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H. Scott Baldwin

While the critical pathways that are important for normal cardiac development have

focused extensively on transcriptional regulation of myocyte differentiation, criti-

cal mediators of vascular development have received much less attention. One

reason for this has been the inability in the past to manipulate gene expression in a

temporal and tissue-specific manner. There is no doubt that both normal vascular

and normal myocardial development are essential for early embryonic survival and

the two are inextricably linked; normal vascular development requires normal flow,

and maturation of the myocardium requires simultaneous maturation and

remodeling of the extracardiac vasculature. Ubiquitous or global gene deletions,

resulting in both cardiac and extracardiac mutations, have resulted in numerous

“chicken and egg” quandaries: Did the heart fail because of a primary defect in

heart development, or were the defects merely secondary to upstream perturbations

in extracardiac vascular defects? In this section, investigators used tissue-specific

mutagenesis strategies as well as a focus on cell membrane and extracellular matrix

regulation to begin to elucidate important aspects of extracardiac vascular develop-

ment that are particularly relevant to human disease. Sakebe et al. generated an

endothelial-specific deletion of Hrt2/Hey2, repressors of Notch signaling, to dem-

onstrate that both Hrt1 and Hrt2 are essential for vascular development independent

of their role in myocardial development. Furthermore, they suggest that the
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endothelial or vascular processes mediated by these factors, rather than the defects

in myocardial development, might be the primary mechanism for embryonic

demise. Exploring the role of calcium signaling in extraembryonic vascular devel-

opment, Uchida and colleagues were able to document dramatic defects in placen-

tation as early as E9.5 in the mouse as a result of combinatorial deletion of the

inositol IP3 receptors. This work clearly establishes a role for calcium handling in

cardiovascular viability. Changing the focus to later stages of vascular develop-

ment, Dr. Imanaka-Yoshida provides a detailed description of the role of the

extracellular matrix protein, tenascin-C, in smooth muscle cell recruitment of

both the descending aorta and coronary arteries and provides in vitro evidence

that tenascin-C promotes SMC precursor expansion and differentiation by

augmenting PDG-BB/PDGFR-β signaling. Finally, Yoshikane et al. show the

potential importance of delineating the role of tenascin-C in normal and abnormal

coronary artery remodeling as they discuss a model of the most common acute

systemic vasculitis in children, Kawasaki disease. By studying the inflammatory

and abnormal vascular remodeling induced by Candida albicans, they demonstrate

accentuation of tenascin-C expression associated with aneurysm formation. Fur-

thermore, they document that inhibition of JNK signaling attenuated aneurysm

formation potentially providing a mechanistic link between JNK signaling and

tenascin-C signaling that could provide a therapeutic target for treatment of

Kawasaki disease. In summary, the investigations presented in this section provide

an overview of exciting work that expands the focus of cardiovascular development

and disease beyond myocyte transcriptional regulation and provides new insights

into extracardiac vascular development and remodeling while emphasizing the

importance that the extracellular matrix is ontogeny of cardiovascular disease.
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Extracellular Matrix Remodeling
in Vascular Development and Disease 29
Kyoko Imanaka-Yoshida

Abstract

Blood vessels constantly subjected to mechanical stress have well-developed

elastic fiber-rich frameworks, which contribute to the elasticity and distensibility

of the vascular wall. Destruction of the fibrous structure due to genetic predispo-

sition as well as acquired disorders such as Kawasaki disease often induces

irreversible dilation of blood vessels, e.g., aneurysm formation. In addition to

their structural role, extracellular matrix molecules also provide important

biological signaling, which influences various cellular functions. Among them,

increased attention has been focused on matricellular proteins, a group of non-

structural extracellular matrix (ECM) proteins highly upregulated in active tissue

remodeling, serving as biological mediators by interacting directly with cells or

regulating the activities of growth factors, cytokines, proteases, and other ECM

molecules. Tenascin-C (TNC) is a typical matricellular protein expressed during

embryonic development and tissue repair/regeneration in a spatiotemporally

restricted manner. Various growth factors, pro-inflammatory cytokines, and

mechanical stress upregulate its expression. TNC controls cell adhesion, migra-

tion, differentiation, and synthesis of ECM molecules. Our recent results suggest

that TNCmay not only play a significant role in the recruitment of smooth muscle/

mural cells during vascular development, but also regulate the inflammatory

response during pathological remodeling. TNC may be a key molecule during

vascular development, adaptation, and pathological tissue remodeling.
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29.1 Introduction

Tissue, including the cardiovascular system, is composed of diverse cells and the

extracellular matrix (ECM) synthesized by those cells. Several ECM molecules

form a fibrous framework and provide structural support for the tissue. Blood

vessels constantly subjected to mechanical stress have a well-developed fibrous

framework, which contributes to the elasticity and distensibility of the vascular wall

in concert with vascular smooth muscle cells. Highly ordered structures consisting

of cells and fibrous elements are formed during development and are remodeled

during tissue repair/regeneration after injury. In addition to their physical role,

several ECM molecules provide important biological signaling, which influences

various cellular functions in physiological and pathological tissue remodeling. In

particular, ECM, termed matricellular protein, has attracted increasing attention as

a biological mediator. Tenascin-C (TNC) is a prototype matricellular protein

expressed during embryonic development and tissue repair after injury. This chap-

ter will focus on the role of TNC in vascular development, especially coronary

arteries and the aorta.

29.2 Extracellular Matrix in Vascular Wall

Blood vessels have abundant fibrous matrix tissue: well-developed elastic fibers in

the medial layer and rich collagen fibers in adventitia. It is known that several gene

mutations related to these fibrous components cause vascular fragility, eventually

leading to aneurysm formation or dissection. For example, the collagen gene and

fibrillin-1 gene, which is important for microfibril formation, have been identified

as the genes responsible for Ehlers-Danlos syndrome (reviewed in [1]) and

Marfan’s syndrome [2], respectively. In addition to genetic predisposition, inflam-

mation of blood vessels in acquired disease may induce fragmentation and destruc-

tion of normal elastic fibers in the vascular wall and causes irreversible dilation of

blood vessels. For example, coronary aneurysm formation is sometimes seen in

patients with Kawasaki vasculitis, one of the most common acquired heart diseases

in children. Evidently, the structural support by fibrous ECM is essential to main-

tain the proper morphology and function of blood vessels.

Besides these fibrous elements, unique ECM molecules, matricellular protein

[3], have attracted considerable attention. The matricellular proteins have common

unique properties: (1) do not contribute directly to structures such as fibrils or

basement membranes; (2) high levels of expression during embryonic development

and in response to injury; and (3) binding to many cell surface receptors,

components of ECM, growth factors, cytokines, and proteases [4]. This is a growing

family originally including SPARC, tenascin, and thrombospondin [3].
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29.3 Tenascin-C in Vascular System

Tenascins are a family of four multimeric extracellular matrix glycoproteins:

tenascin-C, X, R, and W [5]. The first member, tenascin-C (TNC), is a typical

matricellular protein. It is a huge molecule of about 220–400 kDa as an intact

monomer and is assembled with a hexamer. The molecule consists of an N-terminal

assembly domain, followed by EGF-like repeats, constant and alternatively spliced

fibronectin type III repeats, and a C-terminal fibrinogen-like globular domain.

Several receptors including integrins, EGFR, annexin II, syndecan-4, and toll-like

receptor 4 (TLR-4) bind to the respective domains of TNC and transmit multiple

signals (see [6]). Numerous studies have shown that TNC can control the balance of

cell adhesion and de-adhesion, cell motility, proliferation, differentiation, and

survival (reviewed in [5–7]). Recently, the role of TNC in the modulation of

inflammation is highlighted [8].

Tenascin-C is found in many developing organs, including the cardiovascular

system, but is often restricted transiently to specific sites, for example, near

migrating cells and at sites of epithelial–mesenchymal/mesenchymal–epithelial

transition. In normal adults, tenascin-C expression is sparsely detected; however,

marked expression is seen in injury, regeneration, and cancer at sites where the

tissue structure is being dynamically remodeled. Various factors, including growth

factors and pro-inflammatory cytokines, can activate TNC expression (reviewed in

[9]). It is particularly of interest that mechanical stress is an important inducer of

TNC. Moreover, it is also noteworthy that TNC itself is an elastic molecule and may

contribute to tissue elasticity [10].

As well as in other tissue, the expression of TNC in the normal vascular wall is low

and upregulated in pathological conditions. The major source is medial smooth muscle

cells [11]. However, TNC in the vascular system appears more complex in contrast to

the heart [7]. For example, constitutive expression of TNC is observed in the medial

layer of the abdominal aorta of normal adult mice but not in the thoracic aorta [12].

29.3.1 Development of Aorta and Tenascin-C

The origin of vascular smooth muscle cells (VSMC) of the aorta is heterogeneous

[13]. The second heart field gives rise to VSMC of the root of the aorta. The cardiac

neural crest contributes ascending and arch portions of the aorta. The origin of VSMC

of the descending aorta is more complex. Primitive VSMC of the thoracic aorta

originate from the lateral plate mesoderm and are replaced by cells derived from the

paraxial mesoderm (somites). Moreover, individual somites build up restricted spatial

domains of the “segmental” aortic wall. However, no evident segmental expression

pattern of TNC is observed during development of the aorta. In E12–13 mouse

embryos, very weak expression of TNC is observed in the ascending aorta and

pulmonary truncus. Whereas elastic fibers in the medial layer of the aorta become

mature around E12–13, the expression of TNC is upregulated after ED14–15

(Fig. 29.1) when the systemic circulatory system is established. This upregulated

expression of TNC may reflect the increased hemodynamic stress on the aortic wall.
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29.3.2 Development of Coronary Artery and Tenascin-C

Coronary vessels are formed with the cells originating mostly from extracardiac

tissue known as the proepicardial organ (PE) (see [14] for review). During coronary

development, strong expression of TNC is observed, closely associated with

thickening of the medial layer when the primitive coronary vasculature connects

with the aortic sinuses [15], suggesting a significant role of TNC in maturation of

the wall of coronary arteries. Indeed, TNC accelerates the differentiation of mesen-

chymal cells of PE to smooth muscle cells in culture [15]. Maturation of the

vascular wall is regulated by various signaling pathways. In particular, the

PDGF-BB/PDGFR-β signaling loop is known to be a key regulator of smooth

muscle cell recruitment. In vitro, TNC amplifies crosstalk signaling between

integrin αvβ3 and PDGF receptor (PDGFR) -β in smooth muscle cells, followed

by enhancing cell proliferation and migration [16]. TNC may promote smooth

muscle precursor expansion and differentiation in maturation of the vascular wall

by enhancing PDGF-BB/PDGFR-β signaling (Fig. 29.2).
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Fig. 29.1 Expression pattern of TNC during development of the aorta. Whole mount lacZ

staining and histological sections of descending portion of the thoracic aorta of TNC-reporter

mouse embryos at ED12–15. The sections were immunostained with anti-TNC or anti-α-smooth

muscle actin or stained with elastica sirius red
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29.4 Future Direction and Clinical Implications

The characteristic spatiotemporally restricted expression of TNC has suggested its

significant role during embryonic development. Several in vitro functional assays

support this possibility. Although the grossly normal phenotype of knockout mice

suggests the importance of redundancy and compensatory mechanisms during

embryonic development, it is not straightforward to understand its molecular

function. Meanwhile, TNC expression is linked to a range of vascular diseases,

such as aortic aneurysm, acute aortic dissection, and Kawasaki disease (reviewed in

[11, 17], also see Yoshikane et al. in this proceeding). Increasing numbers of studies

have reported that TNC is highly upregulated, associated with inflammation and

destruction of the vascular wall, suggesting that TNC may be a diagnostic bio-

marker. Furthermore, we have succeeded in endovascular treatment of a rat aneu-

rysm model with a TNC-coated coil [18]. Although TNC could contribute to both

favorable and undesirable effects during pathological processes in a context-

dependent manner, it could be a potential therapeutic target for vascular disease.
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The “Cardiac Neural Crest” Concept
Revisited 30
Sachiko Miyagawa-Tomita, Yuichiro Arima, and Hiroki Kurihara

Abstract

Neural crest cells (NCCs) are a unique stem cell population, which originate

from the border between the neural plate and surface ectoderm and migrate

throughout the body to give rise to multiple cell lineages during vertebrate

embryonic development. The NCCs that contribute to heart development,

referred to as the cardiac NCCs, have been assigned to the neural crest at the

level of the postotic hindbrain. Recently, we found that the NCCs from the

preotic region migrate into the heart and partially differentiate into coronary

artery smooth muscle cells. This finding indicates that the origin of the cardiac
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NCCs appears more widely extended to the anterior direction than Kirby

et al. first designated.

Keywords
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30.1 Introduction

The neural crest (NC) was first identified by Wilhelm His as “Zwischenstrang,” the

intermediate cord, in 1868 [1], the year of Meiji Ishin, the westernizing revolution

of Japan. It is located at the border between the developing neural plate and surface

ectoderm and serves as a source of migratory cells spreading throughout the body.

The NC research was greatly accelerated by the establishment of quail-chick

chimera technique accomplished by Nicole Le Douarin [2]. This technique enabled

tracing the origin and fate of the NC during embryonic development and revealed

that NC cells (NCCs) differentiate into a wide variety of cell types including

neurons, glia, pigment cells, and craniofacial bones and cartilages in different

developmental contexts [2]. Thus, NCCs are nowadays regarded as a multipotent

stem cell population with unique differentiation capacities.

30.2 Cardiac Neural Crest Arising from the Postotic Region

Since Margaret Kirby discovered that NCCs at the level of occipital somites 1–3

migrate to the region of the aorticopulmonary septum [3], the concept “cardiac

neural crest” has prevailed to cover NCCs contributing to the formation of the heart

and great vessels. NCCs arising from the postotic hindbrain posterior to the

mid-otic vesicle, corresponding to rhombomeres (r) 6–8, migrate into the third,

fourth, and sixth pharyngeal arches and contribute to the formation of the tunica

media of pharyngeal arch artery-derived great vessels, the aorticopulmonary sep-

tum, and the outflow tract endocardial cushion as well as some noncardiac organs

such as the thymus, parathyroid glands, and thyroid glands [4]. Ablation of the

cardiac NC in chick embryos results in aortic arch anomalies and persistent truncus

arteriosus [3, 5, 6]. In addition to direct contribution to the cardiovascular structure,

cardiac NCCs affect the migration and alignment of myogenic precursors from the

second heart field migrating into the outflow region.

Chromosome 22q11.2 deletion syndrome, formerly known as DiGeorge syn-

drome, velocardiofacial (Shprintzen) syndrome, and conotruncal anomaly face

(Takao) syndrome, is a disease complex characterized by craniofacial, thymic,

and parathyroid anomalies and cardiac manifestations including tetralogy of Fallot,

persistent truncus arteriosus, and aortic arch anomalies [7]. This syndrome was

formerly recognized as an NC disorder because of its resemblance to the avian

phenotype of NC ablation. However, identification and analysis of the responsible
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genes in the 22q11.2 locus such as TBX1 and CRKL and related factors have

revealed that the pathogenesis is far more complex, involving interaction among

NCCs, second heart field, endoderm, and other cell components.

30.3 Endothelin Signal and Neural Crest Development

Endothelin (Edn)-1 (Edn1), originally identified as a potent vasoconstrictor peptide,

is a key regulator of craniofacial and cardiovascular development, acting on NCCs

expressing Edn receptor type A (Ednra), a G protein-coupled receptor [8–10]. Inac-

tivation of Edn1-Ednra signaling causes homeotic-like transformation of the lower

jaw into an upper jaw structure and cardiovascular anomalies similar to chromo-

some 22q11.2 deletion syndrome. The craniofacial and cardiovascular anomalies

are attributed to the disordered development of cranial (preotic) and cardiac

(postotic) NCCs, respectively. In craniofacial development, the Edn1-Ednra signal-

ing activates Gαq-/Gα11-dependent pathway, resulting in the induction of Dlx5/
Dlx6, homeobox genes critical to ventral (mandibular) identity of the pharyngeal

arches [10–12]. In cardiovascular development, the Edn1-/Ednra-null phenotype of
aortic arch anomalies is independent of Dlx5/Dlx6 [13], indicating that the Edn1-

Ednra signaling pathway appears differently involved in craniofacial and cardiac

development.

30.4 Preotic Neural Crest Contributing to Heart Development

Recently, we identified an additional cardiac phenotype of Edn1-/Ednra-null mice

in the coronary artery [14]. The mutant mice exhibit marked dilatation of the septal

branch and abnormalities of orifice and proximal branch formation. Labeling of

NCCs using Wnt1-Cre;Rosa26R reporter mice revealed that NCCs contribute to

coronary artery smooth muscle cells in the proximal region and septal branch, and

NCC-derived smooth muscle cells are hardly detected in the smooth muscle layer in

Edn1-/Ednra-null embryos. Correspondingly, NCC-specific knockout of Gα12/
Gα13 rather than Gαq/Gα11 results in similar dilatation of the coronary artery septal

branch [15], indicating that Edn1/Ednra signaling is necessary for NCC recruitment

to coronary artery formation via Gα12/Gα13 and downstream Rho signaling.

Here, we faced to a conundrum where the NCCs came from. It had long been

controversial whether and how NCCs contribute to coronary artery formation.

Although NC-derived cell clusters are formed in association with the proximal

portion of coronary arteries, quail-chick chimera experiments have shown that the

cardiac NCCs do not differentiate into coronary smooth muscle cells [16, 17]. In

contrast,Wnt1-Cremice have indicated the possible direct involvement of NCCs as

the source of coronary artery smooth muscle cells [18]. The apparent discrepancy

was sometimes ascribed to differences in species, but no definite explanation had

been given for it.
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This controversy was settled by quail-chick chimera experiments, in which

different regions of the chick neural folds were homotopically replaced by quail

tissues. When the cardiac (postotic) NC at the level of r6-r8 (posterior to the

mid-otic vesicle) was replaced, no contribution of quail NCCs to the wall of

coronary arteries was observed. In contrast, replacement of the NC by exchanging

the midbrain and preotic hindbrain (r1-r5) neural folds anterior to the otic vesicle

resulted in a significant number of quail NCCs distributing into the heart and

differentiating into coronary artery smooth muscle cells. The intracardiac migration

of preotic NCCs and their contribution to the coronary artery smooth muscle layer

were also confirmed by experiments using R4-Cre;Z/AP reporter mice, in which

r4-derived preotic NCCs were specifically and permanently labeled. Furthermore,

ablation of the preotic NC in chick embryos caused abnormalities in coronary septal

branch and orifice formation, reminiscent of the Edn1-/Ednra-null phenotype.
Are preotic and postotic NCCs spatially segregated within the heart region to

play distinct roles? Double labeling with different dyes of premigratory NCCs at the

levels of r3/4 (preotic) and somites 1/2 (postotic) in chick embryos revealed

sequential migration of NCCs from preotic to postotic neural folds. Consequently,

preotic and postotic NCCs distribute differently within the heart and great vessel-

forming regions after migration, with anteroposterior order of NCCs corresponding

to their proximodistal location within the heart. Preceding preotic NCCs are likely

to differentiate into coronary artery smooth muscle cells, whereas subsequent

postotic NCCs predominantly form the aorticopulmonary septum and the smooth

muscle layer of the aorta and pulmonary artery (Fig. 30.1). In addition, both NCC

populations differently distribute within semilunar valves, suggesting their distinct

roles in valve formation (Fig. 30.1).

30.5 Future Direction and Clinical Implications

Identification of preotic NCCs as an origin of cardiac cellular components may

provide a novel insight into cell lineage-based understanding of cardiac develop-

ment, anatomy, and (patho-)physiology. The spatiotemporal pattern of preotic NCC

migration and distribution suggests close interaction with second heart field-derived

mesodermal cells. In coronary artery formation, interactions between preotic NCCs

and other precursor cells from different origins such as the proepicardium and

endocardium seem to be an important issue to be addressed. Considering endothe-

lial and endocardial cells are major source of Edn1, the Edn signaling may play a

role in these interactions.

From a clinical viewpoint, it is intriguing to pursue the relationship between the

NC origin and susceptibility to atherosclerosis and calcification of the proximal

coronary arteries. Preotic NCCs retain multipotent capacities including osteogenic

and chondrogenic differentiation, leading us to speculate a possibility that these

capacities may be related to the pathogenesis and progression of coronary artery

diseases. Characterization of preotic NC-derived smooth muscle cells and other

derivatives may open perspectives toward novel therapeutic strategies.
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Various cellular signaling pathways play essential roles in regulating embryonic

vascular development. Among them, Notch signaling is implicated in arterial

endothelium differentiation and vascular morphogenesis. Mice that lack Notch

receptors or other signaling components die in utero due to severe vascular

abnormalities. We previously identified the Hairy-related transcription (Hrt) factor

family, also called Hey, Hesr, CHF, Herp, and Gridlock, as downstream mediators

of Notch signaling in the developing vasculature [1]. The Hrt family proteins, Hrt1/

Hey1, Hrt2/Hey2, and Hrt3/HeyL, mainly act as transcriptional repressors, by

binding to consensus DNA elements or by associating with other DNA-binding

transcription factors. The mice deficient for Hrt2 showed perinatal lethality due to

ventricular septal defects and mitral valve insufficiency, and cardiomyocyte-

specific deletion of Hrt2 caused abnormal expression of atrial-specific genes in

the ventricle and cardiac dysfunction in adulthood [2].
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It was also reported that combined loss of Hrt1 and Hrt2 resulted in early

embryonic lethality due to vascular demise similar to that observed in Notch

signal-deficient embryos. While Hrt1 and Hrt2 are expressed in endothelial cells

as well as smooth muscle cells of embryonic vasculature, it remained unclear which

vascular cell type requires Hrt1/Hrt2 functions. In the present study, we generated

the mice with endothelial-cell-specific deletion of Hrt2 combined with global Hrt1
null mutation and analyzed their vascular phenotypes during embryonic develop-

ment. The loss of endothelial Hrt1/Hrt2 caused early vascular abnormalities virtu-

ally identical to those observed in the global Hrt1/Hrt2 knockout mouse embryos

(Fig. 31.1), suggesting that Hrt functions in endothelial cells are indispensable for

normal vascular development.
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Fig. 31.1 The mice in which Hrt2 was deleted specifically in endothelial cells with the global

Hrt1 null background (H1ko/H2eko) show embryonic lethality with severe defects of vascular

morphogenesis. Whole mount PECAM1 immunostaining demonstrated impairment of vascular

network formation in H1ko/H2eko embryos
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the work’s Creative Commons license and the respective action is not permitted by statutory

regulation, users will need to obtain permission from the license holder to duplicate, adapt or

reproduce the material.
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The placental circulation is crucial for the development of mammalian embryos

[1]. The labyrinth layer in the placenta is created by extensive villous branching of

the trophoblast and vascularization arising from the embryonic mesoderm. In the

labyrinth, materials are exchanged between the maternal and embryonic circula-

tion. Recently, we have found that inositol 1,4,5-trisphosphate (IP3) receptors

(IP3Rs) may be required for the placental vascularization.

IP3Rs are intracellular Ca2+ release channels that have three subtypes in

mammals (IP3R1, IP3R2 and IP3R3) [2]. We previously showed that IP3R1 and

IP3R2 played an essential role in heart development from the analysis of mouse

embryo double knockout for IP3R1 and IP3R2 [3]. A previous report on the
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requirement for phospholipase (PLC) δ1 and δ3 [4] that produce IP3 for placenta-

tion led us to investigate the placental defects by deletion of any subtypes of IP3Rs.

Our preliminary result revealed that embryonic vasculature in the labyrinth was

impaired in the placenta double knockout for IP3R1 and IP3R3 at E9.25 (Fig. 32.1).

The detailed phenotype and the underlying mechanism how the intracellular Ca2+

signaling via IP3Rs may be implicated in the development of extraembryonic

vasculature are under investigation.
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Fig. 32.1 Cross sections of E9.25 placentas from the IP3R1
+/�3�/� (a and b) and IP3R1

�/�3�/�

(c and d) mice. (b) and (d) show higher-power fields of the rectangular areas of the labyrinth in (a)
and (c), respectively. Embryonic vessels (arrowheads) fail to elongate to the maternal sinuses in

the placenta of IP3R1
�/�3�/� compared to that of IP3R1

+/�3�/� (wild type). al allantois, de
decidua, gi trophoblast giant cells, la labyrinth layer, sp spongiotrophoblast layer. Scale bars,

0.5 mm in (a) and (c) and 0.2 mm in (b) and (d)
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Kawasaki disease is the most common acute systemic vasculitis of unknown

etiology in children [1] and can cause inflammation of the coronary arteries leading

to aneurysms. Tenascin-C, an extracellular matrix protein, and c-Jun N-terminal

kinase (JNK), an intracellular signaling protein, are known to be associated with

inflammation and tissue remodeling [2, 3]. The purpose of this study was to

demonstrate tenascin-C and JNK might be involved in tissue remodeling in a

Candida albicans-induced murine model of aneurysm.
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1. More than 80 % of the mice showed the macroscopic features of aneurysms in

the aorta and/or iliac and coronary arteries.

2. Marked inflammatory cell infiltration was observed in vascular wall and

perivascular connective tissue, accompanied by fragmentation of elastic fibers.

3. Expression of tenascin-C was highly observed in vascular wall, accompanied by

active degradation of elastic fibers.

4. Pharmacologic inhibition of JNK attenuated the aneurysm formation in the mice

model.

In conclusion, these findings suggest that both tenascin-C and JNK are involved

in abnormal tissue remodeling and inflammation in the Candida albicans-
induced Kawasaki disease murine model of aneurysm and that JNK inhibition

may represent a novel therapeutic target for preventing a Kawasaki disease-related

aneurysm.
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