
Chapter 13
Mutations Affecting the Mean Open Time

In the simplest case of Markov models of the form

C
koc

�
kco

O; (13.1)

we have studied mutations leading to an increased open probability by increasing
the rate from closed (C) to open (O), given by kco. We refer to these as CO-
mutations and for such mutations we have successfully derived closed state blockers
represented as

B
kcb

�
kbc

C
koc

�
�kco

O; (13.2)

where � > 1 is the mutation severity index and � D 1 represents the wild type.
These blockers can completely repair the equilibrium open probability of the mutant
by adjusting the “on rate” divided by the “off rate” of the drug given by

ıc D kcb

kbc

(see, e.g., page 58). The remaining degree of freedom can be found using probability
density systems and the resulting drugs have been proven to work exceptionally well
in theoretical computations.
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194 13 Mutations Affecting the Mean Open Time

There is, however, another way of modeling increased equilibrium open proba-
bility. Rather than increasing the rate from C to O, we can reduce the rate from O to
C:

C
koc=�

�
kco

O; (13.3)

where again � > 1 is referred to as the mutation severity index. This type of
mutation is referred to as an OC-mutation and the equilibrium open probability for
this Markov model is given by

o D 1

1 C koc=�

kco

;

which clearly increases for increasing values of �: Formally, we can carry out the
same math to devise a closed state drug that completely repairs the equilibrium
open probability of the mutant; however, when this drug is put into the probability
density system to determine the remaining degree of freedom of the drug, we
quickly observe that the task is impossible and the theoretical drug does not provide
significant improvement.

The core difficulty here is that a CO-mutation does not change the mean open
time of the channel. A closed state blocker is therefore well suited because such
a blocker does not affect the mean open time. However, for an OC-mutation, an
increased mean open time is part of the problem and a closed state blocker is not the
solution, simply because it cannot affect the mean open time. Rather, an open state
blocker must be used.

In this chapter, we will explain the notion of mean open time and study mutations
that lead to an increased open probability and an increased mean open time. We will
show that open state blockers are optimal for such mutations.

13.1 The Mean Open Time

Let us briefly recall the interpretation of the Markov model

C
koc

�
kco

O:

This scheme means that if the channel is closed (C), the probability of changing
the state from closed to open (O) in a small time interval �t is given by kco�t:
Clearly, this interpretation only holds for short time intervals, since the probability
cannot exceed one. Note also that if the rate kco increases, this leads to an increased
probability of moving from C to O during the time step �t: Similarly, koc�t denotes
the probability of moving from the open state to the closed state in the time step �t:
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Suppose that the channel is open at time t D 0: The probability that the channel
remains open after a short time step �t is given by

p1 D 1 � koc�t:

If we take another time step, the probability that the channel is still open at time
t D 2�t is given by

p2 D p1 .1 � koc�t/ D .1 � koc�t/2

and so on. At time t D n�t; the probability of the channel still being open is given
by

pn D .1 � koc�t/n :

If we now introduce time given by

t D n�t;

we have

.1 � koc�t/n D .1 � koc�t/
t

�t :

The probability of closing a channel that is in the open state during a time step is
given by �tkoc and therefore the probability of closing a channel that has remained
open for n time steps is given by

�tkoc .1 � koc�t/
t

�t :

The expected open time is therefore given by

1X
nD1

n�t .1 � koc�t/
t

�t �tkoc:

If we go to the limit of �t ! 0 in this expression, we find that

1X
nD1

n�t .1 � koc�t/
t

�t �tkoc
�t!0�!

Z 1

0

tkoce�koctdt D 1

koc

and therefore we have found that the mean open time is given by

�o D 1

koc
: (13.4)
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13.1.1 Mean Open Time for More Than One Open State

We have seen that the mean open time for a Markov model of the form

C
koc

�
kco

O

is given by

�o D 1

koc
: (13.5)

It is straightforward to extend the argument above to see that, for a Markov model
of the form

C
koc

�
kco

O
kbo

�
kob

B;

the mean open time is given by

�o D 1

koc C kob
: (13.6)

But what happens if there is more than one open state? This situation will become
relevant below, where we consider models including a burst mode. The models
contain at least two open states. To understand the mean open time in the presence of
more than one open state, we consider the generic extension illustrated in Fig. 13.1.

Assuming that the rates are set according to the principle of detailed balance, we
have

kulou D kluol;

where ou and ol are the probabilities of being in the states Ou or Ol, respectively,
and u and l represent the upper and lower states, respectively.

Fig. 13.1 Markov model
with two open states (Ou, Ol)
and two closed states (Cu, Cl)

Cu Ou

Cl Ol

kuco

ka

kuoc
kulkb

k lco

klu

k loc
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As for the derivation above, we assume that the channel is open and our task is
to figure out how long we can expect the channel to remain open. We know that,
initially, the channel is either in the state Ou or Ol. Let us define qu and ql to be the
conditional probabilities of being in the upper and lower open states, given that the
channel is open. For the upper state we write

qu D P.S D Ouj.S D Ou or S D Ol//;

where S D X means that the channel is in state X. Since

P.AjB/ D P.A and B/=P.B/

and, in our case, since (A and B) = A, we obtain

qu D P.S D Ou/=P.S D Ou or S D Ol/ D ou

ou C ol

and similarly for the lower state; with

ql D P.S D Olj.S D Ou or S D Ol//;

we obtain

ql D ol

ou C ol
:

It follows that qu C ql D 1 and that

qu D klu

kul C klu

and

ql D kul

kul C klu
:

The probability of remaining in the open states in the first time step is now given by

p1 D �
1 � �tku

oc

�
qu C �

1 � �tkl
oc

�
ql

D 1 � �t

�
ku

ocklu C kl
ockul

kul C klu

�

and thus, by following the steps above, we find that

pn D .1 � �tK/n ;
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where

K D ku
ocklu C kl

ockul

kul C klu
:

The probability of closing a channel that is in one of the open states during a time
step is given by

�tku
ocqu C �tkl

ocql D �tK

and, therefore, the probability of closing a channel in a time step that has remained
open for n time steps is given by

�tK .1 � �tK/n :

We find that the expected mean open time is given by

�o D 1

K
D kul C klu

ku
ocklu C kl

ockul
: (13.7)

13.1.1.1 Special Cases

It is interesting to consider the formula for the mean open time given by (13.7) in
two special cases. First, we assume that ku

oc D kl
oc and we let koc denote this common

value. Then, by (13.7), we have

�o D 1

koc

which is the same as we found for the two-state scheme above. Next consider the
case of kul D klu (and ku

oc 6D kl
oc). By (13.7), we find

�o D 1

.ku
oc C ku

oc/=2
: (13.8)

13.2 Numerical Experiments

It is useful to have a look at the mean open time computed in specific numerical
experiments to determine how well it is represented by the theoretical value derived
above. Similarly, it is useful to consider how well the theoretical equilibrium open
probability represents the data we observe in actual computations. In this section,
we will present experiments that hopefully clarify these matters.
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13.2.1 Mean Open Time and Equilibrium Open Probability:
Theoretical Values Versus Sample Mean Values

Let us illustrate the result above by a few numerical experiments. We start by
considering the Markov model

C
koc

�
kco

O;

where we set kco D 1 ms�1 and we let

koc D 1

m
ms�1

for m D 1; : : : ; 100: For every value of koc; we run a simulation using the Markov
model for T D 104 ms. The time instances when the channel changes state are
stored in the sequence ftigN

iD0 and the mean open time observed in the simulation is
given by1

�o;s D 2

N

X
i

.ti � ti�1/o ;

where

.ti � ti�1/o D
	

ti � ti�1 if the channel is open in this interval,
0 if the channel is closed in this interval.

With this notation we can also define the sample open probability by

os D 1

T

X
i

.ti � ti�1/o :

In Fig. 13.2 (left panel), we plot the sample mean open time �o;s and the theoretical
mean open time given by

�o D 1

koc
(13.9)

1The index s here is used to indicate sample, since these are values for a specific computation and
not the theoretical value computed above.
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Fig. 13.2 Mean open time (left) and open probability (right), with koc D 1=m ms�1 and kco D 1

ms�1. The sample values (dashed lines) correspond well with the theoretical values (solid line)

as functions of koc: We also plot (right panel) the sample open probability os and the
theoretical equilibrium probability given by

o D 1

1 C koc
kco

: (13.10)

In both plots, we see that the mean values computed in the simulations are quite
close to the theoretical values. If we increase the simulation time T; these graphs
converge toward the same value.

13.2.2 The Closed to Open Rate kco Does Not Affect the Mean
Open Time

We have seen that, theoretically, according to (13.9), the mean open time �o is
independent of the closed to open rate kco; but the open probability is affected as
stated in (13.10). This is illustrated in Fig. 13.3, where we use koc D 1 ms�1 and
kco D 1=m ms�1 and plot the mean open time (left panel) and the open probability
(right panel) as functions of m:
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Fig. 13.3 Mean open time (left) and open probability (right) with kco D 1=m ms�1 and koc D 1

ms�1. The mean open time is not affected by changes in kco. The sample values correspond well
to the theoretical values

13.2.3 The Mean Open Time in the Presence of Two Open
States

In Fig. 13.4, we show the sample mean open time and the theoretical mean open
time given by

�o D 1

K
D kul C klu

ku
ocklu C kl

ockul
(13.11)

for the Markov model in Fig. 13.1. In the computations, we have used kl
oc D 1 ms�1,

ku
oc D 10 ms�1, and klu D 0:001 ms�1 and kul varies. The other parameters of the

model do not affect the result, as long as detailed balance holds.

13.2.4 Changing the Mean Open Time Affects the Dynamics
of the Transmembrane Potential

We consider the stochastic model of the transmembrane potential given by

vt D gK.VK � v/ C �gNa.VNa � v/; (13.12)

where � is a stochastic variable governed by the two-state Markov model

C
koc

�
kco

O:
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Fig. 13.4 Mean open time for a Markov model with two open states

We use the parameters

gK D 1

10
ms�1; gNa D 1 ms�1; (13.13)

VK D �85 mV, VNa D 45 mV,

and compute solutions using the standard scheme

vnC1 D vn � �t .gK .vn � VK/ C �ngNa.vn � VNa//; (13.14)

where the time step is assumed to satisfy the condition

�t <
1

gK C gNa
: (13.15)

Under this condition, we have seen above that, for solutions computed by (13.12),
an invariant region is given by

� D .VK ; VC/ ; (13.16)

where

VC D gKVK C gNaVNa

gK C gNa
:
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In Fig. 13.5, we show numerical solutions of (13.12) for

koc D kco D 0:1 ms�1; 1 ms�1; 10 ms�1; 100 ms�1:

According to the considerations above, the equilibrium open probability is given by

o D 1

1 C koc
kco

;

which is constant for the four parameter sets used in Fig. 13.5. The mean open time,
however, varies with koc as

�o D 1

koc
:

For the cases studied in Fig. 13.5, the mean open times are 10, 1, 1/10, and 1/100 ms
and we observe that the reduced mean open time greatly reduces the variations of
the transmembrane potential.

13.3 Changing the Mean Open Time Affects the Probability
Density Functions

The stationary version of the probability density system governing the states of the
Markov model

C
koc

�
kco

O

is given by

@

@v
.ao
o/ D kco
c � koc
o; (13.17)

@

@v
.ac
c/ D koc
o � kco
c;

where

ao D gK.VK � v/ C gNa.VNa � v/; (13.18)

ac D gK.VK � v/:
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Fig. 13.5 Simulations based on the numerical scheme (13.14) with changing reaction rates for the
Markov model. From top to bottom, koc D kco D 0:1, 1, 10, and 100 ms�1: Since koc D kco for all
values, the open probability is kept constant but the mean open time given by 1=koc is decreasing
from top to bottom
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The analytical solution of this problem is given by


o.v/ D KgK.VC � v/
koc

g �1
.v � VK/

kco
gK ;


c.v/ D Kg.VC � v/
koc

g .v � VK/
kco
gK

�1
;

where

g D gNa C gK , VC D gNaVNa C gKVK

gNa C gK

and K is chosen such that

Z VC

VK


o C 
c D 1;

which is given by

1=K D kco C koc

a C b
.VC � VK/.aCb/B.a; b/;

with a D kco=gK; b D koc=g, and B.a; b/ D �.a/�.b/=�.a C b/.
In Fig. 13.6, we show the open probability density function for the data given

in (13.13) with

koc D kco D 0:1 ms�1; 1 ms�1; 10 ms�1; 100 ms�1:

Again, we recall that as koc increases, the mean open time decreases and we observe
in the figure that the probability density function becomes narrower.

13.4 Theoretical Drugs for OC-Mutations

We have seen earlier that when mutations increase the open probability by increas-
ing the reaction rate from C to O .kco/; the effect of the mutation can be completely
repaired by using an optimal closed state blocker. Now we are interested in a
mutation that increases the open probability by reducing the reaction rate from O
to C .koc/ : Such a mutation increases both the open probability and the mean open
time and we will observe that a closed state blocker is unable to repair the effect of
such a mutation.

We consider the two-state Markov model

C
koc=�

�
kco

O; (13.19)
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Fig. 13.6 The open probability density function 
o (solid line) and closed probability density
function 
c depend on the mean open time given by 1=koc. In the figures, we have used k D
koc D kco
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where � > 1 is the mutation severity index; as usual, � D 1 denotes the wild type.
Recall that the equilibrium open probability is given by

o D 1

1 C koc
�kco

and the mean open time is given by

�o D �

koc
;

so the mutation clearly increases both the open probability and the mean open time.

13.4.1 The Theoretical Closed State Blocker Does Not Work
for the OC-Mutation

Let us start by considering a closed state blocker of the form

B
kcb

�
kbc

C
koc=�

�
kco

O: (13.20)

We find that the equilibrium open probability of the mutant in the presence of the
closed state blocker is given by

o D 1

1 C koc
kco

1Cıc
�

;

where

ıc D kcb

kbc
:

Since the wild type equilibrium open probability is given by

o D 1

1 C koc
kco

;

the drug will repair the open probability, provided that

1 C ıc

�
D 1
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and therefore the drug must satisfy the usual condition

ıc D � � 1:

A drug satisfying this condition will completely repair the equilibrium open
probability and that is, of course, good, but it is not enough. Since the mutation
represented by (13.19) also affects the mean open time, a drug of the form (13.20)
cannot repair that effect of the mutation. To see this, we consider the probability
density system defined by

@

@v
.ao
o/ D kco
c � 1

�
koc
o;

@

@v
.ac
c/ D 1

�
koc
o � .kco C .� � 1/ kbc/ 
c C kbc
b; (13.21)

@

@v
.ac
b/ D .� � 1/ kbc
c � kbc
b;

where, as usual, 
o; 
c; and 
b denote the probability density functions of the open
(O), closed (C), and blocked (B) states, respectively, and where the fluxes are defined
by (13.18). In Fig. 13.7, we compare the open probability density computed by
solving the system (13.21) with the open probability density of the wild type. The

0 5 10 15 20 25 30 35
0
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0.06

0.08

0.1

0.12

0.14

V (mv)

WT

MT

Fig. 13.7 The solid line represents the wild type solution and the dashed line represents the
mutant. Various closed state drugs are applied, but none are able to repair the effect of the mutation
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wild type probability density functions are given by

@

@v
.ao
o/ D kco
c � koc
o; (13.22)

@

@v
.ac
c/ D koc
o � kco
c;

and the probability density functions of the mutant case are given by

@

@v
.ao
o/ D kco
c � 1

�
koc
o; (13.23)

@

@v
.ac
c/ D 1

�
koc
o � kco
c:

In the computations we have used the parameters given by (13.13) and the rates

kco D 1 ms�1 and koc D 1 ms�1:

We use three values of the rates kbc and we observe that no parameter is able to repair
the open state probability density function of the mutation. In Fig. 13.8, we show
the norm of the difference between the open probability density defined by (13.21)
and (13.22. The norm is defined by (2.40) on page 46 and we see that no version of
the closed state blocker defined by (13.20) is able to repair the effect of the mutations
given by (13.19).

10−2 100 102
2.2

2.3

2.4

2.5

2.6

2.7

kbc

Fig. 13.8 The norm of the difference between the wild type solution and the mutant after the drug
is applied. The norm is defined by (2.40) on page 46. We see that no value of the drug parameter
kbc for the closed state blocker is able to repair the effect of the mutation
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13.4.2 The Theoretical Open State Blocker Repairs the Effect
of the OC-Mutation

Next, we consider an open state blocker for the mutation leading to both an increased
open probability and an increased mean open time. The theoretical open state
blocker can be written in the form

C
koc=�

�
kco

O
kbo

�
kob

B; (13.24)

where the parameters kbo and kob define the theoretical drug. For this Markov model,
the equilibrium open probability is given by

o� D 1

1 C koc
�kco

C kob
kbo

and the mean open time is given by

�o;� D 1
1
�

koc C kob
:

Since the associated wild type values are

o D 1

1 C koc
kco

and

�o D 1

koc
;

we want to define the drug such that

1 C koc

�kco
C kob

kbo
D 1 C koc

kco

and

1

�
koc C kob D koc:
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To satisfy these two requirements, we find that the drug must be given by

kob D � � 1

�
koc;

kbo D kco:

(13.25)

13.4.3 The Theoretical Open State Blocker Is Optimal

We will show analytically that the open state blocker defined by (13.24) where the
parameters are given by (13.25) is an optimal drug, in the sense that the effect of the
mutation is completely repaired. We start by observing that the probability density
system associated with the Markov model (13.24) is given by

@

@v
.ao
o/ D kco
c � .��1koc C kob/
o C kbo
b;

@

@v
.ac
c/ D ��1koc
o � kco
c; (13.26)

@

@v
.ac
b/ D kob
o � kbo
b:

If we insert the drug given by (13.25), we obtain the system

@

@v
.ao
o/ D kco
c � koc
o C kco
b;

@

@v
.ac
c/ D ��1koc
o � kco
c; (13.27)

@

@v
.ac
b/ D �

1 � ��1
�

koc
o � kco
b:

We define

N
c D 
c C 
b

and add the two latter equations of this system to find that 
o and N
c solve the system

@

@v
.ao
o/ D kco N
c � koc
o; (13.28)

@

@v
.ac N
c/ D koc
o � kco N
c;

which coincides with the system defining the wild type probability density functions
(see (13.22) above). We therefore conclude that the open state blocker defined by
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Fig. 13.9 Probability density functions of the wild type, mutant, and mutant in the presence of
the open blocker. The open blocker completely repairs the open probability density function of the
mutant

the parameters (13.25) completely repairs the probability density functions of the
mutant for any value of the mutation severity index.

13.4.3.1 The Probability Density Function of the Blocked State Is
Proportional to the Probability Density Function of the Wild
Type Closed State

In Fig. 13.9, we show the open probability density functions of the wild type
(defined by system (13.22), the mutant (defined by system (13.23) with � D 3/; and
the mutant including the optimal drug (defined by system (13.27)). As expected, the
open probability is completely repaired by the theoretical drug.

In the right panel of the figure, we show the graph of 
c for the wild type (solid
line) and for the mutant case in the presence of the open blocker. We show both 
c

and 
b. We note that these graphs seem to have the same shape and we will show
that they indeed differ only by a constant.

We start by making the ansatz that for the solution of system (13.27) we have


b D .� � 1/ 
c: (13.29)
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If we insert this into system (13.27), we find that the two latter equations become
identical and the system is therefore reduced to the following 2 � 2 system:

@

@v
.ao
o/ D �kco
c � koc
o;

@

@v
.ac
c/ D ��1koc
o � kco
c: (13.30)

Therefore, we can define


�
c D �
c

and find that 
o and 
�
c solve system

@

@v
.ao
o/ D kco
�

c � koc
o;

@

@v

�
ac


�
c

� D koc
o � kco
�
c ; (13.31)

which is exactly the wild type system. We therefore conclude that


b D .� � 1/ 
c D � � 1

�

�

c ; (13.32)

where .
o; 
c; 
b/ solves the system (13.27) and where .
�
o ; 
�

c / solves the wild type
system

@

@v

�
ao
�

o

� D kco

�
c � koc


�
o ;

@

@v

�
ac


�
c

� D koc

�
o � kco
�

c :

13.4.4 Stochastic Simulations Using the Optimal Open State
Blocker

In Fig. 13.10, we show the results of numerical simulations using scheme (13.14).
We show the result for the wild type model (upper panel), the mutant model (middle
panel), and the model of the mutant where the drug defined by (13.25) is used (lower
panel).

The graphs show that the effect of the mutation is repaired using the drug (13.25);
the solutions are not identical and this is reasonable, since a random number
generator is involved in updating the state of the Markov model and therefore
two computed solutions will not be identical (not even two wild type solutions).
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Fig. 13.10 Numerical simulations using scheme (13.14) for wild type data (upper panel), mutant
data (center panel), and mutant data where the drug defined by (13.25) is used (lower panel).
Observe the long open periods in the middle panel and that these are repaired by the drug (lower
panel)

However, we note that the qualitative properties of the upper and lower solutions are
similar, whereas the mutant case is different due to the increased open probability
and prolonged mean open time.
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13.5 Inactivated States and Mean Open Time

In Chap. 11, we studied a Markov model including the open state (O), closed
state (C), and inactivated state (I). The prototypical Markov model is repeated in
Fig. 13.11. As usual, we assumed that the principle of detailed balance holds and
therefore the parameters of the Markov model satisfy the equation

kiokockci D koikcokic: (13.33)

We also introduced a mutation that increased the rates kio and kic and thus reduced
the probability of being in the inactivated state. From what we have just seen,
we readily observe that such a mutation does not influence the mean open time;
however, if data show that the mean open time is affected, the effect of the mutation
must be modeled differently. Another way to model the reduced equilibrium
probability of being in the inactivated state is to reduce the rates toward the
inactivated state. Such a mutation takes the form

Nkci D kci=�; (13.34)

Nkoi D koi=�;

where � > 1 and, as usual, � D 1 represents the wild type. It follows from (13.33)
that the principle of detailed balance also holds for the mutant model:

kiokoc
kci

�
D koi

�
kcokic: (13.35)

If we repeat the argument above, we find that the mean open time of the model
presented in Fig. 13.11 is given by

�o D 1

koc C koi

Fig. 13.11 Three-state
Markov model. In the mutant
case, we replace the rates kci

and koi by kci=� and koi=�,
respectively, where � denotes
the mutation severity index

I

C O

koi

koc

kiok ic
kco

k ci
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for wild type data and

�o;� D 1

koc C koi=�

for the mutant case. We note that the mean open time increases as the mutation
severity index � increases. Following the usual steps, we find that the equilibrium
probabilities are given by

o D 1

1 C koc
kco

C koi
�kio

;

c D
koc
kco

1 C koc
kco

C koi
�kio

;

i D
koi
kio

�
�
1 C koc

kco

�
C koi

kio

:

We observe that the equilibrium probability of being in the open and closed states
increases as a consequence of the mutation and the equilibrium probability of being
in the inactivated state is reduced under the mutation.

13.5.1 A Theoretical Open State Blocker

We observed above that to repair the effect of changes in the mean open time,
it is necessary to use an open state blocker. The reason for this is that neither a
closed blocker nor an inactivated blocker has any effect on the mean open time and,
therefore, it is inconceivable that such blockers can repair the effect of a mutation
on the mean open time. An open state blocker directly affects the mean open time
and the drug must be tuned to repair the effect of the mutation.

A Markov model that includes an open state blocker is shown in Fig. 13.12.
We have already computed formulas for the equilibrium probabilities of a Markov
model of this form (see page 170). The inverse .p D 1=o/ open probability in
equilibrium is given by

p� D 1 C koc

kco
C 1

�

koi

kio

and thus the wild type inverse open probability is given by

p D 1 C koc

kco
C koi

kio
:
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Fig. 13.12 The model
represented in Fig. 13.11 is
extended to account for the
blocker (BO) associated with
the open state

I

C O BO

koiμ

koc

kob

kiok ic
kco

k ci /
μ

kbo

Similarly, the inverse open probability in the presence of the open state blocker is
given by

pb;� D 1 C koc

kco
C 1

�

koi

kio
C kob

kbo
:

Furthermore, the mean open time of wild type is given by

�o D 1

koi C koc

and, when the theoretical drug is included in the mutant case, the mean open time is
given by

�o;b;� D 1
1
�

koi C koc C kob
:

We are now looking for a drug that will repair the equilibrium probability and the
mean open time. More precisely, we want to find the parameters kbo and kob such
that pb;� D p and �o;b;� D �o. More explicitly, we require that

1 C koc

kco
C 1

�

koi

kio
C kob

kbo
D 1 C koc

kco
C koi

kio

and

1

�
koi C koc C kob D koi C koc:

This is a 2 � 2 system of equations in the unknowns kob and kbo and the solution is
given by

kob D �
1 � ��1

�
koi and kbo D kio: (13.36)

We will see in numerical experiments below that the open state blocker illustrated in
Fig. 13.12 where the parameters of the drug are given by (13.36) repairs the effect
of the mutation.
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13.5.2 Probability Density Functions Using the Open State
Blocker

We have found a theoretical drug (see (13.36)) for the mutation affecting the rates
from O to I and from C to I and we want to assess the drug’s usefulness by
considering the open probability density functions. For the wild type case, the
probability density functions of the states present in the Markov model of Fig. 13.11
are governed by the system

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C kio
i;

@

@v
.ac
c/ D koc
o � .kco C kci/ 
c C kic
i; (13.37)

@

@v
.ac
i/ D koi
o � .kio C kic/
i C kci
c:

In the mutant case, when the open state blocker is added as indicated in Fig. 13.12,
the probability density system is

@

@v
.ao
o/ D kco
c �

�
koc C 1

�
koi C kob

�

o C kio
i C kbo
b;

@

@v
.ac
c/ D koc
o �

�
kco C 1

�
kci

�

c C kic
i; (13.38)

@

@v
.ac
i/ D 1

�
koi
o � .kio C kic/
i C 1

�
kci
c;

@

@v
.ac
b/ D kob
o � kbo
b:

As usual, 
o; 
c; 
i; and 
b denote the probability density functions of the open,
closed, inactivated, and blocked states, respectively, and the functions of the flux are
given by (13.18). By introducing the drug given by (13.36), we obtain the system

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C kio
i C kio
b;

@

@v
.ac
c/ D koc
o �

�
kco C 1

�
kci

�

c C kic
i; (13.39)

@

@v
.ac
i/ D 1

�
koi
o � .kio C kic/
i C 1

�
kci
c;

@

@v
.ac
b/ D �

1 � ��1
�

koi
o � kio
b:
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Fig. 13.13 Left panel: All rates equal one. The theoretical drug restores 
o. Middle panel: As in
the left panel, except kco D 10 ms�1. Right panel: As in the left panel, except kio D 0:1 ms�1. For
all three cases, � D 10

In Fig. 13.13, we show solutions of the wild type system (13.37), the mutant system,
and the mutant system where the drug is added (13.39). Note that the mutant system
is equal to the wild type system, except for the change of the rates kci and koi given
by

Nkci D kci=�; (13.40)

Nkoi D koi=�:

In Fig. 13.13, we compare the open probability density functions of the three
models for three different sets of parameters. In the left panel of Fig. 13.13, we
show the open probability of the wild type (solid line), the mutant (� D 10),
and the mutant in the presence of the theoretical open blocker. We see that the
effect of the mutation is completely repaired by the drug. Other cases are shown
in the center and right panels. The effect of the drug is still good but the effect
of the mutation is not completely repaired. These observations are confirmed in
Table 13.1. Furthermore, we have tested a large variety of parameters and the results
we show here (center and right panels) represent the most difficult cases we could
find in experiments. Therefore, we conclude that the theoretical open state blocker
illustrated in Fig. 13.12 works very well.
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Table 13.1 Statistical properties of 
o for the cases shown in Fig. 13.13

k D 1 kco D 10 kio D 0:1

�o Eo �o Eo �o Eo

WT 0:333 16:366 0:476 22:995 0:083 �12:867

MT 0:476 23:272 0:833 31:074 0:333 17:702

MT+OB 0:333 16:366 0:476 23:169 0:083 �9:225
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Fig. 13.14 Monte Carlo runs of the case shown in the right panel of Fig. 13.13

13.5.3 Stochastic Simulations Using the Open State Blocker

In Fig. 13.14, we show simulations using the numerical scheme

vnC1 D vn � �t .gK .vn � VK/ C �ngNa.vn � VNa//; (13.41)

where the value of the variable �n is determined by the Markov model given in
Fig. 13.11. For the wild type case, the rates kci and koi are used and, in the mutant
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case, the rates kci=� and koi=� are used. Furthermore, when the drug is applied in
the mutant case, the Markov model is as illustrated in Fig. 13.12, where the rates of
the drug are given by (13.36). We observe that, in the mutant case, the channel does
not inactivate and therefore more action potentials are generated. When the drug is
applied, this effect seems to be removed and the channel again acts more or less
as in the wild type case. However, as mentioned above it is not straightforward to
compare solutions based on the stochastic model and therefore we emphasis the use
of probability density functions.

13.6 Notes

1. The derivation of the formula for the mean open time given by (13.4) can be
found in many places (e.g., Keener and Sneyd [42] or Smith [85]).
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