
Chapter 12
A Simple Model of the Sodium Channel

In the previous two chapters, we studied a prototypical model of an ion channel. The
model consisted of a differential equation involving a gating mechanism that could
be either open or closed. A Markov model governed the gating and we derived a
system giving the probability density functions of the states involved in the Markov
model. We used the probability density approach to compute optimal theoretical
drugs and noted that a mutation leading to an increase in the closed to open reaction
rate could be completely repaired by an optimal closed state drug.

Next, we extended the prototypical model to also include an inactivated state.
The inactivated state can also be affected by mutations and we studied the particular
case in which the rates from inactivated to open and from inactivated to closed were
increased by a factor � referred to as the mutation severity index. In this case, we
observed that an optimal drug was represented by a blocker associated with the
inactivated state. We were again able to completely repair the effect of the mutation
using the theoretical drug.

In this chapter, we shall move closer to realistic Markov models of sodium
channels. These models tend to be somewhat more intricate than the prototypical
model we have studied so far. Providing Markov models of the sodium channels has
been a very active field of research for decades and a series of models are available.
We have chosen to study models that seem to capture the basic structure applied in
many models but are manageable from a mathematical point of view. We choose
this approach for clarity of presentation and not for its ability to represent specific
data. It is, hopefully, quite clear that the method we use to analyze the models is
applicable to many other models.

Mutations of the sodium channel can lead to impaired inactivation. This may lead
to leakage of the sodium current, which can again trigger arrhythmias. Here we will
consider a model of the �KPQ mutation of the SCN5A gene. This mutation may
lead to an arrhythmogenic disorder referred to as the long-QT syndrome, which can
lead to sudden cardiac death in the worst case. There are several models representing
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178 12 A Simple Model of the Sodium Channel

the effect of the �KPQ mutation. One that is well known is provided by Clancy and
Rudy [14]. Their approach to model the impaired inactivation is to introduce a burst
mode in the model where no inactivation state is available. We will consider two
ways of modeling the effect of the mutation.

In the first approach, we will use the method utilized above. We will simply
increase the reaction rate from the inactivated to the closed state and from the
inactivated to the open state by a factor � � 1, referred to as the mutation severity
index. This change will clearly reduce the probability of being in the inactivated
state. It is therefore a model of impaired inactivation.

The second approach is to introduce a burst mode in the model. When the channel
is in the burst mode, there is no inactivated state. This model will be parameterized
such that it is highly unlikely that the channel will enter the burst mode for the wild
type case, but the probability of entering the burst mode is considerably higher in
the mutant case.

12.1 Markov Model of a Wild Type Sodium Channel

Markov models have turned out to be a powerful tool in representing the physics
of the sodium channel and a series of alternatives have been proposed by various
authors. Since this is still a very active field of research, it is hard to claim one
particular model as the definitive model. We shall therefore focus on a kind of model
that has a structure that seems to be more or less agreed upon but, as usual, we attack
this problem with simplicity in mind. This also holds true for the way we introduce
the effect of a mutation.

We start by considering a simple model of the sodium channel, illustrated in
Fig. 12.1. The actual functions used in our computations will be given below.
However, we should note that the functions will always be chosen such that they
satisfy the principle of detailed balance, which, for the model given in Fig. 12.1,
means that the following relation holds:

kiokockci D koikickco: (12.1)
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Fig. 12.1 Markov model of a wild type sodium channel consisting of an open state .O/, an
inactivated state .I/, and four closed states .C0; C1; C2; C3/
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The model of the closed states deserves a comment or two. Let us assume that
a sodium channel consists of three subunits and these subunits may exist in two
states: closed or permissible. The whole channel is in the state C0 if all three units
are in the permissible state. Over a brief period given by �t, the channel can change
from the state C0 to the open state and the probability of this event is �tkco or it
can change to the inactivated state with probability �tkci. However, the channel can
also go from the permissible state C0 to the state C1 and the probability of doing
this is 3�tˇ. The reason for the factor of three here is that it is sufficient that one of
the three subunits closes. By assuming that the subunits act independently, we find
that the probability is 3�tˇ. The same reasoning gives us the rest of the transitions
between the different closed states.

12.1.1 The Equilibrium Solution

The equilibrium probabilities of the model given in Fig. 12.1 are characterized by
the equations

kcic0 D kici; koio D kioi; kcoc0 D koco;

3ˇc0 D ˛c1; 2˛c2 D 2ˇc1; 3˛c3 D ˇc2;

where c0 denotes the equilibrium probability of being in the state C0. Similarly,
the other variables are defined as the equilibrium probability of being in the states
C1; C2; C3; I, and O. We express all probabilities in terms of the open probability:
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Since oC iCc0 Cc1 Cc2 Cc3 D 1; we find the following equilibrium probabilities:

o D 1

qw
; i D koi=kio

qw
; c0 D koc=kco

qw
; (12.2)
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where

qw D 1 C koi

kio
C koc

kco
.1 C ˇ=˛/3 :

Here the subscript w is used to indicate that qw represents the wild type case.
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12.2 Modeling the Effect of a Mutation Impairing
the Inactivated State

The mutation impairs the inactivated state of the channel. In Sect. 11.3 we modeled
this by increasing the probability of moving from the inactivated state to the open
state or to the closed state. This was done by increasing the rates kio and kic: We use
the same approach here and define

Nkic D �kic; (12.3)

Nkio D �kio; (12.4)

where, as usual, � is the mutation severity index. From (12.1), we have

kiokockci D kickcokoi

and therefore

.�kio/ kockci D .�kic/ kcokoiI

so

Nkiokockci D Nkickcokoi

and thus the principle of detailed balance also holds for the mutant case, in which
the rates are given by (12.3) and (12.4).

12.2.1 The Equilibrium Probabilities

The reaction scheme of the mutant is illustrated in Fig. 12.2. In the mutant case, the
equilibrium probabilities are given by

o D 1

qm
; i D koi= .�kio/

qm
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qm
; (12.5)
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Fig. 12.2 Markov model of the mutant version of the sodium channel consisting of an open state
.O/, an inactivated state .I/, and four closed states .C0; C1; C2; C3/. Here � is referred to as the
mutation severity index

For the equilibrium state it is worth observing that, since

i D koi=kio

koi
kio

C �
�
1 C koc

kco
.1 C ˇ=˛/3

� ;

the probability of being in the inactivated state is reduced when � is increased.
Similarly, we observe that the associated open probability given by

o D 1

1 C koi
�kio

C koc
kco

.1 C ˇ=˛/3

increases as � increases. Although these calculations concern the equilibrium state,
this is a pretty strong hint of an increased open probability in the dynamic case as
well and an increased open probability is exactly the problem one observes when
inactivation is impaired.

12.3 Stochastic Model of the Sodium Channel

We use the same model of the transmembrane potential as above (see (10.2) on
page 154). Recall that the stochastic differential equation is given by

Cv0 D �gL .v � VL/ � �gNa.v � VNa/; (12.6)

where C is the capacitance of the membrane, VL is the resting potential of the
leakage current, and VNa is the resting potential of the sodium channel. The
parameters are listed in Table 12.1.

The sodium channel can be either open (O), with � D 1; or closed (C), with
� D 0; and, as usual, the state of the channel is determined by a Markov model.
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Table 12.1 Values of the
parameters used in
model (12.6)

C 1 	F/cm2

gL 1=10 mS/cm2

gNa 1 mS/cm2

VL �85 mV

VNa 45 mV

Since C D 1; we rewrite the equation in the more convenient form

v0 D �gL .v � VL/ � �gNa.v � VNa/; (12.7)

where gL and gNa now have the unit1 ms�1:

12.3.1 A Numerical Scheme with an Invariant Region

A numerical scheme for the model (12.7) can be written in the form

vnC1 D vn � �t .gL .vn � VL/ C �ngNa.vn � VNa//; (12.8)

where �n is either zero or one and where �t denotes the time step. We assume that
the condition

�t <
1

gL C gNa
(12.9)

holds and, under this condition, we will show that an invariant region for the
solutions generated by the scheme (12.8) is given by

� D .VL; VC/ ; (12.10)

where

VC D gLVL C gNaVNa

gL C gNa

and, for the parameters we defined in (12.1), we have VC � 33:18 mV.
To derive the invariant region, we proceed along the lines used on page 155 and

thus start by defining

H.v; �/ D v � �t .gL .v � VL/ C �gNa.v � VNa//:

1The use of the odd units for gL and gNa stems from the fact that we have, for notational
convenience, incorporated the capacitance of the membrane in these constants.
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For values of v in the region � and for values of �t satisfying condition (12.9), we
have the properties

d

dv
H.v; �/ D 1 � �t .gL C �gNa/ > 1 � �t .gL C gNa/ > 0

and

d

d�
H.v; �/ D ��t .gNa.v � VNa// > 0:

Using these observations, we obtain

vnC1 D H.vn; �n/ 6 H.VC; 1/ D VC

and

vnC1 D H.vn; �n/ > H.VL; 0/ D VL:

So, by induction, it holds that � D .VL; VC/ is an invariant region for scheme (12.8).

12.4 Probability Density Functions for the Voltage-Gated
Channel

The systems modeling the probability density functions in the wild type and mutant
cases are of exactly the same form; the only difference is given by the mutation
severity index. The probability density functions of the states of the Markov model
given in Fig. 12.2 are given by
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where

ao D �gL .v � VL/ � gNa.v � VNa/; (12.12)

ac D �gL .v � VL/ ;

with 
o denoting the probability density function of being in the open state, 
0

denoting the probability density function of being in the state C0; and so on.

12.4.1 Model Parameterization

To carry out numerical computations comparing the properties of the wild type
and the mutant sodium channel, we need to define the rates involved in the model
described in Fig. 12.2. We use the rates

kab.v/ D k1
ab .v/=�ab; kba.v/ D .1 � k1

ab .v//=�ab;

with

k1
ab D 1

1 C esab.Vab�v/
:

Furthermore, the rates ˛ and ˇ in Fig. 12.2 are given by

˛ D k1
cp =�cp and ˇ D .1 � k1

cp /=�cp:

With this parameterization, the principle of detailed balance is satisfied, provided
that

sco C sic C soi D 0 and scoVco C soiVoi C sicVic D 0:

The parameters are given in Table 12.2 and we introduce the mutation as we did
in the previous chapter: We increase the probability of going from the inactivated
state to either the open or the closed state. More specifically, we define

Nkic D �kic and Nkio D �kio;

where, as usual, the wild type case is given by � D 1.

Table 12.2 Parameters of
the Markov model illustrated
in Figs. 12.1 and 12.2

ab Vab (mV) sab (1/mV) �ab (ms)

co �60 0:1 0.01

oi �120 0:05 3

ic �80 �0:15 10

cp �60 0:1 0.1
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12.4.2 Numerical Experiments Comparing the Properties
of the Wild Type and the Mutant Sodium Channel

In Fig. 12.3, we show the probability density functions of the open state, the
inactivated state, and the sum of the closed states for the wild type case .� D 1/

and two mutations .� D 10 and � D 30/: The properties of the solutions are
summarized in Table 12.3, which presents the expected values of the open state, the
inactivated state, and the sum of the closed states.
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Fig. 12.3 The probability density functions of the open state (left), the sum of the closed states
(center), and the inactivated state (right) for the wild type case (solid line) and two values of the
mutation severity index: � D 10 and � D 30. The strongest mutation differs the most from the
wild type solution

Table 12.3 Probability of being in the open, closed, or inactivated states and the expected value
of the transmembrane potential, provided that the channel is open, closed, or inactivated

� �o � 100 �c �i � 100 Eo Ec Ei

1 0.0067 0.9951 0.4834 �50:8 �84:9 �83:5

3 0.0080 0.9982 0.1765 �41:1 �84:9 �79:6

10 0.0162 0.9989 0.0942 �13:4 �84:9 �57:0
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12.4.3 Stochastic Simulations Illustrating the Late Sodium
Current in the Mutant Case

Impaired inactivation of the sodium channel leads to a late sodium current, which
is illustrated in Fig. 12.4. The figure also includes experimental data of the sodium
current taken from Bennett et al. [2]. We observe that, by using � D 30, the model
fits the experimental data fairly well.
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Fig. 12.4 Currents computed using the Markov model given in Fig. 12.2. Top panel: Currents
based on numerical simulations for � D 1; 10; 30; 100. Each trace is an average of 10,000 Monte
Carlo runs. The current is given by I D gNaPo.v�VNa/, with the transmembrane potential clamped
at v D 0. The currents are normalized so that the wild type case peaks at �1. The parameters are
given by VNa D 45 and gNa D 1 and Po is the average ratio of open channels over 10,000 runs,
computed at each time step. The lower graphs are from Bennett et al. [2], for the wild type case
(left) and mutant case (right)
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12.5 A Theoretical Drug Repairing the Sodium Channel
Mutation

We introduce a theoretical drug for the sodium channel of the form given in
Fig. 12.5. The equilibrium probabilities of the model are characterized by the
equations

kcic0 D �kici; koio D �kioi; kcoc0 D koco;

3ˇc0 D ˛c1; 2˛c2 D 2ˇc1; 3˛c3 D ˇc2;

kbcb0 D kcbc0; kbcb1 D kcbc1; kbcb2 D kcbc2;

kbcb3 D kcbc3; kbibi D kibi; kbobo D kobo:

As usual, we express all probabilities in terms of the open state probability,
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where we have introduced the following parameters characterizing the drug:
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Fig. 12.5 Markov model for a theoretical drug of the sodium channel. The model consists of the
usual states O; I; C0; C1; C2, and C3 and the blocked states BO; BI; BC0; BC1; BC2, and BC3
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Since the sum of the probabilities is one, we obtain

om;d D 1

qm;d
;

where the subscript indicates the mutant case in the presence of a drug. Here,

qm;d D 1 C koi

�kio
C koc

kco
.1 C ˇ=˛/3 .1 C ıc/ C ıi

koi

�kio
C ıo

and we recall that the wild type open probability is given by

ow D 1

qw
;

where

qw D 1 C koi

kio
C koc

kco
.1 C ˇ=˛/3 :

Obviously, we obtain om;d � ow, provided that qm;d � qw. If we choose a drug
characterized by

ıo D ıc D 0; and ıi D � � 1 (12.13)

we find that

qm;d D 1 C koi

kio
C koc

kco
.1 C ˇ=˛/3 D qw

and therefore, with the drug specified by (12.13), we have om;d D ow, so the open
probability at equilibrium is repaired.

12.5.1 Numerical Experiments Using the Blocker
of the Inactivated State

We have seen that a blocker of the inactivated state is a promising candidate for
repairing the mutation described in Fig. 12.2. The drug is characterized by (12.13),
so we have

kib D ıikbi D .� � 1/ kbi (12.14)

and the parameter kbi remains to be determined. In Table 12.4, we show that the
blocker is more efficient the larger kbi is. In fact, the blocker is able to repair all the
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Table 12.4 The open
probability, �o, the expected
value of the transmembrane
potential, Eo, and the standard
deviation, �o, for increasing
values of kbi. For large values
of kbi, the statistical properties
of the mutant are completely
repaired by the drug

kbi �o � 103 Eo �o

WT 0.067 �50:794 46.828

MT 1.534 12:991 26.831

10�6 1.341 12:940 26.913

10�5 1.180 12:487 27.634

10�4 0.556 8:240 33.343

10�3 0.135 �16:903 49.326

0.01 0.070 �47:563 48.205

0.1 0.067 �50:729 46.869

1 0.067 �50:791 46.830
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Fig. 12.6 The open probability density function for the wild type (WT) case and the mutant (MT)
case using the mutation severity index � D 30 and, finally, the mutant case with the drug given
by (12.14) with kbi D 0:001 ms�1. A small value of kbi was used to see a difference between the
drugged case and the WT case

relevant statistical properties of the solution. The statistical properties presented in
the table are introduced in Sect. 4.2 on page 72.

In Fig. 12.6, we show the open state probability density functions of the wild
type, the mutant, and the drugged version of the mutant. Again, we see that the drug
completely repairs the open state probability density function.
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Fig. 12.7 The sodium current for the wild type (WT) and the mutant (MT) with the mutation
severity index � D 30. The drug given by (12.14) with kbi D 0:01 ms�1 almost completely
removes the late sodium current

12.5.2 The Late Sodium Current Is Removed by the Inactivated
State Blocker

In Fig. 12.4 above, we demonstrated, using Monte Carlo simulations, that the
mutation under consideration leads to a significant late sodium current comparable
to the current observed in experiments. By using the drug described in (12.13) with
kbi D 0:01 ms�1; we see that the late current more or less completely disappears
(see Fig. 12.7).

12.6 Notes

1. The basic structure of the Markov model in Fig. 12.1 is taken from Patlak [65],
who discusses and evaluates several possible models in relation to experimental
data.

2. Modeling the effects of a drug on the sodium channel is motivated by the paper
of Clancy et al. [16].
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