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Abstract The present study investigated the influence of various sources of 
response variability in consonant perception. A distinction was made between 
source-induced variability and receiver-related variability. The former refers to per-
ceptual differences induced by differences in the speech tokens and/or the mask-
ing noise tokens; the latter describes perceptual differences caused by within- and 
across-listener uncertainty. Consonant-vowel combinations (CVs) were presented 
to normal-hearing listeners in white noise at six different signal-to-noise ratios. The 
obtained responses were analyzed with respect to the considered sources of vari-
ability using a measure of the perceptual distance between responses. The largest 
effect was found across different CVs. For stimuli of the same phonetic identity, the 
speech-induced variability across and within talkers and the across-listener vari-
ability were substantial and of similar magnitude. Even time-shifts in the wave-
forms of white masking noise produced a significant effect, which was well above 
the within-listener variability (the smallest effect). Two auditory-inspired models 
in combination with a template-matching back end were considered to predict the 
perceptual data. In particular, an energy-based and a modulation-based approach 
were compared. The suitability of the two models was evaluated with respect to 
the source-induced perceptual distance and in terms of consonant recognition rates 
and consonant confusions. Both models captured the source-induced perceptual dis-
tance remarkably well. However, the modulation-based approach showed a better 
agreement with the data in terms of consonant recognition and confusions. The 
results indicate that low-frequency modulations up to 16 Hz play a crucial role in 
consonant perception.
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1  Introduction

Speech perception is often studied from a macroscopic perspective, i.e., using 
meaningful long-term speech stimuli (e.g., in additive noise). To solely investigate 
the relation between the acoustic properties of the stimulus and the resulting speech 
percept (excluding lexical, semantic, and syntactic effects), an alternative is to take 
a microscopic perspective by investigating the perception of smaller units of speech 
such as consonants. Miller and Nicely (1955) measured the perception of conso-
nant-vowel combinations (CVs, e.g.,/ba/,/ta/) in white noise and different band-pass 
filtering conditions and observed distinct consonant confusions. Wang and Bilger 
(1973) demonstrated that consonant perception also depends on the vowel context. 
Phatak and Allen (2007) measured consonant perception in speech-weighted noise 
and demonstrated noise-type induced perceptual differences to the Miller and Nice-
ly (1955) data. In following studies, perceptual differences across different speech 
tokens of the same phonetic identity came more into focus (e.g., Phatak et al. 2008).

A few studies have attempted to simulate consonant perception. Li et al. (2010) 
successfully related consonant recognition data to the so-called AI Gram, which 
is related to the energy-based Articulation Index (ANSI 1969). Gallun and Souza 
(2008) considered noise-vocoded VCVs and demonstrated that the correlation of 
long-term modulation power representations was a strong predictor of consonant 
confusions. Jürgens and Brand (2009) used an auditory model with a modulation-
frequency selective preprocessing stage in combination with a template-matching 
back end. The model showed convincing recognition predictions while the confu-
sion predictions were inconclusive.

Motivated by the increasing evidence for a major variability in consonant per-
ception that cannot be accounted for by the phonetic identity of the stimuli, the 
present study attempted to quantify some of the sources of variability that influ-
ence consonant perception. It was distinguished between source-induced variabil-
ity and receiver-related variability. The former was subdivided into speech- and 
noise-induced variability; the latter was subdivided into across- and within-listener 
variability. Consonant perception data were collected and analyzed with respect 
to the considered sources of variability using a measure of the perceptual distance 
between responses. Predictions of the data were obtained using an energy- and a 
modulation-based model in combination with a template-matching back end. The 
model predictions were compared to the data (i) in terms of how well they reflected 
the source-induced variability measured in listeners and (ii) in terms of the agree-
ment between perceptual and predicted consonant recognition and confusions.
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2  Methods

2.1  Experiment 1: Speech Variability

CVs consisting of the 15 consonants /b, d, f, g, h, j, k, l, m, n, p, s, ∫, t, v/ followed 
by the vowel /i/ (as in “feed”) were used. Six recordings of each CV (three spoken 
by a male, three spoken by a female talker) were taken from the Danish nonsense 
syllable speech material collected by Christiansen and Henrichsen (2011). Six SNR 
conditions (12, 6, 0, − 6, − 12, and − 15 dB) were created by fixing the noise sound 
pressure level (SPL) to 60 dB and adjusting the speech SPL. One particular white 
masking noise waveform with a duration of 1 s was generated for each speech to-
ken in each SNR condition and mixed with it such that the speech token onset was 
temporally positioned 400 ms after the noise onset.

2.2  Experiment 2: Noise Variability

Only one male-talker speech token of each CV was used. Three masking-noise con-
ditions (frozen noise A, frozen noise B, and random noise) were considered. For 
each speech token, one particular white-noise waveform with a duration of 1 s was 
generated and labeled “frozen noise A”; the same noise token was then circularly 
shifted in time by 100 ms to obtain “frozen noise B”. The noise waveforms for the 
random noise condition (added to prevent noise learning) were randomly gener-
ated during the experimental procedure. The noisy speech tokens were created as 
described in Sect. 2.1.

2.3  Experimental Procedure

Two different groups of eight normal-hearing native Danish listeners participated 
in the two experiments (average age: 26 and 24 years, respectively). The stimuli 
were monaurally presented to the listeners via headphones in experimental blocks 
ordered according to the SNR in descending order. An additional quiet condition 
(clean speech at 60 dB SPL) preceded the SNR conditions (noise level at 60 dB 
SPL). Each block started with a short training run. The order of presentation within 
each experimental block was randomized. In experiment 1, each stimulus was pre-
sented three times to each listener. In experiment 2, each stimulus was presented 
five times to each listener. Listeners had to choose one of the response alternatives 
displayed as 15 buttons labeled “b, d, f, g, h, j, k, l, m, n, p, s, Sj, t, v” and one button 
labeled “I don’t know” on a graphical user interface (the Danish “Sj” corresponds 
to /∫/). Experiment 2 was repeated with four of the originally eight listeners to obtain 
test-retest data.
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2.4  Data Analysis

For each stimulus and listener, the responses obtained in the experiments were 
converted to proportions of responses by distributing any “I don’t know” response 
evenly across the 15 other response alternatives and dividing the occurrences of 
responses by the number of stimulus presentations. The response of a given listener 
obtained with a given stimulus was thus calculated as a vector r = [pb, pd, …, pv], 
where px denotes the proportion of response “x”. The perceptual distance between 
two response vectors r1 and r2 was defined as the normalized angular distance be-
tween them:

The perceptual distance was calculated across six different factors: (i) across CVs, 
(ii) across talkers, (iii) within talkers, (iv) across masking-noise tokens, (v) across 
listeners, and (vi) within listeners. Apart from the across-CV factor, only responses 
obtained with stimuli of the same phonetic identity were compared. For each con-
sidered factor, the perceptual distance was calculated across all pairwise compari-
sons of response vectors representative of that factor. The calculations for all factors 
but (v) were performed for each listener and each SNR condition separately. The 
calculations for (v) were performed for each SNR condition separately, compar-
ing responses across listeners. The individual distance values were then averaged 
across the considered response pairs and (where applicable) across listeners. As a 
result, the respective perceptual distances were obtained as a function of SNR.

3  Experimental Results

Figure 1 shows examples of perceptual across-talker variability and perceptual 
across-noise variability in terms of across-listener average confusion patterns: /pi/ 
spoken by talker A (panel a) was more recognizable (and less confusable) than /pi/
spoken by talker B (panel b); the perception of a given speech token /gi/ was very 
differently affected by a specific white masking-noise waveform “A” (panel c) than 
by a time-shifted version of that waveform (“B”, panel d).

Figure 2 shows the perceptual distances derived from the experimental data for 
all SNR conditions (see Sect. 2.4). On the left, the across-SNR average is shown. 
The largest perceptual distance of 91 % was found across CVs (black bar). Regard-
ing the source-induced perceptual distances across stimuli of the same phonetic 
identity, the largest perceptual distance of 51 % was obtained across talkers (blue 
bar), followed by the within-talker factor (47 %, green bar). A temporal shift in 
the masking-noise waveform induced a perceptual distance of 39 % (red bar). Re-
garding the receiver-related effects, a substantial perceptual distance of 46 % across 
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listeners was found for physically identical stimuli (light gray bar). In contrast, the 
relatively low perceptual distance of 30 % within listeners (test vs. retest, dark gray 
bar) indicated that the individual listeners were able to reproduce their responses 
fairly reliably. Pairwise t-tests across all combinations of conditions (excluding the 
across-CV condition) demonstrated that all conditions were significantly different 
from each other ( p < 0.05) except for the across-talker (blue), within-talker (green), 
and across-listener (light gray) conditions.
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Fig. 2  Mean ( left) and SNR-specific perceptual distances across CVs, across talkers, within talk-
ers, across noise, across listeners, and within listeners. The shaded areas represent values below 
the within-listener distance, i.e., below the internal-noise baseline

 

Fig. 1  Across-listener average example confusion patterns (CPs). Left: CPs obtained with two 
different speech tokens /pi/ spoken by male talker A ( top) and female talker B ( bottom). Right: 
CPs obtained with one specific speech token /gi/ mixed with frozen noise A ( top) and frozen noise 
B ( bottom)
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Regarding the trends across SNR in Fig. 2, it can be seen that the across-CV 
distance (black bars) was at ceiling for large SNRs and decreased with decreasing 
SNR, as listeners made more speech-token specific confusions. All other perceptual 
distance types showed low values for large SNRs and increased with decreasing 
SNR due to stimulus-specific confusions and listener uncertainty. The within-listen-
er distance (“internal noise”) represented the baseline and strongly increased with 
decreasing SNR as the task became more challenging.

4  Modeling

4.1  Model Components

The subband power P, in dB, was calculated using 22 fourth-order gammatone fil-
ters with equivalent rectangular bandwidths. The center frequencies were spaced on 
a third-octave grid, covering a range from 63 Hz to 8 kHz. The Hilbert envelope of 
each filter output was extracted and low-pass filtered using a first-order Butterworth 
filter with a cut-off frequency of 150 Hz. The envelopes were down-sampled to a 
sampling rate of 1050 Hz.

The modulation power Pmod, in dB, was obtained using the subband envelope 
extraction described above, followed by a modulation filterbank consisting of 
3 second-order band-pass filters (center frequencies of 4, 8, and 16 Hz) in parallel 
with one third-order low-pass filter (cut-off frequency of 2 Hz).

A template-matching procedure was applied to predict the responses obtained 
in experiment 1. Two talker-specific template sets were considered, consisting of 
all speech tokens from each talker (i.e., three templates for each CV). The tem-
plates were mixed with random white noise at the test-signal SNR and compared 
to the experimental stimuli. The distances between the models’ internal representa-
tions of the test signals and the templates were obtained using a standard dynamic 
time warping (DTW) algorithm (Sakoe and Chiba 1978). The template-matching 
procedure was conducted nine times with newly generated random noise for the 
templates. The “correct” template always contained the same speech token as the 
test signal, while the masking noise differed. In each run, the template showing 
the smallest distance to the test signal was selected. The modeled responses were 
converted to proportions of responses. The responses obtained in experiment 2 were 
predicted similarly, considering only the 15 speech tokens used in experiment 2 as 
templates.
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5  Simulation Results

5.1  Sources of Variability

In accordance with the procedure described in Sect. 2.4, the across-CV, across-talk-
er, within-talker, and across-noise modeled distances were obtained as a function 
of the SNR from the predicted responses. Figure 3 shows scatter plots of the per-
ceptual distance versus the modeled distances obtained using P (panel a) and Pmod 
(panel b). It can be observed that the perceptual distances were remarkably well-
predicted using P as well as Pmod, with a Pearson’s r of 0.96 and 0.98, respectively.

5.2  Consonant Recognition and Confusions

The grand average consonant recognition rates obtained in experiment 1 showed a 
speech reception threshold (SRT) of − 3 dB. The predicted SRTs were overestimated 
by 2.8 dB using P and by only 0.4 dB using Pmod. The token-specific SRTs showed 
a large spread across speech tokens, which was smaller in both model predictions. 
However, Pmod captured the relative ranking of token-specific SRTs considerably 
better than P (Spearman’s r of 0.4 and 0.04, respectively).

The across-listener average data obtained in experiment 1 were averaged across 
different speech tokens of the same phonetic identity and across the four lowest 
SNRs (as most confusions occur for low SNRs). The resulting confusion matrices 
(CMs) are shown as filled gray circles in both panels of Fig. 4. The model predic-
tions are plotted on top as open black circles. For P (panel a), an underestimation 
of the recognition for many consonants was observed, indicated by the mismatch 

Fig. 3  Source-induced perceptual distances (from Fig. 2) plotted versus corresponding modeled 
distances obtained using P ( left) and Pmod ( right). The symbols and colors represent the different 
distance types, the size of the symbols is proportional to the SNR
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of the on-diagonal circles. For Pmod (panel b), a good consonant-specific recogni-
tion rate match was found. Both models hit most of the confusions, reflected in the 
proportion of gray off-diagonal circles matched with a black circle. However, there 
were also many “false alarms”, particularly in the P-based predictions (panel a).

6  Summary and Discussion

The investigation of different sources of variability in Sect. 3 indicated that any 
considered difference in the stimuli produced a measurable effect. The observed 
perceptual variability across talkers is well established in the related literature (e.g., 
Phatak et al. 2008); the equally large variability within talkers had not yet been 
demonstrated. Most remarkably, even a 100-ms time shift in the white masking-
noise waveform induced significant perceptual variability, indicating that “steady-
state” masking noise should not be considered steady over time in the context of 
consonant cues. On the receiver side, different NH listeners with identical language 
background showed substantial differences while individual listeners could fair-
ly reliably reproduce their responses. Averaging consonant perception data (even 
across NH listeners) thus seems problematic.

The predictions obtained in Sect. 4 with the energy-based (P) and the modula-
tion-based (Pmod) pre-processing stages both accounted for the trends in the per-
ceptual data with respect to the considered stimulus-related sources of variability. 
Consonant recognition was strongly underestimated using P and well-predicted us-
ing Pmod. An inspection of confusion matrices suggested that both models correctly 

Fig. 4  Confusion matrices obtained in experiment 1, averaged across listeners, speech tokens 
of the same phonetic identity, and across SNRs of 0, − 6, − 12, and − 15 dB. The perceptual data 
are shown as filled gray circles in both panels. The model predictions obtained with P (left) and 
Pmod (right) are represented as open black circles
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predicted most of the perceptual confusions, albeit with some “false alarms”. The 
overall larger predictive power obtained with Pmod indicates that slow envelope fluc-
tuations up to 16 Hz are a good predictor for consonant-in-noise perception. This is 
consistent with the findings by Gallun and Souza (2008).

The perceptual data analysis has implications for the further model design. It 
was shown that the internal noise increased with decreasing SNR. This could be 
incorporated in the model using an SNR-dependent random process in the deci-
sion stage (instead of SNR-dependent templates). Furthermore, the model predicted 
responses of a hypothetical “average” NH listener, which is unrealistic given the 
considerable across-listener variability. It remains a challenge to include listener-
specific differences in the model, as it is not clear whether these differences can be 
accounted for by slight sensitivity differences between the NH listeners, cognitive 
effects, individual biases, or any combination of these factors. Eventually, an exten-
sion of the model towards different types of hearing impairment might be useful to 
understand the link between individual impairment factors and microscopic speech 
intelligibility.
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