
Chapter 2
Ordinary differential equation models

This chapter introduces the basic techniques of scaling and the ways to reason
about scales. The first class of examples targets exponential decay models,
starting with the simple ordinary differential equation (ODE) for exponential
decay processes: u′ = −au, with constant a > 0. Then we progress to vari-
ous generalizations of this ODE, including nonlinear versions and systems of
ODEs. The next class of examples concerns second-order ODEs for oscilla-
tory systems, where the simplest ODE reads mu′′ + ku = 0, with m and k
as positive constants. Various extensions with damping and force terms are
discussed in detail.

2.1 Exponential decay problems

2.1.1 Fundamental ideas of scaling

Scaling is an extremely useful technique in mathematical modeling and nu-
merical simulation. The purpose of the technique is three-fold:

1. Make independent and dependent variables dimensionless.
2. Make the size of independent and dependent variables about unity.
3. Reduce the number of independent physical parameters in the model.

The first two items mean that for any variable, denote it by q, we introduce
a corresponding dimensionless variable

q̄ = q − q0
qc

,

© The Author(s) 2016 17
H.P. Langtangen and G.K. Pedersen, Scaling of Differential Equations,
Simula SpringerBriefs on Computing 2, DOI 10.1007/978-3-319-32726-6_2

18 2 Ordinary differential equation models

where q0 is a reference value of q (q0 = 0 is a common choice) and qc is a
characteristic size of |q|, often referred to as “a scale”. Since the numerator and
denominator have the same dimension, q̄ becomes a dimensionless number.

If qc is the maximum value of |q −q0|, we see that 0 < |q̄| ≤ 1. How to find
qc is sometimes the big challenge of scaling. Examples will illustrate various
approaches to meet this challenge.

The many coming examples on scaling differential equations contain the
following pedagogical ingredients to meet the desired learning outcomes.

• Teach the technical steps of making a mathematical model, based on dif-
ferential equations, dimensionless.

• Describe various techniques for reasoning about the scales, i.e., finding the
characteristic sizes of quantities.

• Teach how to identify and interpret dimensionless numbers arising from
the scaling process.

• Provide a lot of different examples on making models dimensionless with
physically correct scales.

• Show how symbolic software (SymPy) can be used to derive exact solutions
of differential equations.

• Explain how to run a dimensionless model with software developed for the
problem with dimensions.

2.1.2 The basic model problem

Processes undergoing exponential reduction can be modeled by the ODE
problem

u′(t) = −au(t), u(0) = I, (2.1)

where a,I > 0 are prescribed parameters, and u(t) is the unknown function.
For the particular model with a constant a, we can easily derive the exact
solution, u(t) = Ie−at, which is helpful to have in mind during the scaling
process.

Example: Population dynamics. The evolution of a population of hu-
mans, animals, cells, etc., under unlimited access to resources, can be mod-
eled by (2.1). Then u is the number of individuals in the population, strictly
speaking an integer, but well modeled by a real number in large populations.
The parameter a is the increase in the number of individuals per time and
per individual.

Example: Decay of pressure with altitude. The simple model (2.1) also
governs the pressure in the atmosphere (under many assumptions, such air is
an ideal gas in equilibrium). In this case u is the pressure, measured in Nm−2;

2.1 Exponential decay problems 19

t is the height in meters; and a = M/(R∗T), where M is the molar mass of the
Earth’s air (0.029 kg/mol), R∗ is the universal gas constant (8.314 Nm

mol K),
and T is the temperature in Kelvin (K). The temperature depends on the
height so we have a = a(t).

2.1.3 The technical steps of the scaling procedure

Step 1: Identify independent and dependent variables. There is one
independent variable, t, and one dependent variable, u.

Step 2: Make independent and dependent variables dimensionless.
We introduce a new dimensionless t, called t̄, defined by

t̄ = t

tc
, (2.2)

where tc is a characteristic value of t. Similarly, we introduce a dimensionless
u, named ū, according to

ū = u

uc
, (2.3)

where uc is a constant characteristic size of u. When u has a specific inter-
pretation, say when (2.1) models pressure in an atmospheric layer, uc would
be referred to as characteristic pressure. For a decaying population, uc may
be a characteristic number of members in the population, e.g., the initial
population I.

Step 3: Derive the model involving only dimensionless variables.
The next task is to insert the new dimensionless variables in the governing
mathematical model. That is, we replace t by tct̄ and u by ucū in (2.1). The
derivative with respect to t̄ is derived through the chain rule as

du

dt
= d(ucū)

dt̄

dt̄

dt
= uc

dū

dt̄

1
tc

= uc

tc

dū

dt̄
.

The model (2.1) now becomes

uc

tc

dū

dt̄
= −aucū, ucū(0) = I . (2.4)

Step 4: Make each term dimensionless. Equation (2.4) still has terms
with dimensions. To make each term dimensionless, we usually divide by the
coefficient in front of the term with the highest time derivative (but dividing
by any coefficient in any term will do). The result is

dū

dt̄
= −atcū, ū(0) = u−1

c I . (2.5)

20 2 Ordinary differential equation models

Step 5: Estimate the scales. A characteristic quantity like tc reflects the
time scale in the problem. Estimating such a time scale is certainly the most
challenging part of the scaling procedure. There are different ways to reason.
The first approach is to aim at a size of ū and its derivatives that is of order
unity. If uc is chosen such that |ū| is of size unity, we see from (2.5) that
dū/dt̄ is of the size of ū (i.e., unity) if we choose tc = 1/a.

Alternatively, we may look at a special case of the model where we have
analytical insight that can guide the choice of scales. In the present problem
we are lucky to know the exact solution for any value of the input data as
long as a is a constant. For exponential decay, u(t) ∼ e−at, it is common to
define a characteristic time scale tc as the time it takes to reduce the initial
value of u by a factor of 1/e (also called the e-folding time):

e−atc = 1
e

e−a·0 ⇒ e−atc = e−1,

from which it follows that tc = 1/a. Note that using an exact solution of the
problem to determine scales is not a requirement, just a useful help in the
few cases where we actually have access to an exact solution.

In this example, two different, yet common ways of reasoning, lead to the
same value of tc. However, instead of using the e-folding time we could use
the half-time of the exponential decay as characteristic time, which is also a
very common measure of the time scale in such processes. The half time is
defined as the time it takes to halve u:

e−atc = 1
2e−a·0 ⇒ tc = a−1 ln2 .

There is a factor ln2 = 0.69 difference from the other tc value. As long as the
factor is not an order of magnitude or more different, we do not pay attention
factors like ln2 and skip them, simply to make formulas look nicer. Using
tc = a−1 ln2 as time scale leads to a scaled differential equation u′ = −(ln2)u,
which is fine, but an unusual form. People tend to prefer the simpler ODE
u′ = −u, which arises from tc = 1/a, and we shall therefore use this time scale.

Regarding uc, we may look at the initial condition and realize that the
choice uc = I makes ū(0) = 1. For t > 0, the differential equation expresses
explicitly that u decreases, so uc = I gives ū ∈ (0,1]. Scaling a variable q such
that |q̄| ∈ [0,1] is always the ultimate goal, and this goal is in fact obtained
here! Next best result is to ensure that the magnitude of |q| is not “big” or
“small”, in the sense that the size is neither as large as 10 or 100, nor as small
as 0.1 or 0.01. (In the present problem, where we are lucky to have an exact
solution u(t) = Ie−at, we may look at this to explicitly see that u ∈ (0, I] such
that uc = I gives ū ∈ (0,1]).

With tc = 1/a and uc = I, we have the final dimensionless model

dū

dt̄
= −ū, ū(0) = 1 . (2.6)

2.1 Exponential decay problems 21

This is a remarkable result in the sense that all physical parameters (a and I)
are removed from the model! Or more precisely, there are no physical input
parameters to assign before using the model. In particular, numerical inves-
tigations of the original model (2.1) would need experiments with different a
and I values, while numerical investigations of (2.6) can be limited to a single
run! As soon as we have computed the curve ū(t̄), we can find the solution
u(t) of (2.1) by

u(t) = ucū(t/tc) = Iū(at) . (2.7)

This particular transformation actually means stretching the t̄ and ū axes in
a plot of ū(t̄) by the factors a and I, respectively.

It is very common to drop the bars when the scaled problem has been
derived and work further with (2.6) simply written as

du

dt
= −u, u(0) = 1 .

Nevertheless, in this booklet we have decided to stick to bars for all dimen-
sionless quantities.

2.1.4 Making software for utilizing the scaled model

Software for solving (2.1) could take advantage of the fact that only one
simulation of (2.6) is necessary. As soon as we have ū(t̄) accessible, a simple
scaling (2.7) computes the real u(t) for any given input data a and I. Although
the numerical computation of u(t) from (2.1) is very fast in this simple model
problem, using (2.7) is very much faster. In general, a simple rescaling of a
scaled solution is extremely more computationally efficient than solving a
differential equation problem.

We can compute with the dimensionless model (2.6) in two ways, either
make a solver for (2.6), or reuse a solver for (2.1) with I = 1 and a = 1. We will
choose the latter approach since it has the advantage of giving us software
that works both with a dimensionless model and a model with dimensions
(and all the original physical parameters).
Software for the original unscaled problem. Assume that we have some
module decay.py that offers the following functions:

• solver(I, a, T, dt, theta=0.5) for returning the solution arrays u
and t, over a time interval [0,T], for (2.1) solved by the so-called θ rule.
This rule includes the Forward Euler scheme (θ = 0), the Backward Euler
scheme (θ = 1), or the Crank-Nicolson (centered midpoint) scheme (θ = 1

2).
• read_command_line_argparse() for reading parameters in the problem

from the command line and returning them: I, a, T, theta (θ), and a list
of Δt values for time steps. (We shall only make use of the first Δt value.)

22 2 Ordinary differential equation models

The basic statements for solving (2.1) are then

The module decay.py is developed and explained in Section 5.1.7 in [3].
To solve the dimensionless problem, just fix I = 1 and a = 1, and choose

T̄ and Δt̄:

The first two variables returned from read_command_line_argparse are I
and a, which are ignored here. To indicate that these variables are not to be
used, we use a “dummy name”, often taken to be the underscore symbol in
Python. The user can set –I and –a on the command line, since the decay
module allows this, but we hope the code above has a form that reminds the
user that these options are not to be used. Also note that T and dt_values[0]
set on the command line are the desired parameters for solving the scaled
problem.

Software for the scaled problem. Turning now to the scaled problem,
the solver function (originally designed for the unscaled problem) will be
reused, but it will only be run if it is strictly necessary. That is, when the
user requests a solution, our code should first check whether that solution can
be provided by simply scaling a solution already computed and available in a
file. If not, we will compute an appropriate scaled solution, find the requested
unscaled solution for the user, and also save the new scaled solution to file
for possible later use.

A very plain solution to the problem is found in the file decay_scaled_
v1.py. The np.savetxt function saves a two-dimensional array (“table”) to
a text file, and the np.loadtxt function can load the data back into the
program. A better solution to this problem is obtained by using the joblib
package as described next.

Implementation with joblib. The Python package joblib has function-
ality that is very convenient for implementing the solver_scaled function.
The first time a function is called with a set of arguments, the statements in
the function are executed and the return value is saved to file. If the function
is called again with the same set of arguments, the statements in the func-
tion are not executed, but the return value is read from file (of course, many
files may be stored, one for each combination of parameter values). In com-
puter science, one would say that joblib in this way provides memorization
functionality for Python functions. This functionality is particularly aimed at

from decay import solver, read_command_line_argparse
I, a, T, theta, dt_values = read_command_line_argparse()
u, t = solver(I, a, T, dt_values[0], theta)

from matplotlib.pyplot import plot, show
plot(t, u)
show()

_, _, T, theta, dt_values = read_command_line_argparse()
u, t = solver(I=1, a=1, T=T, dt=dt_values[0], theta=theta)

2.1 Exponential decay problems 23

large-scale computations with arrays that one would hesitate to recompute.
We illustrate the technique here in a very simple mathematical context.

First we make a solver_scaled function for the scaled model that just
calls up a solver_unscaled (with I = a = 1) for the problem with dimensions:

Then we create some “computer memory on disk”, i.e., some disk space to
store the result of a call to the solver_scaled function. Thereafter, we rede-
fine the name solver_scaled to a new function, created by joblib, which
calls our original solver_scaled function if necessary and otherwise loads
data from file:

The solutions are actually stored in files in the cache directory temp.
A typical use case is to read values from the command line, solve the scaled

problem (if necessary), unscale the solution, and visualize the solution with
dimension:

from decay import solver as solver_unscaled
import numpy as np
import matplotlib.pyplot as plt

def solver_scaled(T, dt, theta):
"""
Solve u’=-u, u(0)=1 for (0,T] with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(I=1, a=1, T=T, dt=dt, theta=theta)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

def unscale(u_scaled, t_scaled, I, a):
return I*u_scaled, a*t_scaled

from decay import read_command_line_argparse

def main():
Read unscaled parameters, solve and plot
I, a, T, theta, dt_values = read_command_line_argparse()
dt = dt_values[0] # use only the first dt value
T_bar = a*T
dt_bar = a*dt
u_scaled, t_scaled = solver_scaled(T_bar, dt_bar, theta)
u, t = unscale(u_scaled, t_scaled, I, a)

plt.figure()
plt.plot(t_scaled, u_scaled)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.title(’Universial solution of scaled problem’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

plt.figure()
plt.plot(t, u)
plt.xlabel(’t’); plt.ylabel(’u’)
plt.title(’I=%g, a=%g, theta=%g’ % (I, a, theta))
plt.savefig(’tmp2.png’); plt.savefig(’tmp2.pdf’)
plt.show()

24 2 Ordinary differential equation models

The complete code resides in the file decay_scaled.py. Note from the code
above that read_command_line_argparse is supposed to read parameters
with dimensions (but technically, we solve the scaled problem, if strictly nec-
essary, and unscale the solution). Let us run

Terminal

Terminal> python decay_scaled.py --I 8 --a 0.1 --dt 0.01 --T 50

A plot of the scaled and unscaled solution appears in Figure 2.1.

Fig. 2.1 Scaled (left) and unscaled (right) exponential decay.

Note that we write a message Computing the numerical solution in-
side the solver_scaled function. We can then easily detect when the solu-
tion is actually computed from scratch and when it is simply read from file
(followed by the unscaling procedure). Here is a demo:

Terminal

Terminal> # Very first run
Terminal> python decay_scaled.py --T 7 --a 1 --I 0.5 --dt 0.2
[Memory] Calling __main__--home-hpl...
solver_scaled-alias(7.0, 0.2, 0.5)
Computing the numerical solution

Terminal> # No change of T, dt, theta - can reuse solution in file
Terminal> python decay_scaled.py --T 7 --a 4 --I 2.5 --dt 0.2

Terminal> # Change of dt, must recompute
Terminal> python decay_scaled.py --T 7 --a 4 --I 2.0 --dt 0.5
[Memory] Calling __main__--home-hpl...
solver_scaled-alias(7.0, 0.5, 0.5)
Computing the numerical solution

Terminal> # Change of dt again, but dt=0.2 is already in a file
Terminal> python decay_scaled.py --T 7 --a 0.5 --I 1 --dt 0.2

We realize that joblib has access to all previous runs and does not re-
compute unless it is strictly required. Our previous implementation without

2.1 Exponential decay problems 25

joblib (in decay_scaled_v1.py) used only one file (for one numerical case)
and will therefore perform many more calls to solver_unscaled.

On the implementation of a simple memoize function

A memoized function recalls previous results when the same set of argu-
ments is encountered. That is, the function caches its results. A simple
implementation stores the arguments in a function call and the returned
results in a dictionary, and if the arguments are seen again, one looks
up in the dictionary and returns previously computed results:

The memoize functionality in joblib.Memory is more sophisticated and
can work very efficiently with large array data structures as arguments.
Note that the simple version above can only be used when all arguments
to the function f are immutable (since the key in a dictionary has to
be immutable).

2.1.5 Scaling a generalized problem

Now we consider an extension of the exponential decay ODE to the form

u′(t) = −au(t)+ b, u(0) = I . (2.8)

One particular model, with constant a and b, is a spherical small-sized or-
ganism falling in air,

u′ = −3πdμ

�bV
u+g

(
�

�b
−1

)
, (2.9)

where d, μ, �b, �, V , and g are physical parameters. The function u(t) rep-
resents the vertical velocity, being positive upwards. We shall use this model
in the following.

class Memoize:
def __init__(self, f):

self.f = f
self.memo = {} # map arguments to results

def __call__(self, *args):
if not args in self.memo:

self.memo[args] = self.f(*args)
return self.memo[args]

Wrap my_compute_function(arg1, arg2, ...)
my_compute_function = Memoize(my_compute_function)

26 2 Ordinary differential equation models

Exact solution. It can be handy to have the exact solution for reference,
in case of constant a and b:

ue(t) = e−at

a

(
b(eat −1)+aI

)
.

Solving differential equations in SymPy

It can be very useful to use a symbolic computation tool such as SymPy
to aid us in solving differential equations. Let us therefore demonstrate
how SymPy can be used to find this solution. First we define the pa-
rameters in the problem as symbols and u(t) as a function:

The next task is to define the differential equation, either as a symbolic
expression that is to equal zero, or as an equation Eq(lhs, rhs) with
lhs and rhs as expressions for the left- and right-hand side):

The differential equation can be solved by the dsolve function, yielding
an equation of the form u(t) == expression. We want to grab the
expression on the right-hand side as our solution:

The solution contains the unknown integration constant C1, which must
be determined by the initial condition. We form the equation arising
from the initial condition u(0) = I:

The one solution that was found (stored in a list!) must then be sub-
stituted back in the expression u to yield the final solution:

>>> from sympy import *
>>> t, a, b, I = symbols(’t a b I’, real=True, positive=True)
>>> u = symbols(’u’, cls=Function)

>>> # Define differential equation
>>> eq = diff(u(t), t) + a*u(t) - b
>>> # or
>>> eq = Eq(diff(u(t), t), -a*u(t) + b)

>>> sol = dsolve(eq, u(t))
>>> print sol
u(t) == (b + exp(a*(C1 - t)))/a
>>> u = sol.rhs # grab solution
>>> print u
(b + exp(a*(C1 - t)))/a

>>> C1 = symbols(’C1’)
>>> eq = Eq(u.subs(t, 0), I) # substitute t by 0 in u
>>> sol = solve(eq, C1)
>>> print sol
[log(I*a - b)/a]

2.1 Exponential decay problems 27

As in mathematics with pen and paper, we strive to simplify expressions
also in symbolic computing software. This frequently requires some trial
and error process with SymPy’s simplification functions. A very stan-
dard first try is to expand everything and run simplification algorithms:

Doing latex(u) automatically converts the expression to LATEX syntax
for inclusion in reports.

The reader may wonder why we bother with scaling of differential equa-
tions if SymPy can solved the problem in a nice, closed formula. This is true in
the present introductory problem, but in a more general problem setting, we
have some differential equation where SymPy perhaps can help with finding
an exact solution only in a special case. We can use this special-case solution
to control our reasoning about scales in the more general setting.

Theory. The challenges in our scaling is to find the right uc and tc scales.
From (2.8) we see that if u′ → 0 as t → ∞, u approaches the constant value
b/a. It can be convenient to let the scaled ū → 1 as we approach the dū/dt̄ = 0
state. This idea points to choosing

uc = b

a
= g

(
�

�b
−1

)(
3πdμ

�bV

)−1
. (2.10)

On the sign of the scaled velocity

A little note on the sign of uc is necessary here. With �b < �, the buoy-
ancy force upwards wins over the gravity force downwards, and the body
will move upwards. In this case, the terminal velocity uc > 0. When
�b > �, we get a motion downwards, and uc < 0. The corresponding u
is then also negative, but the scaled velocity u/uc, becomes positive.

Inserting u = ucū = bū/a and t = tct̄ in (2.8) leads to

dū

dt̄
= −tcaū+ tc

uc
b, ū(0) = I

a

b
.

>>> u = u.subs(C1, sol[0])
>>> print u
(b + exp(a*(-t + log(I*a - b)/a)))/a

>>> u = simplify(expand(u))
>>> print u
(I*a + b*exp(a*t) - b)*exp(-a*t)/a

28 2 Ordinary differential equation models

We want the scales such that dū/dt̄ and ū are about unity. To balance the
size of ū and dū/dt̄ we must therefore choose tc = 1/a, resulting in the scaled
ODE problem

dū

dt̄
= −ū+1, ū(0) = β, (2.11)

where β is a dimensionless number,

β = I

uc
= I

a

b
, (2.12)

reflecting the ratio of the initial velocity and the terminal (t → ∞) velocity
b/a. Scaled equations normally end up with one or more dimensionless param-
eters, such as β here, containing ratios of physical effects in the model. Many
more examples on dimensionless parameters will appear in later sections.

The analytical solution of the scaled model (2.11) reads

ūe(t) = e−t
(
et −1+β

)
= 1+(β −1)e−t . (2.13)

The result (2.11) with the solution (2.13) is actually astonishing if a and
b are as in (2.9): the six parameters d, μ, �b, �, V , and g are conjured to one:

β = I
3πdμ

�bV

1
g

(
�

�b
−1

)−1
,

which is an enormous simplification of the problem if our aim is to investigate
how u varies with the physical input parameters in the model. In particular,
if the motion starts from rest, β = 0, and there are no physical parameters
in the scaled model! We can then perform a single simulation and recover all
physical cases by the unscaling procedure. More precisely, having computed
ū(t̄) from (2.11), we can use

u(t) = b

a
ū(at), (2.14)

to scale back to the original problem again. We observe that (2.11) can utilize
a solver for (2.8) by setting a = 1, b = 1, and I = β. Given some implementa-
tion of a solver for (2.8), say solver(I, a, b, T, dt, theta), the scaled
model is run by solver(beta, 1, 1, T, dt, theta).

Software. We may develop a solver for the scaled problem that uses joblib
to cache solutions with the same β, Δt, and T . For now we fix θ = 0.5.
The module decay_vc.py (see Section 3.1.3 in [3] for details) has a function
solver(I, a, b, T, dt, theta) for solving u′(t) = −a(t)u(t)+b(t) for t ∈
(0,T], u(0) = I, with time step dt. We reuse this function and call it with
a = b = 1 and I = β to solve the scaled problem:

2.1 Exponential decay problems 29

If we want to plot the physical solution, we need an unscale function,

Looking at droplets of water in air, we can fix some of the parameters
and let the size parameter d be the one for experimentation. The following
function sets physical parameters, computes β, runs the solver for the scaled
problem (joblib detects if it is necessary), and finally plots the scaled curve
ū(t̄) and the unscaled curve u(t).

from decay_vc import solver as solver_unscaled

def solver_scaled(beta, T, dt, theta=0.5):
"""
Solve u’=-u+1, u(0)=beta for (0,T]
with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(

I=beta, a=lambda t: 1, b=lambda t: 1,
T=T, dt=dt, theta=theta)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

def unscale(u_scaled, t_scaled, d, mu, rho, rho_b, V):
a, b = ab(d, mu, rho, rho_b, V)
return (b/a)*u_scaled, a*t_scaled

def ab(d, mu, rho, rho_b, V):
g = 9.81
a = 3*pi*d*mu/(rho_b*V)
b = g*(rho/rho_b - 1)
return a, b

def main(dt=0.075, # Time step, scaled problem
T=7.5, # Final time, scaled problem
d=0.001, # Diameter (unscaled problem)
I=0, # Initial velocity (unscaled problem)
):

Set parameters, solve and plot
rho = 0.00129E+3 # air
rho_b = 1E+3 # density of water
mu = 0.001 # viscosity of water
Asumme we have list or similar for d
if not isinstance(d, (list,tuple,np.ndarray)):

d = [d]

legends1 = []
legends2 = []
plt.figure(1)
plt.figure(2)
betas = [] # beta values already computed (for plot)

30 2 Ordinary differential equation models

The most complicated part of the code is related to plotting, but this part

can be skipped when trying to understand how we work with a scaled model
to perform the computations. The complete program is found in the file
falling_body.py.

Since I = 0 implies β = 0, we can run different d values without any need
to recompute ū(t̄) as long as we assume the particle starts from rest.

From the scaling, we see that uc = b/a ∼ d−2 and also that tc = 1/a ∼ d−2,
so plotting of u(t) with dimensions for various d values will involve significant
variations in the time and velocity scales. Figure 2.2 has an example with
d = 1,2,3 mm, where we clearly see the different time and velocity scales in
the figure with unscaled variables. Note that the scaled velocity is positive
because of the sign of uc (see the box above).

Fig. 2.2 Velocity of falling body: scaled (left) and with dimensions (right).

for d_ in d:
V = 4*pi/3*(d_/2.)**3 # volume
a, b = ab(d_, mu, rho, rho_b, V)
beta = I*a/b
Restrict to 3 digits in beta
beta = abs(round(beta, 3))

print ’beta=%.3f’ % beta
u_scaled, t_scaled = solver_scaled(beta, T, dt)

Avoid plotting curves with the same beta value
if not beta in betas:

plt.figure(1)
plt.plot(t_scaled, u_scaled)
plt.hold(’on’)
legends1.append(’beta=%g’ % beta)

betas.append(beta)

plt.figure(2)
u, t = unscale(u_scaled, t_scaled, d_, mu, rho, rho_b, V)
plt.plot(t, u)
plt.hold(’on’)
legends2.append(’d=%g [mm]’ % (d_*1000))

plt.figure(1)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.legend(legends1, loc=’lower right’)

2.1 Exponential decay problems 31

2.1.6 Variable coefficients

When a prescribed coefficient like a(t) in u′(t) = −a(t)u(t) varies with time
one usually also performs a scaling of this a,

ā(t̄) = a(t)−a0
ac

,

where the goal is to have the scaled ā of size unity: |ā| ≤ 1. This property
is obtained by choosing ac as the maximum value of |a(t)−a0| for t ∈ [0,T],
which is usually a quantity that can be estimated since a(t) is known as a
function of t. The a0 parameter can be chosen as 0 here. (It could be tempting
to choose a0 = mint a(t) so that 0 ≤ ā ≤ 1, but then there is at least one point
where ā = 0 and the differential equation collapses to u′ = 0.)

As an example, imagine a decaying cell culture where we at time t1 change
the environment (typically the nutrition) such that the death rate increases
by a factor 5. Mathematically, a(t) = d for t < t1 and a(t) = 5d for t ≥ t1. The
model reads u′ = −a(t)u, u(0) = I.

The a(t) function is scaled by letting the characteristic size be ac = d and
a0 = 0:

ā(t̄) =
{

1, t̄ < t1/tc

5, t̄ ≥ t1/tc

The scaled equation becomes

uc

tc

dū

dt̄
= acā(t̄)ucū, ucū(0) = I .

The natural choice of uc is I. The characteristic time, previously taken as
tc = 1/a, can now be chosen as tc = t1 or tc = 1/d. With tc = 1/d we get

ū′(t̄) = −āū, ū(0) = 1, ā =
{

1, t̄ < γ
5, t̄ ≥ γ

(2.15)

where

γ = t1d

is a dimensionless number in the problem. With tc = t1, we get

ū′(t̄) = −γāū, ū(0) = 1, ā =
{

1, t̄ < 1
5, t̄ ≥ 1

The dimensionless parameter γ is now in the equation rather than in the
definition of ā. Both problems involve γ, which is the ratio between the time
when the environmental change happens and the typical time for the decay
(1/d).

32 2 Ordinary differential equation models

A computation with the scaled model (2.15) and the original model with
dimensions appears in Figure 2.3.

Fig. 2.3 Exponential decay with jump: scaled model (left) and unscaled model (right).

2.1.7 Scaling a cooling problem with constant
temperature in the surroundings

The heat exchange between a body at temperature T (t) and the surroundings
at constant temperature Ts can be modeled by Newton’s law of cooling:

T ′(t) = −k(T −Ts), T (0) = T0, (2.16)

where k is a prescribed heat transfer coefficient.

Exact solution. An analytical solution is always handy to have as a control
of the choice of scales. The solution of (2.16) is by standard methods for
ODEs found to be T (t) = Ts +(T0 −Ts)e−kt.

Scaling. Physically, we expect the temperature to start at T0 and then to
move toward the temperature of the surroundings (Ts). We therefore expect
that T lies between T0 and Ts. This is mathematically demonstrated by the
analytical solution as well. A proper scaling is therefore to scale and translate
T according to

T̄ = T −T0
Ts −T0

. (2.17)

Now, 0 ≤ T̄ ≤ 1.
Scaling time by t̄ = t/tc and inserting T = T0 + (Ts − T0)T̄ and t = tct̄ in

the problem (2.16) gives

2.1 Exponential decay problems 33

dT̄

dt̄
= −tck(T̄ −1), T̄ (0) = 0 .

A natural choice, as argued in other exponential decay problems, is to choose
tck = 1, which leaves us with the scaled problem

dT̄

dt̄
= −(T̄ −1), T̄ (0) = 0 . (2.18)

No physical parameter enters this problem! Our scaling implies that T̄ starts
at 0 and approaches 1 as t̄ → ∞, also in the case Ts < T0. The physical
temperature is always recovered as

T (t) = T0 +(Ts −T0)T̄ (kt̄) . (2.19)

Software. An implementation for (2.16) works for (2.18) by setting k = 1,
Ts = 1, and T0 = 0.

Alternative scaling. An alternative temperature scaling is to choose

T̄ = T −Ts

T0 −Ts
. (2.20)

Now T̄ = 1 initially and approaches zero as t → ∞. The resulting scaled ODE
problem then becomes

dT̄

dt̄
= −T̄ , T̄ (0) = 1, . (2.21)

with solution T̄ = e−t̄.

2.1.8 Scaling a cooling problem with time-dependent
surroundings

Let us apply the model (2.16) to the case when the surrounding temperature
varies in time. Say we have an oscillating temperature environment according
to

Ts(t) = Tm +asin(ωt), (2.22)

where Tm is the mean temperature in the surroundings, a is the amplitude
of the variations around Tm, and 2π/ω is the period of the temperature
oscillations.

Exact solution. Also in this relatively simple problem it is possible to solve
the differential equation problem analytically. Such a solution may be a good
help to see what the scales are, and especially to control other forms for

34 2 Ordinary differential equation models

reasoning about the scales. Using the method of integrating factors for the
original differential equation, we have

T (t) = T0e−kt +e−ktk

∫ t

0
ekτ Ts(τ)dτ .

With Ts(t) = Tm + asin(ωt) we can use SymPy to help us with integrations
(note that we use w for ω in the computer code):

Reordering the result, we get

T (t) = T0e−kt +Tm(1−e−kt)+(k2 +ω2)−1(akωe−kt +ak sin(ωt)−akw cos(ωt)) .

Scaling. The scaling (2.17) brings in a time-dependent characteristic tem-
perature scale Ts − T0. Let us start with a fixed scale, where we take the
characteristic temperature variation to be Tm −T0:

T̄ = T −T0
Tm −T0

.

We realize by physical reasoning that T sets out at T0, but with time, it
will oscillate around Tm. (This reasoning can be controlled by looking at the
exact solution we produced above.) The typical average temperature span is
therefore |Tm −T0|, unless a is much larger than |Tm −T0| or T0 is very close
to Tm.

We get from the differential equation, with tc = 1/k as in the former case,

k(Tm −T0)dT̄

dt̄
= −k((Tm −T0)T̄ +T0 −Tm −asin(ωt),

resulting in

dT̄

dt̄
= −T̄ +1+αsin(βt̄), T̄ (0) = 0, (2.23)

where we have two dimensionless numbers:

α = a

Tm −T0
, β = ω

k
.

>>> from sympy import *
>>> t, k, T_m, a, w = symbols(’t k T_m a w’, real=True, positive=True)
>>> T_s = T_m + a*sin(w*t)
>>> I = exp(k*t)*T_s
>>> I = integrate(I, (t, 0, t))
>>> Q = k*exp(-k*t)*I
>>> Q = simplify(expand(Q))
>>> print Q
(-T_m*k**2 - T_m*w**2 + a*k*w +
(T_m*k**2 + T_m*w**2 + a*k**2*sin(t*w) -
a*k*w*cos(t*w))*exp(k*t))*exp(-k*t)/((k**2 + w**2))

2.1 Exponential decay problems 35

The α quantity measures the ratio of temperatures: amplitude of oscillations
versus distance from initial temperature to the average temperature for large
times. The β number is the ratio of the two time scales: the frequency of the
oscillations in Ts and the inverse e-folding time of the heat transfer. For clear
interpretation of β we may introduce the period P = 2π/ω of the oscillations
in Ts and the e-folding time e = 1/k. Then β = 2πe/P and measures the
e-folding time versus the period.

Remark
The original problem features five physical parameters: k, T0, Tm, a,
and ω, but only two dimensionless numbers appear in the scaled model
(2.23). In fact, this is an example where application of the Pi theorem
(see Section 1.1.3) falls short. Since, only time and temperature are
involved as unit types, the theorem predicts that the five parameters
yields three dimensionless numbers, not two. Scaling of the differential
equations, on the other hand, shows us that the two parameters Tm and
T0 affect the nature of the problem only through their difference.

Software. Implementations of the unscaled problem (2.16) can be reused for
the scaled model by setting k = 1, T0 = 0, and Ts(t) = 1+αsin(βt̄) (Tm = 1,
a = α, ω = β). The file osc_cooling.py contains solvers for the problem with
dimensions and for the scaled problem. The figure below shows three cases
of β values: small, medium, and large.

For the small β value, the oscillations in the surrounding temperature are
slow enough compared to k for the heating and cooling process to follow the

36 2 Ordinary differential equation models

surrounding temperature, with a small time lag. For larger β, the heating
and cooling require more time, and the oscillations get smaller.

Discussion of the time scale. There are two time variations of importance
in the present problem: heat is transferred to the surroundings at a rate k,
and the surroundings have a temperature variation with a period that goes
like 1/ω. (We can, when we are so lucky that we have an analytical solution
at hand, inspect this solution to see that k impacts the problem through a
decay factor e−kt, and ω impacts the problem through oscillations sin(ωt).)
The k parameter related to temperature decay points to a time scale tc = 1/k,
while the temperature oscillations of the surroundings point to a time scale
tc = 1/ω. Which one should be chosen?

Bringing the temperature from T0 to the level of the surroundings, Tm,
goes like e−kt, so in this process tc = 1/k is the characteristic time. Thereafter,
the body’s temperature just responds to the oscillations and the sin(ωt) (and
cos(ωt)) term dominates. For these large times, tc = 1/ω is the appropriate
time scale. Choosing tc = 1/ω results in

dT̄

dt̄
= −β−1(T̄ − (1+αsin(t̄))), T̄ (0) = 0 . (2.24)

Let us illustrate another, less effective, scaling. The temperature scale
in (2.17) looks natural, so we apply this choice of scale. The characteristic
temperature T0 −Ts now involves a time-dependent term Ts(t). The mathe-
matical steps become a bit more technically involved:

T (t) = T0 +(Ts(t)−T0)T̄ ,

dT

dt
= dTs

dt
T̄ +(Ts −T0)dT̄

dt̄

dt̄

dt
.

With t̄ = t/tc = kt we get from the differential equation

dTs

dt
T̄ +(Ts −T0)dT̄

dt̄
k = −k(T̄ −1)(Ts −T0),

which after dividing by k(Ts −T0) results in

dT̄

dt̄
= −(T̄ −1)− dTs

dt

T̄

k(Ts −T0
,

or

dT̄

dt̄
= −(T̄ −1)− aω cos(ωt̄/k)

k(Tm +asin(ωt̄/k)−T0)
T̄ .

The last term is complicated and becomes more tractable if we factor out
dimensionless numbers. To this end, we scale Ts by (e.g.) Tm, which means
to factor out Tm in the denominator. We are then left with

2.1 Exponential decay problems 37

dT̄

dt̄
= −(T̄ −1)−αβ

cos(βt̄)
1+αsin(βt̄)−γ

T̄ , (2.25)

where α, β, and γ are dimensionless numbers characterizing the relative im-
portance of parameters in the problem:

α = a/Tm, β = ω/k, γ = T0/Tm . (2.26)

We notice that (2.25) is not a special case of the original problem (2.16).
Furthermore, the original five parameters k, Tm, a, ω, and T0 are reduced
to three dimensionless parameters. We conclude that this scaling is inferior,
because using the temperature scale T0 − Tm enables reuse of the software
for the unscaled problem and only two dimensionless parameters appear in
the scaled model.

Let us briefly mention another possible temperature scaling: T̄ = T/Tm,
motivated by the fact that as t → ∞, T will oscillate around Tm, so this T̄
will oscillate around unity. We get the dimensionless ODE

dT̄

dt̄
= −(T̄ − (1+ δ sin(βt̄))),

with a new dimensionless parameter δ = a/Tm. However, the initial condi-
tion becomes T̄ (0) = T0/Tm, and the ratio T0/Tm is a third dimensionless
parameter, so this scaling is also inferior to the one above with only two
parameters.

2.1.9 Scaling a nonlinear ODE

Exponential growth models, u′ = au, are not realistic in environments with
limited resources. However, by letting a depend on u, the effect of limited
resources can well be captured by such a simple differential equation model:

u′ = a(u)u, u(0) = I . (2.27)

If the maximum value of u is denoted by M , we have that a(M) = 0. A
simple choice fulfilling this requirement is a(u) = �(1−u/M). The parameter
� can be interpreted as the initial exponential growth rate if we assume that
I/M � 1, since at t = 0 the model then approximates u′ = �u.

The choice a(u) = �(1−u/M) is known as the logistic model for population
growth:

u′ = �u(1−u/M), u(0) = I . (2.28)

A more complicated choice of a may be a(u) = �(1−u/M)p for some exponent
p (this function also fulfills a(M) = 0 and a ≈ � for t = 0).

38 2 Ordinary differential equation models

Scaling. Let us scale (2.27) with a(u) = �(1 − u/M)p. The natural scale
for u is M (uc = M), since we know that 0 < u ≤ M , and this makes the
dimensionless ū = u/M ∈ (0,1]. The function a(u) is typically varying between
0 and �, so it can be scaled as

ā(ū) = a(u)
�

= (1− u

M
)p = (1− ū)p .

Time is scaled as t̄ = t/tc for some suitable characteristic time tc. Inserted in
(2.27), we get

uc

tc

dū

dt̄
= �āucū, ucū(0) = I,

resulting in

dū

dt̄
= tc�(1− ū)pū, ū(0) = I

M
.

A natural choice is tc = 1/� as in other exponential growth models since
it leads to the term on the right-hand side to be about unity, just as the
left-hand side. (If the scaling is correct, ū and its derivatives are of order
unity, so the coefficients must also be of order unity.) Introducing also the
dimensionless parameter

α = I

M
,

measuring the fraction of the initial population compared to the maximum
one, we get the dimensionless model

dū

dt̄
= (1− ū)pū, ū(0) = α. (2.29)

Here, we have two dimensionless parameters: α and p. A classical logistic
model with p = 1 has only one dimensionless variable.
Alternative scaling. We could try another scaling of u where we also trans-
late ū:

ū = u− I

M
.

This choice of ū results in

dū

dt̄
= (1−α − ū)pū, ū(0) = 0 . (2.30)

The essential difference between (2.29) and (2.30) is that ū ∈ [α,1] in the
former and ū ∈ [0,1−α] in the latter. Both models involve the dimensionless
numbers α and p. An advantage of (2.29) is that software for the unscaled
model can easily be used for the scaled model by choosing I = α, M = 1, and
� = 1.

2.1 Exponential decay problems 39

2.1.10 SIR ODE system for spreading of diseases

The field of epidemiology frequently applies ODE systems to describe the
spreading of diseases, such as smallpox, measles, plague, ordinary flu, swine
flu, and HIV. Different models include different effects, which are reflected in
dimensionless numbers. Most of the effects are modeled as exponential decay
or growth of the dependent variables.

The simplest model has three categories of people: susceptibles (S) who can
get the disease, infectious (I) who are infected and may infect susceptibles,
and recovered (R) who have recovered from the disease and gained immunity.
We introduce S(t), I(t), and R(t) as the number of people in the categories
S, I, and R, respectively. The model, naturally known as the SIR model1, can
be expressed as a system of three ODEs:

dS

dt
= −βSI, (2.31)

dI

dt
= βSI −νI, (2.32)

dR

dt
= νI, (2.33)

where β and ν are empirical constants. The average time for recovering from
the disease can be shown to be ν−1, but β is much harder to estimate, so
working with a scaled model where β is “scaled away” is advantageous.

Scaling. It is natural to scale S, I, and R by, e.g., S(0):

S̄ = S

S(0) , Ī = I

S(0) , R̄ = R

S(0) .

Introducing t̄ = t/tc, we arrive at the equations

dS̄

dt̄
= −tcS(0)βS̄Ī,

dĪ

dt̄
= tcS(0)βS̄Ī − tcνĪ,

dR̄

dt̄
= tcνĪ,

with initial conditions S̄(0) = 1, Ī(0) = I0/S(0) = α, and R̄(0) = R(0)/S(0).
Normally, R(0) = 0.

Taking tc = 1/ν, corresponding to a time unit equal to the time it takes
to recover from the disease, we end up with the scaled model

1https://en.wikipedia.org/wiki/Epidemic_model

40 2 Ordinary differential equation models

dS̄

dt̄
= −R0S̄Ī, (2.34)

dĪ

dt̄
= R0S̄Ī − Ī , (2.35)

dR̄

dt̄
= Ī , (2.36)

with S̄(0) = 1, Ī(0) = α, R̄(0) = 0, and R0 as the dimensionless number

R0 = S(0)β
ν

. (2.37)

We see from (2.35) that to make the disease spreading, dĪ/dt̄ > 0, and there-
fore R0S̄(0) − 1 > 0 or R0 > 1 since S̄(0) = 1. Therefore, R0 reflects the
disease’s ability to spread and is consequently an important dimensionless
quantity, known as the basic reproduction number2. This number reflects the
number of infected people caused by one infectious individual during the time
period of the disease.

Looking at (2.32), we see that to increase I initially, we must have dI/dt > 0
at t = 0, which implies βI(0)S(0)−νI(0) > 0, i.e., R0 > 1.

Software. Any implementation of the SIR model with dimensions can be
reused for the scaled model by setting β = R0, ν = 1, S(0) = 1 − α, and
I(0) = α. Below is a plot with two cases: R0 = 2 and R0 = 5, both with
α = 0.02.

Alternative scaling. Adding (2.31)-(2.33) shows that

dS

dt
+ dI

dt
+ dR

dt
= 0 ⇒ S + I +R = const = N,

2https://en.wikipedia.org/wiki/Basic_reproduction_number

2.1 Exponential decay problems 41

where N is the size of the population. We can therefore scale S, I, and R by
the total population N = S(0)+ I(0)+R(0):

S̄ = S

N
, Ī = I

N
, R̄ = R

N
.

With the same time scale, one gets the system (2.34)-(2.36), but with R0
replaced by the dimensionless number:

R̃0 = Nβ

ν
. (2.38)

The initial conditions become S̄(0) = 1−α, Ī(0) = α, and R̄(0) = 0.
For the disease to spread at t = 0, we must have R̃0S̄(0) > 1, but R̃0S̄(0) =

Nβ/ν ·S(0)/N = R0, so the criterion is still R0 > 1. Since R0 is a more famous
number than R̃0, we can write the ODEs with R0/S(0) = R0/(1−α) instead
of R̃0.

Choosing tc to make the SI terms balance the time derivatives, tc =
(Nβ)−1, moves R̃0 (or R0 if we scale S, I, and R by S(0)) to the I terms:

dS̄

dt̄
= −S̄Ī,

dĪ

dt̄
= S̄Ī − R̃−1

0 Ī ,

dR̄

dt̄
= R̃−1

0 I .

2.1.11 SIRV model with finite immunity

A common extension of the SIR model involves finite immunity: after some
period of time, recovered individuals lose their immunity and become suscep-
tibles again. This is modeled as a leakage −μR from the R to the S category,
where μ−1 is the average time it takes to lose immunity. Vaccination is an-
other extension: a fraction pS is removed from the S category by successful
vaccination and brought to a new category V (the vaccinated). The ODE
model reads

42 2 Ordinary differential equation models

dS

dt
= −βSI −pS +μR, (2.39)

dI

dt
= βSI −νI, (2.40)

dR

dt
= νI −μR, (2.41)

dV

dt
= pS . (2.42)

Using tc = 1/ν and scaling the unknowns by S(0), we arrive at the dimen-
sionless model

dS̄

dt̄
= −R0S̄Ī − δS̄ +γR̄, (2.43)

dĪ

dt̄
= R0S̄Ī − Ī , (2.44)

dR̄

dt̄
= Ī −γR̄, (2.45)

dV̄

dt̄
= δS̄, (2.46)

with two new dimensionless parameters:

γ = μ

ν
, δ = p

ν
.

The quantity p−1 can be interpreted as the average time it takes to vaccinate
a susceptible successfully. Writing γ = ν−1/μ−1 and δ = ν−1/p−1 gives the
interpretation that γ is the ratio of the average time to recover and the
average time to lose immunity, while δ is the ratio of the average time to
recover and the average time to successfully vaccinate a susceptible.

The plot in Figure 2.4 has γ = 0.05, i.e., loss of immunity takes 20 weeks
if it takes one week to recover from the disease. The left plot corresponds to
no vaccination, while the right has δ = 0.5 for a vaccination campaign that
lasts from day 7 to day 15. The value δ = 0.5 reflects that it takes two weeks
to successfully vaccinate a susceptible, but the effect of vaccination is still
dramatic.

2.1.12 Michaelis-Menten kinetics for biochemical
reactions

A classical reaction model in biochemistry describes how a substrate S is
turned into a product P with aid of an enzyme E. S and E react to form

2.1 Exponential decay problems 43

Fig. 2.4 Spreading of a disease with loss of immunity (left) and added vaccination
(right).

a complex ES in the first stage of the reaction. In the second stage, ES is
turned into E and P. Introducing the amount of S, E, ES, and P by [S], [E],
[ES], and [P], the mathematical model can be written as

d[ES]
dt

= k+[E][S]−kv[ES]−k−[ES], (2.47)

d[P]
dt

= kv[ES], (2.48)

d[S]
dt

= −k+[E][S]+k−[ES], (2.49)

d[E]
dt

= −k+[E][S]+k−[ES]+kv[ES] . (2.50)

The initial conditions are [ES](0) = [P](0) = 0, and [S] = S0, [E] = E0. Three
rate constants are involved: k+, k−, and kv. The above mathematical model
is known as Michaelis-Menten kinetics3.

The amount of substance is measured in the unit mole4 (mol). From the
equations we can see that k+ is measured in s−1mol−1, while k− and kv are
measured in s−1. It is convenient to get rid of the mole unit for the amount
of a substance. When working with dimensionless quantities, only ratios of
the rate constants and not their specific values are needed.

Classical analysis. A common assumption is that the formation of [ES] is
very fast and that it quickly reaches an equilibrium state, [ES]′ = 0. Equation
(2.47) then reduces to the algebraic equation

k+[E][S]−kv[ES]−k−[ES] = 0,

which leads to

3https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics
4https://en.wikipedia.org/wiki/Mole_(unit)

44 2 Ordinary differential equation models

[E][S]
[ES] = k− +kv

k+
= K, (2.51)

where K is the famous Michaelis constant - the equilibrium constant between
[E][S] and [ES].

Another important observation is that the ODE system implies two con-
servation equations, arising from simply adding the ODEs:

d[ES]
dt

+ d[E]
dt

= 0, (2.52)

d[ES]
dt

+ d[S]
dt

+ d[P]
dt

= 0, (2.53)

from which it follows that

[ES]+ [E] = E0, (2.54)
[ES]+ [S]+ [P] = S0 . (2.55)

We can use (2.54) and (2.51) to express [E] by [S]:

[E] = E0 − [ES] = E0 − [E][S]
K

⇒ [E] = KE0
K +[S] .

Now (2.49) can be developed to an equation involving [S] only:

d[S]
dt

= −k+[E][S]+k−[ES]

= (−k+ + k−
K

)[E][S]

= (−k+ + k−
K

)[S] KE0
K +[S]

= − k−E0
[S]+K

. (2.56)

We see that the parameter K is central.
From above expression for [E] and (2.54) it now follows

[E] = KE0
K +[S] , [ES] = E0[S]

K +[S] .

If K is comparable to S0 these indicate

[E] ∼ E0, [ES] ∼ E0S0
K

,

2.1 Exponential decay problems 45

as is used for scaling [E] and Qc, subsequently. Provided we exclude the case
[S] � K, we may infer that [E] will be of magnitude E0, while [ES] will be
of magnitude E0S0/K.

Dimensionless ODE system. Let us reason how to make the original ODE
system (2.47)-(2.50) dimensionless. Aiming at [S] and [E] of unit size, two
obvious dimensionless unknowns are

S̄ = [S]
S0

, Ē = [E]
E0

.

For the other two unknowns we just introduce scales to be determined later:

P̄ = [P]
Pc

, Q̄ = [ES]
Qc

.

With t̄ = t/tc the equations become

dQ̄

dt̄
= tck+

E0S0
Qc

ĒS̄ − tc(kv +k−)Q̄,

dP̄

dt̄
= tckv

Qc

Pc
Q̄,

dS̄

dt̄
= −tck+E0ĒS̄ + tck−

Qc

S0
Q̄,

dĒ

dt̄
= −tck+S0ĒS̄ + tc(k− +kv)Qc

E0
Q̄ .

Determining scales. Choosing the scales is actually a quite complicated
matter that requires extensive analysis of the equations to determine the
characteristics of the solutions. Much literature is written about this, but
here we shall take a simplistic and pragmatic approach. Besides the Michaelis
constant K, there is another important parameter,

ε = E0
S0

,

because most applications will involve a small ε. We shall have K and ε in
mind while choosing scales such that these symbols appear naturally in the
scaled equations.

Looking at the equations, we see that the K parameter will appear if
tc ∼ 1/k+. However, 1/k+ does not have the dimension [T]−1 as required, so
we need to add a factor with dimension mol. A natural choice is t−1

c = k+S0
or t−1

c = k+E0. Since often S0 � E0, the former tc is a short time scale and
the latter is a long time scale. If the interest is in the long time scale, we set

tc = 1
k+E0

.

46 2 Ordinary differential equation models

The equations then take the form

dQ̄

dt̄
= S0

Qc
ĒS̄ −KE−1

0 Q̄,

dP̄

dt̄
= kv

k+E0

Qc

Pc
Q̄,

dS̄

dt̄
= −ĒS̄ + k−

k+E0

Qc

S0
Q̄,

dĒ

dt̄
= −ε−1ĒS̄ +K

Qc

E2
0

Q̄ .

The [ES] variable starts and ends at zero, and its maximum value can be
roughly estimated from the equation for [ES]′ by setting [ES]′ = 0, which
gives

[ES] = [E][S]
K

∼ E0S0
K

,

where we have replaced [E][S] by E0S0 as an identification of magnitude.
This magnitude of [ES] at its maximum can be used as the characteristic
size Qc:

Qc = E0S0
K

.

The equation for P̄ simplifies if we choose Pc = Qc. With these assumptions
one gets

dQ̄

dt̄
= KE−1

0 (ĒS̄ − Q̄),

dP̄

dt̄
= kv

k+E0
Q̄,

dS̄

dt̄
= −ĒS̄ + k−

k+E0

E0
K

Q̄,

dĒ

dt̄
= −ε−1ĒS̄ + ε−1Q̄ .

We can now identify the dimensionless numbers

α = K

E0
, β = kv

k+E0
, γ = k−

k+E0
,

where we see that α = β +γ, so γ can be eliminated. Moreover,

2.1 Exponential decay problems 47

α = k−
k+E0

+β,

implying that α > β.
We arrive at the final set of scaled differential equations:

dQ̄

dt̄
= α(ĒS̄ − Q̄), (2.57)

dP̄

dt̄
= βQ̄, (2.58)

dS̄

dt̄
= −ĒS̄ +(1−βα−1)Q̄, (2.59)

ε
dĒ

dt̄
= −ĒS̄ + Q̄ . (2.60)

The initial conditions are S̄ = Ē = 1 and Q̄ = P̄ = 0.
The five initial parameters (S0, E0, k+, k−, and kv) are reduced to three

dimensionless constants:

• α is the dimensionless Michaelis constant, reflecting the ratio of the pro-
duction of P and E (kv + k−) versus the production of the complex (k+),
made dimensionless by E0,

• ε is the initial fraction of enzyme relative to the substrate,
• β measures the relative importance of production of P (kv) versus produc-

tion of the complex (k+), made dimensionless by E0.

Observe that software developed for solving (2.47)-(2.50) cannot be reused for
solving (2.57)-(2.60) since the latter system has a slightly different structure.
Conservation equations. The counterpart to the conservation equations
(2.54)-(2.55) is obtained by adding (2.57) and α times (2.60), and adding
(2.57), (2.58), and α times (2.59):

ε−1α−1Q̄+ Ē = 1, (2.61)
αS̄ + Q̄+ P̄ = α. (2.62)

The scaled quantities, as well as the original concentrations, must be pos-
itive variables, and Ē ∈ [0,1], S̄ ∈ [0,1]. Such checks along with the conserved
quantities above should be performed at every time step in a simulation.
Analysis of the scaled system. In the scaled system, we may assume ε
small, which from (2.60) gives rise to the simplification εĒ′ = 0, and thereby
the relation Q̄ = ĒS̄. The conservation equation [ES]+[E] = E0 reads QcQ̄+
E0Ē = E0 such that Ē = 1 − QcQ̄/E0 = 1 − Q̄S0/K = 1 − ε−1α−1Q̄. The
relation Q̄ = ĒS̄ then becomes

48 2 Ordinary differential equation models

Q̄ = (1− ε−1α−1Q̄)S̄,

which can be solved for Q̄:

Q̄ = S̄

1+ ε−1α−1S̄
.

The equation (2.59) for S̄ becomes

dS̄

dt̄
= −βα−1Q̄ = − βS̄

α + ε−1S̄
. (2.63)

This is a more precise analysis than the one leading to (2.56) since we now
realize that the mathematical assumption for the simplification is ε → 0.

Is (2.63) consistent with (2.56)? It is easy to make algebraic mistakes when
deriving scaled equations, so it is always wise to carry out consistency checks.
Introducing dimensions in (2.63) leads to

tc

S0

dS

dt
= dS̄

dt̄
= − βS̄

α + ε−1S̄
= − kv

k+E0

S

KE−1
0 +E−1

0 S0S̄
= − kv

k+

S̄

K +S
,

and hence with t−1
c = k+E0,

dS

dt
= −kvE0S

K +S
,

which is (2.56).
Figure 2.5 shows the impact of ε: with a moderately small value (0.1) we

see that Q̄ ≈ 0, which justifies the simplifications performed above. We also
observe that all the unknowns vary between 0 and about 1, indicating that the
scaling is successful for the chosen dimensionless numbers. The simulations
made use of a time step Δt̄ = 0.01 with a 4th-order Runge-Kutta method,
using α = 1.5, β = 1 (relevant code is in the simulate_biochemical_process
function in session.py).

Fig. 2.5 Simulation of a biochemical process.

2.2 Vibration problems 49

However, it is of interest to investigate the limit ε → 0. Initially, the equa-
tion for dĒ/dt̄ reads dĒ/dt̄ = −ε−1, which implies a very fast reduction of
Ē. Using ε = 0.005 and Δt̄ = 10−3, simulation results show that Ē decays to
approximately zero at t = 0.03 while S̄ ≈ 1 and Q̄ ≈ P̄ ≈ 0. This is reasonable
since with very little enzyme in comparison with the substrate (ε → 0) very
little will happen.

2.2 Vibration problems

We shall in this section address a range of different second-order ODEs for
mechanical vibrations and demonstrate how to reason about the scaling in
different physical scenarios.

2.2.1 Undamped vibrations without forcing

The simplest differential equation model for mechanical vibrations reads

mu′′ +ku = 0, u(0) = I, u′(0) = V, (2.64)

where unknown u(t) measures the displacement of the body, This is a common
model for a vibrating body with mass m attached to a linear spring with
spring constant k (and force −ku). Figure 2.6 shows a typical mechanical
sketch of such a system: some mass can move horizontally without friction
and is connected to a spring that exerts a force −ku on the body.

Fig. 2.6 Oscillating body attached to a spring.

The first technical steps of scaling. The problem (2.64) has one inde-
pendent variable t and one dependent variable u. We introduce dimensionless
versions of these variables:

ku

u(t)

m

50 2 Ordinary differential equation models

ū = u

uc
, t̄ = t

tc
,

where uc and tc are characteristic values of u and t. Inserted in (2.64), we
get

m
uc

t2
c

d2ū

dt̄2 +kucū = 0, ucū(0) = I,
uc

tc

dū

dt̄
(0) = V,

resulting in

d2ū

dt̄2 + t2
ck

m
ū = 0, ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.65)

What is an appropriate displacement scale uc? The initial condition u(0) =
I is a candidate, i.e., uc = I. But how to choose the time scale? Making the
coefficient in front of the ū unity, such that both terms balance and are of
size unity, is a candidate.
The exact solution. To better see what the proper scales of u and t are,
we can look into the analytical solution of this problem. Although the exact
solution of (2.64) is quite straightforward to calculate by hand, we take the
opportunity to make use of SymPy to find u(t). The use of SymPy can later
be generalized to vibration ODEs that are harder to solve by hand.

SymPy requires all mathematical symbols to be explicitly created:

To specify the ODE to be solved, we can make a Python function returning
all the terms in the ODE:

The diffeq variable, defining the ODE, can be passed to the SymPy function
dsolve to find the symbolic solution of the ODE:

The solution that gets printed is C1*sin(t*w) + C2*cos(t*w), indicating
that there are two integration constants C1 and C2 to be determined by the
initial conditions. The result of applying these conditions is a 2 × 2 linear
system of algebraic equations that SymPy can solve by the solve function.
The code goes as follows:

from sympy import *
u = symbols(’u’, cls=Function)
w = symbols(’w’, real=True, positive=True)
I, V, C1, C2 = symbols(’I V C1 C2’, real=True)

Define differential equation: u’’ + w**2*u = 0
def ode(u):

return diff(u, t, t) + w**2*u

diffeq = ode(u(t))

s = dsolve(diffeq, u(t))
s is an u(t) == expression (Eq obj.), s.rhs grabs the expression
u_sol = s.rhs
print u_sol

2.2 Vibration problems 51

The u_sol variable is now I*cos(t*w) + V*sin(t*w)/w. Since symbolic
software is far from bug-free and can give wrong results, we should always
check the answer. Here, we insert the solution in the ODE to see if the result
is zero, and we insert the solution in the initial conditions to see that these
are fulfilled:

There will be many more examples on using SymPy to find exact solutions
of differential equation problems.

The solution of the ODE in mathematical notation is

u(t) = I cos(ωt)+ V

ω
sin(ωt), ω =

√
k

m
.

More insight arises from rewriting such an expression in the form Acos(wt−
φ):

u(t) =
√

I2 + V 2

ω2 cos(wt−φ), φ = tan−1(V/(ωI)) .

Now we see that the u corresponds to cosine oscillations with a frequency
shift φ and amplitude

√
I2 +(V/ω)2.

Discussion of the displacement scale. The amplitude of u is
√

I2 +V 2/ω2,
and this expression is obviously a candidate for uc. However, the simpler
choice uc = max(I,V/ω) is also relevant and more attractive than the square
root expression (but potentially a factor 1.4 wrong compared to the exact
amplitude). It is not very important to have |u| ≤ 1, the point is to avoid |u|
very small or large.

Discussion of the time scale. What is an appropriate time scale? Looking
at (2.65) and arguing that ū′′ and ū both should be around unity in size, the
coefficient t2

ck/m must equal unity, implying that tc =
√

m/k. Also from the
analytical solution we see that the solution goes like the sine or cosine of ωt,
so 1/ω =

√
m/k can be a characteristic time scale. Likewise, one period of the

oscillations, P = 2π/ω, can be the characteristic time, leading to tc = 2π/ω.

The solution u_sol contains integration constants C1 and C2
but these are not symbols, substitute them by symbols
u_sol = u_sol.subs(’C1’, C1).subs(’C2’, C2)

Determine C1 and C2 from the initial conditions
ic = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
print ic # 2x2 algebraic system for C1 and C2
s = solve(ic, [C1, C2])
s is now a dictionary: {C2: I, C1: V/w}
substitute solution back in u_sol
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])
print u_sol

Check that the solution fulfills the ODE and init.cond.
print simplify(ode(u_sol)),
print u_sol.subs(t, 0) - I, diff(u_sol, t).subs(t, 0) - V

52 2 Ordinary differential equation models

The dimensionless solution. With uc = I and tc =
√

m/k we get the
scaled model

d2ū

dt̄2 + ū = 0, ū(0) = 1, ū′(0) = α, (2.66)

where α is a dimensionless parameter:

α = V

I

√
m

k
.

Note that in case V = 0, we have “scaled away” all physical parameters. The
universal solution without physical parameters is then ū(t̄) = cos t̄.

The unscaled solution is recovered as

u(t) = Iū(
√

k/mt̄) . (2.67)

This expressions shows that the scaling is simply a matter of stretching or
shrinking the axes.

Alternative displacement scale. Using uc = V/ω, the equation is not
changed, but the initial conditions become

ū(0) = I

uc
= Iω

V
= I

V

√
k

m
= α−1, ū′(0) = 1 .

With uc = V/ω and one period as time scale, tc = 2π
√

m/k, we get the
alternative model

d2ū

dt̄2 +4π2ū = 0, ū(0) = α−1, ū′(0) = 2π . (2.68)

The unscaled solution is in this case recovered by

u(t) = V

√
m

k
ū(2π

√
k/mt̄) . (2.69)

About frequency and dimensions. The solution goes like cosωt, where
ω =

√
m/k must have dimension 1/s. Actually, ω has dimension radians per

second: rad/s. A radian is dimensionless since it is arc (length) divided by
radius (length), but still regarded as a unit. The period P of vibrations is a
more intuitive quantity than the frequency ω. The relation between P and
ω is P = 2π/ω. The number of oscillation cycles per period, f , is a more
intuitive measurement of frequency and also known as frequency. Therefore,
to be precise, ω should be named angular frequency. The relation between f
and T is f = 1/T , so f = 2πω and measured in Hz (1/s), which is the unit
for counts per unit time.

2.2 Vibration problems 53

2.2.2 Undamped vibrations with constant forcing

For vertical vibrations in the gravity field, the model (2.64) must also take
the gravity force −mg into account:

mu′′ +ku = −mg .

How does the new term −mg influence the scaling? We observe that if there
is no movement of the body, u′′ = 0, and the spring elongation matches the
gravity force: ku = −mg, leading to a steady displacement u = −mg/k. We
can then have oscillations around this equilibrium point. A natural scaling
for u is therefore

ū = u− (−mg/k)
uc

= uk +mg

kuc
.

The scaled differential equation with the same time scale as before reads

d2ū

dt̄2 + ū− t2
c

uc
g = − t2

c

uc
g,

leading to

d2ū

dt̄2 + ū = 0 .

The initial conditions u(0) = I and u′(0) = V become, with uc = I,

ū(0) = 1+ mg

kI
,

dū

dt̄
(0) =

√
m

k

V

I
.

We see that the oscillations around the equilibrium point in the gravity field
are identical to the horizontal oscillations without gravity, except for an offset
mg/(kI) in the displacement.

2.2.3 Undamped vibrations with time-dependent forcing

Now we add a transient forcing term F (t) to the model (2.64):

mu′′ +ku = F (t), u(0) = I, u′(0) = V . (2.70)

Take the forcing to be oscillating:

F (t) = Acos(ψt) .

The technical steps of the scaling are still the same, with the intermediate
result

54 2 Ordinary differential equation models

d2ū

dt̄2 + t2
ck

m
ū = t2

c

muc
Acos(ψtct̄), ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.71)

What are typical displacement and time scales? This is not so obvious without
knowing the details of the solution, because there are three parameters (I, V ,
and A) that influence the magnitude of u. Moreover, there are two time scales,
one for the free vibrations of the systems and one for the forced vibrations
F (t).

Investigating scales via analytical solutions. As we have seen already
several times, having access to an exact solution is very fortunate as it allows
us to directly examine the scales. Also in the present problem it is possible to
derive an exact solution. We continue the SymPy session from the previous
section and perform much of the same steps. Note that we use w for ω =

√
k/m

in the computer code (to obtain a more direct visual counterpart to ω).
SymPy may get confused when coefficients in differential equations contain
several symbols. We therefore rewrite the equation with at most one symbol
in each coefficient (i.e., symbolic software is in general more successful when
applied to scaled differential equations than the unscaled counterparts, but
right now our task is to solve the unscaled version). The amplitude A/m in
the forcing term is of this reason replaced by the symbol A1.

The output from the last line is

With a bit of rewrite this expression becomes

A, A1, m, psi = symbols(’A A1 m psi’, positive=True, real=True)
def ode(u):

return diff(u, t, t) + w**2*u - A1*cos(psi*t)

diffeq = ode(u(t))
u_sol = dsolve(diffeq, u(t))
u_sol = u_sol.rhs

Determine the constants C1 and C2 in u_sol
(first substitute our own declared C1 and C2 symbols,
then use the initial conditions)
u_sol = u_sol.subs(’C1’, C1).subs(’C2’, C2)
eqs = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
s = solve(eqs, [C1, C2])
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])

Check that the solution fulfills the equation and init.cond.
print simplify(ode(u_sol))
print simplify(u_sol.subs(t, 0) - I)
print simplify(diff(u_sol, t).subs(t, 0) - V)

u_sol = simplify(expand(u_sol.subs(A1, A/m)))
print u_sol

A/m*cos(psi*t)/(-psi**2 + w**2) + V*sin(t*w)/w +
(A/m + I*psi**2 - I*w**2)*cos(t*w)/(psi**2 - w**2)

2.2 Vibration problems 55

u(t) = A/m

ω2 −ψ2 cos(ψt)+ V

ω
sin(ωt)+

(
A/m

ψ2 −ω2 + I

)
cos(ωt) .

Obviously, this expression is only meaningful for ψ = ω. The case ψ = ω gives
an infinite amplitude in this model, a phenomenon known as resonance. The
amplitude becomes finite when damping is included, see Section 2.2.4.

When the system starts from rest, I = V = 0, and the forcing is the only
driving mechanism, we can simplify:

u(t) = A

m(ω2 −ψ2) cos(ψt)+ A

m(ψ2 −ω2) cos(ωt)

= A

m(ω2 −ψ2) (cos(ψt)− cos(ωt)) .

To gain more insight, cos(ψt)−cos(ωt) can be rewritten in terms of the mean
frequency (ψ +ω)/2 and the difference in frequency (ψ −ω)/2:

u(t) = A

m(ω2 −ψ2)2sin
(

ψ −ω

2 t

)
sin

(
ψ +ω

2 t

)
, (2.72)

showing that there is a signal with frequency (ψ +ω)/2 whose amplitude has
a (much) slower frequency (ψ − ω)/2. Figure 2.7 shows an example on such
a signal.

Fig. 2.7 Signal with frequency 3.1 and envelope frequency 0.2.

56 2 Ordinary differential equation models

The displacement and time scales. A characteristic displacement can
in the latter special case be taken as uc = A/(m(ω2 − ψ2)). This is also a
relevant choice in the more general case I = 0,V = 0, unless I or V is so
large that it dominates over the amplitude caused by the forcing. With uc =
A/(m(ω2 −ψ2)) we also have three special cases: ω � ψ, ω � ψ, and ψ ∼ ω.
In the latter case we need uc = A/(m(ω2 − ψ2)) if we want |u| ≤ 1. When ω
and ψ are significantly different, we may choose one of them and neglect the
smaller. Choosing ω means uc = A/k, which is the relevant scale if ω � ψ. In
the opposite case, ω � ψ, uc = A/(mψ2).

The time scale is dominated by the fastest oscillations, which are of fre-
quency ψ or ω when these are close and the largest of them when they are
distant. In any case, we set tc = 1/max(ψ,ω).
Finding the displacement scale from the differential equation. Going
back to (2.71), we may demand that all the three terms in the differential
equation are of size unity. This leads to tc =

√
m/k and uc = At2

c/m = A/k.
The formula for uc is a kind of measure of the ratio of the forcing and the
spring force (the dimensionless number A/(kuc) would be this ratio).

Looking at (2.72), we see that if ψ � ω, the amplitude can be approxi-
mated by A/(mω2) = A/k, showing that the scale uc = A/k is relevant for an
excitation frequency ψ that is small compared to the free vibration frequency
ω.
Scaling with free vibrations as time scale. The next step is to work out
the dimensionless ODE for the chosen scales. We first select the time scale
based on the free oscillations with frequency ω, i.e., tc = 1/ω. Inserting the
expression in (2.71) results in

d2ū

dt̄2 + ū = γ cos(δt̄), ū(0) = α, ū′(0) = β . (2.73)

Here we have four dimensionless variables

α = I

uc
, (2.74)

β = V tc

uc
= V

ωuc
, (2.75)

γ = t2
cA

muc
= A

kuc
, (2.76)

δ = tc

ψ−1 = ψ

ω
. (2.77)

We remark that the choice of uc has so far not been made. Several different
cases will be considered below, and we will see that certain choices reduce
the number of independent dimensionless variables to three.

The four dimensionless variables above have interpretations as ratios of
physical effects:

2.2 Vibration problems 57

• α: ratio of the initial displacement and the characteristic response uc,
• β: ratio of the initial velocity and the typical velocity measure uc/tc,
• γ: ratio of the forcing A and the mass times acceleration muc/t2

c or the
ratio of the forcing and the spring force kuc

• δ: ratio of the frequencies or the time scales of the forcing and the free
vibrations.

Software. Any solver for (2.71) can be used for (2.73). More details are
provided at the end of Section 2.2.4.

Choice of uc close to resonance. Now we shall discuss various choices of
uc. Close to resonance, when ψ ∼ ω, we may set uc = A/(m(ω2 − ψ2)). The
dimensionless numbers become in this case

α = I

uc
= I

A/k
(1− δ2),

β = V

ωuc
= V

√
km

A
(1− δ2),

γ = A

kuc
= 1− δ2,

δ = ψ

ω
.

With ψ = 0.99ω, δ = 0.99, V = 0, α = γ = 1−δ2 = 0.02, we have the problem

d2ū

dt̄2 + ū = 0.02cos(0.99t̄), ū(0) = 0.02, ū′(0) = 0 .

This is a problem with a very small initial condition and a very small forcing,
but the state close to resonance brings the amplitude up to about unity, see
the result of numerical simulations with δ = 0.99 in Figure 2.8. Neglecting α,
the solution is given by (2.72), which here means A = 1 − δ2, m = 1, ω = 1,
ψ = δ:

ū(t̄) = 2sin(−0.005t̄)sin(0.995t̄) .

Note that this is a problem which demands very high accuracy in the numer-
ical calculations. Using 20 time steps per period gives a significant angular
frequency error and an amplitude of about 1.4. We used 160 steps per period
for the results in Figure 2.8.

Unit size of all terms in the ODE. Using the displacement scale uc = A/k
leads to (2.73) with

58 2 Ordinary differential equation models

Fig. 2.8 Forced undamped vibrations close to resonance.

α = I

uc
= I

A/k
,

β = V

ωuc
= V k

Aω
,

γ = A

kuc
= 1,

δ = ψ

ω
.

Simulating a case with δ = 0.5, α = 1, and β = 0 gives the oscillations in
Figure 2.9, which is a case away from resonance, and the amplitude is about
unity. However, choosing δ = 0.99 (close to resonance) results in a figure
similar to Figure 2.8, except that the amplitude is about 102 because of the
moderate size of uc. The present scaling is therefore most suitable away from
resonance, and when the terms containing cosωt and sinωt are important
(e.g., ω � ψ).
Choice of uc when ψ � ω. Finally, we may look at the case where ψ � ω
such that uc = A/(mψ2) is a relevant scale (i.e., omitting ω2 compared to ψ2

in the denominator), but in this case we should use tc = 1/ψ since the force
varies much faster than the free vibrations of the system. This choice of tc

changes the scaled ODE to

2.2 Vibration problems 59

Fig. 2.9 Forced undamped vibrations away from resonance.

d2ū

dt̄2 + δ−2ū = γ cos(t̄), ū(0) = α, ū′(0) = β, (2.78)

where

α = I

uc
= I

A/k
δ2,

β = V tc

uc
= V

√
km

A
δ,

γ = t2
cA

muc
= 1,

δ = tc

ψ−1 = ψ

ω
.

In the regime ψ � ω, δ � 1, thus making α and β large. However, if α and/or
β is large, the initial condition dominates over the forcing, and will also
dominate the amplitude of u, thereby making the scaling of u inappropriate.
In case I = V = 0 so that α = β = 0, (2.72) predicts (A = m = 1, ω = δ−1,
ψ = 1)

60 2 Ordinary differential equation models

ū(t̄) = (δ−2 −1)−12sin
(

1
2(1− δ−1)t̄

)
sin

(
1
2(1+ δ−1)t̄

)
,

which has an amplitude about 2 for δ � 1. Figure 2.10 shows a case.

Fig. 2.10 Forced undamped vibrations with rapid forcing.

With α = 0.05δ2 = 5, we get a significant contribution from the free vibra-
tions (the homogeneous solution of the ODE) as shown in Figure 2.11. For
larger α values, one must base uc on I instead. (The graphs in Figure 2.10
and 2.11 were produced by numerical simulations with 160 time steps per
period of the forcing.)

Displacement scale based on I. Choosing uc = I gives

d2ū

dt̄2 + ū = γ cos(δt̄), ū(0) = 1, ū′(0) = β, (2.79)

with

2.2 Vibration problems 61

Fig. 2.11 Forced undamped vibrations with rapid forcing and initial displacement of
5.

β = V tc

uc
= V

I

√
m

k
, (2.80)

γ = tc2A

muc
= A

kuc
= A

kI
. (2.81)

This scaling is not relevant close to resonance since then uc � I.

2.2.4 Damped vibrations with forcing

We now introduce a linear damping force bu′(t) in the equation of motion:

mu′′ + bu′ +ku = Acos(ψt), u(0) = I, u′(0) = V . (2.82)

Figure 2.12 shows a typical one-degree-of-freedom mechanical system with a
linear dashpot, representing the damper (bu′), a linear spring (ku), and an
external force (F).

The standard scaling procedure results in

62 2 Ordinary differential equation models

Fig. 2.12 Oscillating body with external force, attached to a spring and damper.

d2ū

dt̄2 + tcb

m

dū

dt̄
+ t2

ck

m
ū = t2

c

muc
Acos(ψtct̄), ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.83)

The exact solution. As always, it is a great advantage to look into exact
solutions for controlling our choice of scales. Using SymPy to solve (2.82) is,
in principle, very straightforward:

This is indeed the correct solution, but it is on a complex exponential func-
tion form, valid for all b, m, and ω. We are interested in the case with
small damping, b < 2mω, where the solution is an exponentially damped
sinusoidal function. Rewriting the expression in the right form is tricky with
SymPy commands. Instead, we demonstrate a common technique when doing
symbolic computing: general procedures like dsolve are replaced by manual
steps. That is, we solve the ODE “by hand”, but use SymPy to assist the
calculations.

The solution is composed of a homogeneous solution uh of mu′′ + bu′ +
ku = 0 and one particular solution up of the nonhomogeneous equation
mu′′ + bu′ + ku = Acos(ψt). The homogeneous solution with damped oscil-
lations (requiring b < 2

√
mk) can be found by the following code. We have

divided the differential equation by m and introduced B = 1
2b/m and let A1

represent A/m to simplify expressions and help SymPy with less symbols
in the equation. Without these simplifications, SymPy stalls in the compu-
tations due to too many symbols in the equation. The problem is actually
a solid argument for scaling differential equations before asking SymPy to
solve them since scaling effectively reduces the number of parameters in the
equations!

The following SymPy steps derives the solution of the homogeneous ODE:

m

u(t)

bu′

ku

>>> diffeq = diff(u(t), t, t) + b/m*diff(u(t), t) + w**2*u(t)
>>> s = dsolve(diffeq, u(t))
>>> s.rhs
C1*exp(t*(-b - sqrt(b - 2*m*w)*sqrt(b + 2*m*w))/(2*m)) +
C2*exp(t*(-b + sqrt(b - 2*m*w)*sqrt(b + 2*m*w))/(2*m))

2.2 Vibration problems 63

The print out shows

uh = e−Bt
(

C1 cos(
√

ω2 −B2t)+C2 sin(
√

ω2 −B2t)
)

,

where C1 and C2 must be determined by the initial conditions later. It is
wise to check that uh is indeed a solution of the homogeneous differential
equation:

We have previously just printed the residuals of the ODE and initial condi-
tions after inserting the solution, but it is better in a code to let the program-
ming language test that the residuals are symbolically zero. This is achieved
using the assert statement in Python. The argument is a boolean expres-
sion, and if the expression evaluates to False, an AssertionError is raised
and the program aborts (otherwise assert runs silently for a True boolean
expression). Hereafter, we will use assert for consistency checks in computer
code.

The ansatz for the particular solution up is

up = C3 cos(ψt)+C4 sin(ψt),

u = symbols(’u’, cls=Function)
t, w, B, A, A1, m, psi = symbols(’t w B A A1 m psi’,

positive=True, real=True)

def ode(u, homogeneous=True):
h = diff(u, t, t) + 2*B*diff(u, t) + w**2*u
f = A1*cos(psi*t)
return h if homogeneous else h - f

Find coefficients in polynomial (in r) for exp(r*t) ansatz
r = symbols(’r’)
ansatz = exp(r*t)
poly = simplify(ode(ansatz)/ansatz)

Convert to polynomial to extract coefficients
poly = Poly(poly, r)
Extract coefficients in poly: a_*t**2 + b_*t + c_
a_, b_, c_ = poly.coeffs()
Assume b_**2 - 4*a_*c_ < 0
d = -b_/(2*a_)
if a_ == 1:

omega = sqrt(c_ - (b_/2)**2) # nicer formula
else:

omega = sqrt(4*a_*c_ - b_**2)/(2*a_)

The homogeneous solution is a linear combination of a
cos term (u1) and a sin term (u2)
u1 = exp(d*t)*cos(omega*t)
u2 = exp(d*t)*sin(omega*t)
C1, C2, V, I = symbols(’C1 C2 V I’, real=True)
u_h = simplify(C1*u1 + C2*u2)
print ’u_h:’, u_h

assert simplify(ode(u_h)) == 0

64 2 Ordinary differential equation models

which inserted in the ODE gives two equations for C3 and C4. The relevant
SymPy statements are

Using the initial conditions for the complete solution u = uh +up determines
C1 and C2:

Finally, we should check that u_sol is indeed the correct solution:

Finally, we may take u_sol = u_sol.subs(A, A/m) to get the right expres-
sion for the solution. Using latex(u_sol) results in a huge expression, which
should be manually ordered to something like the following:

u = Am−1

4B2ψ2 +Ω2 (2Bψ sin(ψt)−Ω cos(ψt))+

e−Bt

(
C1 cos

(
t
√

ω2 −B2
)

+C2 sin
(

t
√

ω2 −B2
))

C1 = Am−1Ω +4IB2ψ2 + IΩ2

4B2ψ2 +Ω2

C2 = −Am−1BΩ +4IB3ψ2 + IBΩ2 +4V B2ψ2 +V Ω2
√

ω2 −B2 (4B2ψ2 +Ω2)
,

Ω = ψ2 −ω2 .

Particular solution
C3, C4 = symbols(’C3 C4’)
u_p = C3*cos(psi*t) + C4*sin(psi*t)
eqs = simplify(ode(u_p, homogeneous=False))

Collect cos(omega*t) terms
print ’eqs:’, eqs
eq_cos = simplify(eqs.subs(sin(psi*t), 0).subs(cos(psi*t), 1))
eq_sin = simplify(eqs.subs(cos(psi*t), 0).subs(sin(psi*t), 1))
s = solve([eq_cos, eq_sin], [C3, C4])
u_p = simplify(u_p.subs(C3, s[C3]).subs(C4, s[C4]))

Check that the solution is correct
assert simplify(ode(u_p, homogeneous=False)) == 0

u_sol = u_h + u_p # total solution
Initial conditions
eqs = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
Determine C1 and C2 from the initial conditions
s = solve(eqs, [C1, C2])
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])

checks = dict(
ODE=simplify(expand(ode(u_sol, homogeneous=False))),
IC1=simplify(u_sol.subs(t, 0) - I),
IC2=simplify(diff(u_sol, t).subs(t, 0) - V))

for check in checks:
msg = ’%s residual: %s’ % (check, checks[check])
assert checks[check] == sympify(0), msg

2.2 Vibration problems 65

The most important feature of this solution is that there are two time
scales with frequencies ψ and

√
ω2 −B2, respectively, but the latter appears

in terms that decay as e−Bt in time. The attention is usually on longer periods
of time, so in that case the solution simplifies to

u = Am−1

4B2ψ2 +Ω2 (2Bψ sin(ψt)−Ω cos(ψt))

= A

m

1√
4B2ψ2 +Ω2

cos(ψt+φ) (ψω)−1

(ψω)−1

= A

k
Qδ−1 (

1+Q2(δ − δ−1)
)− 1

2 cos(ψt+φ), (2.84)

where we have introduced the dimensionless numbers

Q = ω

2B
, δ = ψ

ω
,

and

φ = tan−1
(

− 2B

ω2 −ψ2

)
= tan−1

(
Q−1

δ2 −1

)
.

Q is commonly called quality factor and φ is the phase shift. Dividing (2.84)
by A/k, which is a common scale for u, gives the dimensionless relation

u

A/k
= Q

δ
R(Q,δ)

1
2 cos(ψt+φ), R(Q,δ) =

(
1+Q2(δ − δ−1)

)−1
. (2.85)

Choosing scales. Much of the discussion about scales in the previous sec-
tions are relevant also when damping is included. Although the oscillations
with frequency

√
ω2 −B2 die out for t � B−1, we start with using this fre-

quency for the time scale. A highly relevant assumption for engineering ap-
plications of (2.82) is that the damping is small. Therefore,

√
ω2 −B2 is close

to ω and we simply apply tc = 1/ω as before (if not the interest in large t for
which the oscillations with frequency ω has died out).

The coefficient in front of the ū′ term then becomes

b

mω
= 2B

ω
= Q−1 .

The rest of the ODE is given in the previous section, and the particular
formulas depend on the choices of tc and uc.

Choice of uc at resonance. The relevant scale for uc at or nearby resonance
(ψ = ω) becomes different from the previous section, since with damping, the
maximum amplitude is a finite value. For t � B−1, when the sinψt term is
dominating, we have for ψ = ω:

66 2 Ordinary differential equation models

u = Am−12Bψ

4B2ψ2 sin(ψt) = A

2Bmψ
sin(ψt) = A

bψ
sin(ψt) .

This motivates the choice

uc = A

bψ
= A

bω
.

(It is wise during computations like this to stop and check the dimensions:
A must be [MLT−2] from the original equation (F (t) must have the same
dimension as mu′′), bu′ must also have dimension [MLT−2], implying that
b has dimension [MT−1]. A/b then has dimension LT −1, and A/(bψ) gets
dimension [L], which matches what we want for uc.)

The differential equation on dimensionless form becomes

d2ū

dt̄2 +Q−1 dū

dt̄
+ ū = γ cos(δt̄), ū(0) = α, ū′(0) = β, (2.86)

with

α = I

uc
= Ib

A

√
k

m
, (2.87)

β = V tc

uc
= V b

A
, (2.88)

γ = t2
cA

muc
= bω

k
, (2.89)

δ = tc

ψ−1 = ψ

ω
= 1 . (2.90)

Choice of uc when ω � ψ. In the limit ω � ψ and t � B−1,

u ≈ A

mω2 cosψt = A

k
cosψt,

showing that uc = A/k is an appropriate displacement scale. (Alternatively,
we get this scale also from demanding γ = 1 in the ODE.) The dimensionless
numbers α, β, and δ are as for the forced vibrations without damping.

Choice of uc when ω � ψ. In the limit ω � ψ, we should base tc on the
rapid variations in the excitation: tc = 1/ψ.

Software. It is easy to reuse a solver for a general vibration problem also
in the dimensionless case. In particular, we may use the solver function in
the file vib.py:

for solving the ODE problem

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):

2.2 Vibration problems 67

mu′′ +f(u′)+s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0,T],

with time steps dt. With damping=’linear’, we have f(u′) = bu′, while the
other value is ’quadratic’, meaning f(u′) = b|u′|u′. Given the dimensionless
numbers α, β, γ, δ, and Q, an appropriate call for solving (2.73) is

where n is the number of intervals per period and P is the number of periods
to be simulated. We way wrap this call in a solver_scaled function and
wrap it furthermore with joblib to avoid repeated calls, as we explained in
Section 2.1.4:

This code is found in vib_scaled.py and features an application for running
the scaled problem with options on the command-line for α, β, γ, δ, Q, num-
ber of time steps per period, and number of periods (see the main function).
It is an ideal application for exploring scaled vibration models.

2.2.5 Oscillating electric circuits

The differential equation for an oscillating electric circuit is very similar to the
equation for forced, damped, mechanical vibrations, and their dimensionless
form is identical. This fact will now be demonstrated.

The current I(t) in a circuit having an inductor with inductance L, a
capacitor with capacitance C, and overall resistance R, obeys the equation

Ï + R

L
İ + 1

LC
I = V (t), (2.91)

where V (t) is the voltage source powering the circuit. We introduce

u, t = solver(I=alpha, V=beta, m=1, b=1.0/Q,
s=lambda u: u, F=lambda t: gamma*cos(delta*t),

dt=2*pi/n, T=2*pi*P)

from vib import solver as solver_unscaled

def solver_scaled(alpha, beta, gamma, delta, Q, T, dt):
"""
Solve u’’ + (1/Q)*u’ + u = gamma*cos(delta*t),
u(0)=alpha, u’(1)=beta, for (0,T] with step dt.
"""
print ’Computing the numerical solution’
from math import cos
return solver_unscaled(I=alpha, V=beta, m=1, b=1./Q,

s=lambda u: u,
F=lambda t: gamma*cos(delta*t),
dt=dt, T=T, damping=’linear’)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

68 2 Ordinary differential equation models

Ī = I

Ic
, t̄ = t

tc
,

and get

d2Ī

dt̄2 + tcR

L

dĪ

dt̄
+ t2

c

LC
Ī = t2

cVc

Ic
V̄ (t) .

Here, we have scaled V (t) according to

V̄ (t̄) = V (tct̄)
maxt V (t) .

The time scale tc is chosen to make Ï and I/(LC) balance, tc =
√

LC.
Choosing Ic to make the coefficient in the source term of unit size, means
Ic = LCVc. With

Q−1 = R

√
C

L
,

we get the scaled equation

d2Ī

dt̄2 +Q−1 dĪ

dt̄
+ Ī = V̄ (t), (2.92)

which is basically the same as we derived for mechanical vibrations. (Two
additional dimensionless variables will arise from the initial conditions for I,
just as in the mechanics cases.)

NonCommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/), which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original
author(s) and source are credited.

The images or other third party material in this book are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-

