to clarify matters. To this end, consider the Markov model presented in
Fig. 15.5. The associated system of ordinary differential equations governing the



15.2 Numerical Action Potential: Wild Type 245

Fig. 15.5 Markov model of a
wild type sodium channel
consisting of an open state
.O/, an inactivated state .I/,
and four closed states
.C0; C1; C2; and C3/

I

C3 C2 C1 C0 O

koi

koc

kiok ic
kco

k ci

3β

α

2β

2α

β

3α

probabilities is given by

o0 D kioi C kcoc0 � .koc C koi/ o;

i0 D koio C kcic0 � .kio C kic/ i;

c0
0 D koco C kici C ˛c1 � .kco C kci C 3ˇ/ c0;

c0
1 D 3ˇc0 C 2˛c2 � .2ˇ C ˛/ c1;

c0
2 D 2ˇc1 C 3˛c3 � .2˛ C ˇ/ c2;

c0
3 D ˇc2 � 3˛c3:

Here, o denotes the open probability of the sodium channel, c0 is the probability
of the C0 state, and so forth. Ideally, we would write oNa for o, c0;Na for c0, and so
forth, but it becomes clumsy. Since these variables represent probabilities, they sum
to one (for all time) and we can therefore reduce the number of unknowns in the
system by one.

Based on this example, it should be straightforward to formulate the system of
ordinary differential equations associated with the more complex Markov model
given in Fig. 15.3.

15.2 Numerical Simulations Using the Action Potential
Model for Wild Type Markov Models

The complete version of the model presented above can be written in the compact
form

Cv0 D � .INa C ICa C IK C I0/ ; (15.18)

u0 D F.v; u/; (15.19)

where v is the transmembrane potential and all other variables are gathered in the
vector u. The initial conditions used in the simulations are given in Table 15.5. In
addition, we need to specify the applied current I0. This current will be zero most of
the time, but it will be turned on every 500 ms in order to mimic periodic stimulation
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Table 15.5 Initial conditions. The Markov models for the LCC and RyR were initially set to
closed and the Markov model for sodium channel was set to be in the state C3. Starting with
these conditions, the code is run for 1,000 cycles in order to generate the initial conditions used in
generating the figures below. The exact numbers obtained depend upon the chosen cycle length

v �85 mV

cd 0.1 	M

cc 0.1 	M

cj 1,000 	M

cn 1,000 	M

ce 1,800 	M

of the cell. More specifically, we hold I0 = �6 mV/ms for 5 ms at the start of each
cycle.

15.2.1 Single Action Potential

In Fig. 15.6 we show the transmembrane potential and all the calcium concentration
for a single action potential. There are a number of interesting effects acting together
to generate the action potential. Let us consider some of them in some detail.

In Fig. 15.7 we show the first 20 ms of the computation. In the left panel we show
the transmembrane potential v (upper left panel), the open probability oNa (middle
left panel), and the sodium current INa (lower left panel). Observe that when the
cell is stimulated by the applied current I0, the transmembrane potential increases.
This increase leads to an increased open probability of the sodium channel. When
the sodium channel opens, the sodium current becomes large (or very negative,
to be precise), which leads to a fast increase of the transmembrane potential. As
the transmembrane potential reaches its peak value (at about 15 ms), the open
probability starts to decline, since the channel inactivates. In the three right panels,
we show the calcium concentration of the dyad cd (upper right panel), the calcium
flux Jd;e (middle right panel), and the open probability of the RyR channel (lower
right panel). We see that when the transmembrane potential starts increasing, the
calcium flux Jd;e increases and the calcium concentration of the dyad increases.
This increase leads to the increased open probability (lower right panel) of the RyR
channel and therefore the dyad concentration increases rapidly.

In Fig. 15.8, we show the return to the stable equilibrium solution. In the
left panel, we show the transmembrane (upper left panel), the open probability
of the LCC (middle left panel), and the open probability of the gated potassium
channel. After the sodium channel has switched off (see Fig. 15.7), the calcium
current contributes to a continued depolarized state. However, after about 20 ms
the transmembrane potential starts declining because of a substantial (positive)
potassium current.
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Fig. 15.6 The action potential of the model described in the present chapter. The membrane
potential (upper left) and the dynamics of the five calcium concentrations are shown for 500 ms.
The action potential is initiated by holding I0 D �6 mV/ms for 5 ms. All variables return to their
resting values after about 500 ms
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Fig. 15.7 The first 20 ms of the simulation shown in Fig. 15.6. Note the log scale in the upper
right panel. There we see a slow rise due to the LCC opening, followed by a fast rise due to the
RyR opening
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Fig. 15.8 After about 15 ms, the transmembrane potential (upper left) reaches its peak value and
enters the plateau phase before it starts to decline toward the stable equilibrium solution
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In the right panels, we follow the development of the calcium concentration of
the dyad cd (upper right panel), the calcium concentration cj of the JSR, (middle
right panel), and the open probability of the RyR channel, denoted oj;d (lower right
panel).

15.2.2 Many Action Potentials

In Fig. 15.9, we show the action potential for a simulation running for 25,000 ms.
The left panel shows the transmembrane potential v (upper left panel), the calcium
concentration cd of the dyad (middle left panel), and the extracellular calcium
concentration ce (lower left panel). From top to bottom in the right panels, we
show the cytosolic calcium concentration cc, the NSR calcium concentration cn, and
finally the JSR calcium concentration cj. All variables return to their initial values
and the rhythm seems to be perfect.

15.3 Changing the Mean Open Time of the Sodium Channel
While Keeping the Equilibrium Probability Fixed
Changes the Action Potential

We consider a case where we multiply all rates of the Markov model (see Fig. 15.3)
of the sodium channel by the same factor. Here we use the wild type case (� D 1)
and the drug parameters (kob; kbo) are set to zero. This will change the mean open
time, but not the equilibrium probabilities. The results are given in Fig. 15.10,
where the blue line illustrates the results using default parameters, the red line
represents the solution when all the rates are multiplied by 1.3, and finally the green
line represents the solution when all the rates are multiplied by 0.7. We observe
that the action potential changes substantially when the rates are changed (and the
mean open time is changed), even though the equilibrium probabilities are kept
unchanged.

15.4 Numerical Simulations Using the Action Potential
Model When the Cell Is Affected by a Mutation

We will use the model of the action potential for the whole cell introduced above to
study the effect of mutations. We have studied many different theoretical models
of mutations earlier, but here we will limit ourselves to study the effect of one
theoretical model of a sodium channel mutation, one model of a RyR mutation, and
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Fig. 15.9 The action potential running for 25,000 ms (50 beats). All variables return to their
equilibrium values before a new action potential is initiated (every 500 ms)
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Fig. 15.10 Slower dynamics (green) lead to later inactivation, yielding a higher plateau. Quicker
dynamics (red) lead to faster recovery from inactivation, allowing a stronger late current
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Fig. 15.11 The figure shows the action potential of the wild type (blue), the mutant (green), and
the mutant after the application of the drug (red)

one model of an LCC mutation. We will also see how the theoretical drugs derived
above handle these mutations.

15.4.1 Mutation of the Sodium Channel

We consider a mutation of the sodium channel of the form presented in Fig. 15.3.
In Fig. 15.11 we show simulation results comparing the wild type (� D 1, blue),
the mutant (� D 10, green), and a simulation (red) where a drug is applied to the
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mutant case. The Markov model describing the open state drug is given in Fig. 15.3,
where we have used drug parameters given by

kbo D kio; and kob D .� � 1/
kdkukoi

.ku C �kd/ .ku C kd/
I

see (14.20) and (14.23). As in the single channel case, we observe that the theoretical
drug is able to repair the effect of the mutation.

15.4.2 Mutation of the RyR

In Fig. 15.12 we have simulated mutation in the RyR using the Markov model given
in Fig. 15.2. The figure shows the wild type (blue, � D 1), the mutant (green,
� D 3), and the mutant where the drug has been applied (red). We have used a
closed state drug computed as described in (3.5) and (3.9) and we observe that the
theoretical drug is able to repair the effect of the mutation.

15.4.3 Mutation of the LCC

In Fig. 15.13 we have simulated mutation in the LCC channel, using � D 3. We
model the mutation and the drug as defined in (3.5) and (3.9). As usual, kbc is a free
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RyR MUT
RyR MUT+DRG

Fig. 15.12 The cytosolic calcium concentration for wild type (blue, � D 1), the mutant (green,
� D 3), and the mutant after the application of the drug (red). We have used a closed state drug as
defined in (3.5) with kbc D 0:5 ms�1 and kcb D .� � 1/kbc; see (3.9)
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Fig. 15.13 LCC mutation. The cytosolic calcium concentration for the wild type (blue, � D 1),
the mutant (green, � D 3), and the mutant case where the theoretical drug is applied (red). In the
computations we have used kbc D 0:05 ms�1; for larger values of kbc the results overlap with the
wild type case

parameter that must be chosen sufficiently large. Again, we note that the theoretical
drug repairs the effect of the mutation.

15.5 Notes

1. The action potential model discussed in Sect. 15.1 and used throughout this
chapter is only of qualitative relevance; no effort is made to mimic the prop-
erties of one particular cell. The field of models for the action potential is
huge and growing. A great collection of models is provided by the Auckland
Bioengineering Institute at the University of Auckland and their collaborators;
see CellML.org. Recent models tend to be increasingly complex and hard to deal
with from a mathematical perspective, but clearly the models become more and
more realistic in terms of mimicking the properties of the actual action potential.
As mentioned earlier, there are comprehensive introductions to the cardiac action
potential, such as Rudy [74] and Rudy and Silva [75].

2. In these notes we have used Matlab as the computational platform for all
our simulations. For solving ordinary differential equations we have used the
ODE15s function. However, solving the ordinary differential equations modeling
the single cell action potential has received a great deal of attention and numerical
methods suited for this problem have been developed. An early alternative was
developed by Rush and Larsen [76]; the method was improved to second by
Sundnes et al. [92] and comparisons of several methods were provided by Marsh
et al. [56] and Campos et al. [8]; see also Stary and Biktashev [88]. From
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a programming perspective, the explicit Euler scheme is always an attractive
alternative, but for stiff problems the stability requirement often excludes that
method. For instance, if we use the explicit Euler method with a fixed time step
to compute the solutions shown in Fig. 15.6, we need about 26,000 time-steps,
whereas the ODE15s method needs 335 time steps.
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