
Chapter 8
Calcium-Induced Calcium Release

We started in Chap. 2 by assuming that the concentrations of the junctional
sarcoplasmic reticulum (JSR) and the network sarcoplasmic reticulum (NSR) are
identical and that the L-type current can be ignored and thus we studied a one-
dimensional problem where the calcium concentration of the dyad was the only
variable of interest. The model is illustrated in Figs. 2.1 and 2.2. Then, in Chap. 5,
we extended the model to account for the varying concentrations in the dyad and the
JSR, but we still ignored the effect of the voltage-gated L-type channels and kept
the concentration of the cytosol and the NSR constant. The two-dimensional model
is illustrated in Figs. 5.1 and 5.2. Our aim is now to include the effect of L-type
channels. The L-type channels open and close depending on the transmembrane
potential V , so the model will therefore be parameterized by V . The model is
illustrated in Figs. 8.1 and 8.2.

It should be noted that we are still interested in the dynamics related to the
dyad and not to the whole cell. We therefore keep the concentration of the cytosol
and NSR constant and assume that the concentration of the extracellular space (ce)
only affects the concentration of the dyad through the voltage-gated L-type calcium
channels (LCCs). In a whole-cell model, this would be different in many ways, but
we shall not consider that topic here.

The state of a voltage-gated channel is governed by a Markov model where
the transitions depend on the transmembrane potential (or voltage for short). If
the electrical potential in the dyad is given by Vi (intracellular potential) and the
extracellular potential is given by Ve, we define the transmembrane potential to be

V D Vi � Ve:

As a notational convention, we use the subscript r to indicate that N�r models the
open or closed state of the ryanodine receptor (RyR) and the subscript l in the term
N�lJl is used to indicate that this is the flux through the LCC.
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Fig. 8.1 The figure is a modified version of Figure 1 (panel A) of Winslow et al. [105] and
illustrates the components involved in calcium-induced calcium release (CICR). In this chapter,
we concentrate on the dynamics in the box surrounded by a thin red line. We assume that the
concentrations of the cytosol, the NSR, and the extracellular domain represented by the T-tubule
are kept constant and that inflow of calcium through the LCCs is governed by a voltage-dependent
Markov model

Extracellular, ce

Cytosol, c0 Dyad, x (t) JSR, y(t) NSR, c1

Fig. 8.2 Sketch of a release unit. The cytosolic (c0), NSR (c1), and extracellular (ce) calcium
concentrations are assumed to be constant, while the concentrations of the dyad and JSR are given
by Nx D Nx.t/ and Ny D Ny.t/, respectively. Furthermore, we assume that the flux of calcium from the
extracellular space to the dyad is voltage gated. Recall that c0 � c1

8.1 Stochastic Release Model Parameterized
by the Transmembrane Potential

In the models we have studied so far, a very basic building block has been that, if x0

denotes the concentration of a large reservoir of calcium and x D x.t/ denotes the
concentration of a small space connected to the reservoir, then the concentration x
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Table 8.1 Values of
parameters used in
simulations in this chapter

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 	M

c1 1,000 	M

ce 1,800 	M

evolves according to the model

x0.t/ D v .x0 � x.t// ; (8.1)

where v denotes the speed of diffusion between the two spaces. Here we assume that
the concentration of the large reservoir, x0, can be kept constant. This model can be
extended to the case where the channel between the spaces can be either closed or
open:

Nx0.t/ D N�.t/v .x0 � Nx.t// ; (8.2)

where N� is a random variable taking on two possible values, one (open) and zero
(closed). The stochastic release models studied above are derived by gluing together
pieces of models of exactly this type.

In this chapter, one additional effect is added: We now allow calcium to flow
into the dyad through the LCCs. This flow depends on both the gradient of the
concentration and of the electrical potential across the membrane dividing the
extracellular space and the dyad.

The process illustrated in Fig. 8.2 can be modeled as follows

Nx0 D N�rvr .Ny � Nx/ C vd .c0 � Nx/ � N�lJl; (8.3)

Ny0 D N�rvr .Nx � Ny/ C vs .c1 � Ny/ : (8.4)

This model is almost the same as the one we analyzed above (see (5.1) and (5.2)
on page 92). The new term is given by � N�lJl and it models the inflow of calcium
through the LCCs. The function N�l is governed by a Markov model and, as usual, it
takes on two values: zero (closed) and one (open). The Markov model governing
N�l depends on the transmembrane potential V and the flux depends on V; the
extracellular calcium concentration ce and the dyad concentration x D x.t/: As
above, vr denotes the rate of release from the JSR to the dyad, vd denotes the
speed of calcium diffusion from the dyad to the cytosol, and vs denotes the speed
of calcium diffusion from the NSR to the JSR. The model parameters are given in
Table 8.1.

The Markov model governing N�r will be the same as above, but we need to
introduce a Markov model governing N�l. We will also combine these Markov models
to simplify the introduction of a probability density formulation. Furthermore, we
need to describe the electrochemical flux Jl.
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8.1.1 Electrochemical Goldman–Hodgkin–Katz (GHK) Flux

Consider Fig. 8.1 and suppose that the membrane between the T-tubule and the
dyad has thickness L: If the electrical field is constant through the channel, the flux
is given by

Jl D D

L

2F

RT

x � cee� 2FV
RT

1 � e� 2FV
RT

V; (8.5)

which is referred to as the GHK flux (see Keener and Sneyd [42]). Here D is
Fick’s diffusion constant, F is Faraday’s constant, R is the gas constant, and T is
the absolute temperature. By defining

V0 D RT

2F
;

we have

Jl D D

L

x � cee� V
V0

1 � e� V
V0

V

V0

; (8.6)

where F; R; T, and V0 are given in Table 8.2.

8.1.2 Assumptions

As for the model in Chap. 5, we will make the following assumptions for the
parameters involved:

c1 � c0 and vr; vd; vs > 0; (8.7)

vdvs � v2
r : (8.8)

Table 8.2 Parameters
in (8.5)

F 96485:3 C mol�1

R 8:3145 J mol�1K�1

T 310 K

V0 13.357 mV
D
L 0.02 ms�1
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8.1.3 Equilibrium Potential

The electrochemical equilibrium over the membrane separating the extracellular
space and the dyad is characterized by

Jl D 0:

In equilibrium, we must have

x D cee� V
V0 ;

so the equilibrium transmembrane potential is given by

Veq D V0 ln
ce

x
: (8.9)

For this value of the transmembrane potential V; the driving force � N�lJl in the
system (8.3) and (8.4) is zero even if the channel is open. It should also be noted
that the equilibrium transmembrane potential depends on the concentration x of the
dyad and will therefore be a dynamic quantity. Here it is useful to recall that we
regard V as a parameter input to the system and not a part of the dynamics.

8.1.4 Linear Version of the Flux

We mentioned above that our modeling so far has been based on very simple linear
fluxes of the form given in (8.1). In the case we are considering now, the flux
depends on both the difference in concentration and the electrical potential over
the membrane; see (8.6). A Taylor series expansion of the GHK flux can be written
as

Jl D D

L
.x � ce/ C D

2L
.x C ce/

V

V0

C O
�
.V=V0/

2
�

(8.10)

and, therefore, if V D 0; the flux is given by

Jl D D

L
.x � ce/

so the term � N�lJl has the form we used in (8.2). This means that the electrochemical
flux given by (8.6) reduces to a purely concentration-based flux when there is no
difference in electrical potential across the membrane.
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8.1.5 Markov Models for CICR

As discussed above, two Markov processes are involved in the CICR. We have seen
that the gating of the release of calcium from the sarcoplasmic reticulum to the dyad
is given by the stochastic variable N�r D N�r.t/, which is governed by the reaction
scheme

Cr

kr
oc

�
kr

co

Or: (8.11)

We recall here that r is used to indicate the relation to the RyR channels. Similarly,
the Markov model for the LCC is given by

Cl

kl
oc

�
kl

co

Ol; (8.12)

where l is used to indicate the relation to the LCCs. This Markov model governs the
stochastic variable N�l D N�l.t/:

It is convenient to combine these two Markov models into one reaction scheme of
the form illustrated in Fig. 8.3.The states of this combined Markov model are given
by ClCr (both closed), ClOr (LCC closed, RyR open), OlOr (both open), and OlCr

(LCC open, RyR closed). In our computations, we use the rates shown in Table 8.3.

Fig. 8.3 Markov model
including four possible states:
ClCr (both closed), ClOr

(LCC closed, RyR open),
OlOr (both open), and OlCr

(LCC open, RyR closed)

ClCr ClOr

OlCr OlOr

k rco

k lco

k roc
k lcok loc

k rco

k loc

k roc

Table 8.3 Reaction rates used in the Markov model illustrated in Fig. 8.3. Here � � 1 denotes
the mutation severity index of the RyR, � � 1 denotes the mutation severity index of the LCC and
� D � D 1 represents the wild type case

RyR LCC

kr
co D � x4

K.y/4Cx4 ms�1 kl
co D � l1.V/=�l

kr
oc D 1 ms�1 kl

oc D .1 � l1.V//=�l

K.y/ D Kmax � y=1000 l1.V/ D 0:01 exp.�.V � 5/2=500/

Kmax D 7:4 �M �l D 1 ms
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8.1.6 Numerical Scheme for the Stochastic CICR Model

A numerical scheme for running simulations based on the CICR model (8.3)
and (8.4) is given by

xnC1 D xn C �t
�
� r

nvr .yn � xn/ C vd .c0 � xn/
� � �t� l

nJl.xn; V/; (8.13)

ynC1 D yn C �t
�
� r

nvr .xn � yn/ C vs .c1 � yn/
�

; (8.14)

where � r
n and � l

n are computed according to the Markov model illustrated in Fig. 8.3.

8.1.7 Monte Carlo Simulations of CICR

In Fig. 8.4, we show the results of stochastic simulations using the model (8.3)
and (8.4). The computations are based on the numerical scheme (8.13) and (8.14)
with the parameters given in Table 8.1 and �t D 0:01 ms. As initial conditions we
have used x.0/ D c0 and y.0/ D c1 with both gates closed. From top to bottom, the
transmembrane potential is given by V D 20, 0, �20, and �40 mV.

The associated calcium concentrations of the dyad given by x D x.t/ are graphed
in the left panels and the calcium concentrations of the JSR given by y D y.t/ are
graphed in the right panels. In all cases, we show the solution for a time interval
ranging from 0 ms to 1000 ms. The calcium concentration clearly depends on the
transmembrane potential and we observe in particular that there is no activity for
V D �40 mV, since the LCC is inactivated at that voltage.

In Fig. 8.5, we show a detailed view of the case of V D 0 mV. In the upper part
of the graph we show the state of the RyR (upper) and the LCCs (lower). The CICR
mechanism is illustrated in the first part of the graph: The LCC opens at t � 5

ms, but the release is too short-lived to trigger an RyR opening and we therefore
observe just a minor increase in the dyad calcium concentration given by x. Next
time, at t � 9 ms, there is a new opening and now the channel is open for a longer
time; there is an increase in x leading to opening of the RyR channel and then the
concentration increases dramatically.

8.2 Invariant Region for the CICR Model

We have seen in both the one- and two-dimensional models above that we can
derive invariant regions for the stochastic models and that these regions define the
computational domain for the probability density system. Our aim is now to derive
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Fig. 8.4 Calcium dynamics of the dyad x D x.t/ and the JSR y D y.t/ for four values of the
transmembrane potential V

an invariant region for the CICR model given by

Nx0 D N�rvr .Ny � Nx/ C vd .c0 � Nx/ � N�lJl; (8.15)

Ny0 D N�rvr .Nx � Ny/ C vs .c1 � Ny/ : (8.16)

Here it is convenient to write the GHK flux in the form

Jl.x/ D a0.x � x0/;
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Fig. 8.5 A detailed view of the case of V D 0 mV taken from Fig. 8.4. In addition, we show the
state of the RyR channel (upper panel) and the LCC (lower panel). The first spike at 5 ms in the
LCC is very short and does not trigger an RyR release. The next one, at 9 ms, does trigger an RyR
release

where

a0 D D

L

1

1 � e� V
V0

V

V0

and

x0 D cee� V
V0 ;

so the system takes the form

Nx0 D N�rvr .Ny � Nx/ C vd .c0 � Nx/ C N�la0.x0 � Nx/; (8.17)

Ny0 D N�rvr .Nx � Ny/ C vs .c1 � Ny/ : (8.18)

8.2.1 A Numerical Scheme

Let us consider the numerical scheme (8.13, 8.14),

xnC1 D xn C �t
�
� r

nvr .y � x/ C vd .c0 � x/ C � l
na0.x0 � x/

�
; (8.19)

ynC1 D yn C �t
�
� r

nvr .x � y/ C vs .c1 � y/
�

: (8.20)

Here � r
n and � l

n simply denotes constants that take on the value zero or one and
their values will be specified in order to study the dynamics of the system when the
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associated channels are open or closed. The numerical scheme can be written in the
form

xnC1 D F .xn; yn/ ; (8.21)

ynC1 D G .xn; yn/ ; (8.22)

with

F.x; y/ D x C �t .�rvr .y � x/ C vd .c0 � x/ C �la0.x0 � x// ;

G.x; y/ D y C �t .�rvr .x � y/ C vs .c1 � y// :

Here we assume that

�t 6 min

�
1

vd C a0 C vr
;

1

vs C vr

�
: (8.23)

Under this condition, we observe that

@F

@x
D 1 � �t .vd C �la0 C �rvr/ > 0

for any choice of �l and �r. We also have

@F

@y
D �t�rvr > 0:

Similarly, we find that

@G

@x
D �t�rvr > 0 (8.24)

and

@G

@y
D 1 � �t .vs C �rvr/ > 0: (8.25)

Assume that

0 6 xn; yn 6 M; (8.26)

where

M D max

�
c1;

c0vd C a0x0

a0 C vd

�
:
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Since

@F

@x
;

@F

@y
;

@G

@x
;

@G

@y
> 0;

we have

xnC1 D F .xn; yn/ 6 F.M; M/ D M C �t .vd .c0 � M/ C �la0.x0 � M// 6 M

and

ynC1 D G .xn; yn/ 6 G.M; M/ D M C �t .vs .c1 � M// 6 M:

Furthermore, we have

xnC1 D F .xn; yn/ > F.0; 0/ D �t .vdc0 C �la0x0/ > 0

and

ynC1 D G .xn; yn/ > G.0; 0/ D �tvsc1 > 0:

So, by induction, the invariant region (8.26) holds for all n > 0:

8.3 Probability Density Model Parameterized
by the Transmembrane Potential

The probability density formulation of the system (8.3) and (8.4) is given by the
system of partial differential equations

@
oo

@t
C @

@x

�
ax

oo
oo
�C @

@y

�
ay

oo
oo
� D kl

co
co � �
kl

oc C kr
oc

�

oo C kr

co
oc; (8.27)

@
oc

@t
C @

@x

�
ax

oc
oc
�C @

@y

�
ay

oc
oc
� D kl

co
cc � �
kl

oc C kr
co

�

oc C kr

oc
oo; (8.28)

@
cc

@t
C @

@x

�
ax

cc
cc
�C @

@y

�
ay

cc
cc
� D kl

oc
oc � �
kl

co C kr
co

�

cc C kr

oc
co; (8.29)

@
co

@t
C @

@x

�
ax

co
co
�C @

@y

�
ay

co
co
� D kl

oc
oo � �
kl

co C kr
oc

�

oc C kr

co
cc; (8.30)
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where 
oo; 
oc; 
cc; and 
co represent the probability densities of the states denoted
OlOr; OlCr; ClCr; and ClOr; respectively. The terms of the fluxes are given by

ax
oo D vr .y � x/ C vd .c0 � x/ � Jl.x; V/; ay

oo D vr .x � y/ C vs .c1 � y/ ;

ax
oc D vd .c0 � x/ � Jl.x; V/; ay

oc D vs .c1 � y/ ;

ax
cc D vd .c0 � x/ ; ay

cc D vs .c1 � y/ ;

ax
co D vr .y � x/ C vd .c0 � x/ ; ay

co D vr .x � y/ C vs .c1 � y/ ;

where we use the convention that in the expression ax
˛ˇ; the index ˛ indicates

whether the LCC is open .˛ D o/ or closed .˛ D c/ and the index ˇ plays the same
role for the RyR channel. Similar notation is used for the flux terms represented by
ay

˛ˇ: As usual, the sum of total probabilities is one:

Z
�

.
oo C 
oc C 
cc C 
co/ dx dy D 1: (8.31)

8.4 Computing Probability Density Representations of CICR

In Fig. 8.6, we show solutions of the system (8.15) and (8.16) defined in the
computational domain � D �.V/ for four values of the transmembrane potential:
V D 20, 0, �20, and �40 mV. In all computations, the parameters are given in
Table 8.1 and the Markov model is illustrated in Fig. 8.3. All distributions are
initially set to zero, except that 
cc.c0; c1/ D 1=.�x�y/. Hence the initial discrete
probability densities integrates to one;

�x�y
X

i;j


i;j D 1; (8.32)

which is a discrete version of (8.31) with 
 D 
oo C 
oc C 
co C 
cc.
The simulation results are shown in Fig. 8.6 and summarized in Table 8.4. We

observe that the transmembrane potential V significantly influences the probability
density functions. In Table 8.4, we observe that the probability of the LCC being
in the open state is highest for V D 0 mV and it is almost zero for V D �40 mV.
In the computations, we use �t D 0:001 ms, �x D 1:02, 1:23, 1:54 and 1:95 	M
(the domain size varies with V), and �y D 9:3 	M. Note that the scale of the plots
varies (see Fig. 8.6).
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Fig. 8.6 Probability density functions for different voltages. The LCC is more prone to being
open (last two columns) when the voltage is close to V D 5 mV, that is, where l1.V/ is close to
its maximum. Black corresponds to 10�3 for 
cc and to 10�6 for the other three distributions

Table 8.4 Probability of being in the four states for different voltages. Recall that the probabilities
are computed using (4.7) at page 72 where the probability density functions are numerical solutions
of the system (8.27)–(8.30)

V �cc �co �oc �oo

20 0.978 0.015 0.005 0.001

0 0.959 0.032 0.007 0.003

�20 0.982 0.015 0.002 0.001

�40 0.993 0.006 0.000 0.000
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8.5 Effects of LCC and RyR Mutations

We are now in a position to study the effect of both LCC and RyR mutations.
We assume that both the LCC and RyR mutations lead to leaky channels that can
be represented by increasing the reaction rate from closed to open. So we again
consider CO-mutations.

The reaction scheme in the presence of mutations is illustrated in Fig. 8.7. Here
� � 1 denotes the strength of the RyR mutations and � � 1 denotes the strength of
the LCC mutations. Note that � D 1 and � D 1 represent the wild type.

8.5.1 Effect of Mutations Measured in a Norm

To measure the effect of the mutations, we introduce the norm

k
�;� � 
1;1k D 1

6

X
V

X
z

k

�;�
z � 
1;1

z kL2.�/

k

�;�
z kL2.�/ C k


1;1
z kL2.�/;

(8.33)

where 
z represents 
oo, 
oc, 
co, or 
cc and V represents summation over the
following values of the transmembrane potential: �80, �60, �40, �20, 0, and 20

mV. Furthermore,

k
kL2.�/ D
�Z

�


2d�

�1=2

: (8.34)

The difference between the wild type solution and the solution based on mutated
reaction rates is depicted in Fig. 8.8. The figure shows the difference as a function
of the two mutation severity indices � and �.

Fig. 8.7 Mutant version of
the Markov model given in
Fig. 8.3 including four
possible states: ClCr (both
closed), ClOr (LCC closed,
RyR open), OlOr (both open),
and OlCr (LCC open, RyR
closed)

ClCr ClOr

OlCr OlOr

μk rco

ηk lco

k roc
ηk lcok loc

μk rco

k loc

k roc
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Fig. 8.8 Difference between wild type solutions and mutated solutions, defined in terms of the
norm given by (8.33). The wild type solution is represented by � D � D 1

8.5.2 Mutations Increase the Open Probability of Both
the LCC and RyR Channels

In Sect. 4.2 (page 72), we introduced statistical measures for the probability density
functions. We will now consider how the LCC and RyR mutations affect the
statistical properties of the associated probability density functions. Let us first
consider how the mutations affect the total probability of being in the different
states. In Fig. 8.9, we show the total probability of being in the states OO, CO, OC,
and CC, where, as above, the first letter denotes the state of the LCC and the second
letter indicates the state of the RyR channel. Here the value of the transmembrane
potential is V D 0 mV. In Fig. 8.10, we show similar results in the case of V D �80

mV; the probability of the LCC being open is very small and the LCC mutation
must be extremely severe to change this. Basically, at V D �80 mV, the LCC is
closed independent of the mutations. This observation certainly depends heavily on
the particular reaction rates used in these computations (see Table 8.3 on page 130).
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Fig. 8.9 Probability of being in the state OO, CO, OC, or CC at V D 0 mV as a function of the
mutation severity index of the LCC, represented by �, and the mutation severity index of the RyR
channel, represented by �. Here � D � D 1 represents the wild type
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Fig. 8.10 Probability of being in the state OO, CO, OC, or CC at V D �80 mV as a function of
the mutation severity index of the LCC, represented by �, and the mutation severity index of the
RyR channel, represented by �. Here � D � D 1 represents the wild type. Note the scale of the
axis in the plots on the left-hand side
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8.5.3 Mutations Change the Expected Values
of Concentrations

Figures 8.11 and 8.12 show the development of the expected concentration for
varying strengths of mutations. In Fig. 8.11, we set V D 0 mV and see that
the mutations change the expected concentrations significantly. More specifically,
both mutations lead to lower expected JSR concentrations. In Fig. 8.12, we set
V D �80 mV and observe that the expected concentrations are not altered by the
LCC mutation. As for the total probabilities discussed above, the reason for this is
that, at this value of V , the probability of going from closed to open is practically
zero and the mutation must be orders of magnitude larger to open the LCC at this
voltage. Again, this observation is based on the particular form of the reaction rates
given in Table 8.3.
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Fig. 8.11 This figure shows how the expected concentrations of the dyad (given by x) and the JSR
(given by y) change as functions of the mutation severity indices. The curve denoted by Ecc starts at
the circle that represents the expected values of x and y in the case of both the LCC and RyR being
closed. The starting point represents the wild type and the curves represent the two mutations (or
combinations of them) and similarly for the curves starting at the circles next to Eoc, Eco, and Eoo.
All curves are computed using V D 0 mV
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Fig. 8.12 This figure shows how the expected concentrations of the dyad (given by x) and the JSR
(given by y) change as functions of the mutation severity indices. The curve denoted by Ecc starts
at the circle that represents the expected values of x and y in the case of both LCC and RyR being
closed. The starting point represents the wild type and the curves represent the two mutations (or
combinations of them) and similarly for the curves starting at the circles next to Eoc, Eco, and Eoo.
All curves are computed using V D �80 mV

8.6 Notes

1. The Markov model (including parameters) given in Fig. 8.3 and the probability
density system (8.27)–(8.30) are taken from Williams et al. [102].

2. The functions given in Table 8.3 are motivated by the models of Stern et al. [89].
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