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Abstract The basic nature of pitch is much debated. A robust code for pitch exists 
in the auditory nerve in the form of an across-fiber pooled interspike interval (ISI) 
distribution, which resembles the stimulus autocorrelation. An unsolved question 
is how this representation can be “read out” by the brain. A new view is proposed 
in which a known brain-stem property plays a key role in the coding of periodic-
ity, which I refer to as “entracking”, a contraction of “entrained phase-locking”. It 
is proposed that a scalar rather than vector code of periodicity exists by virtue of 
coincidence detectors that code the dominant ISI directly into spike rate through 
entracking. Perfect entracking means that a neuron fires one spike per stimulus-
waveform repetition period, so that firing rate equals the repetition frequency. Key 
properties are invariance with SPL and generalization across stimuli. The main lim-
itation in this code is the upper limit of firing (~ 500 Hz). It is proposed that entrack-
ing provides a periodicity tag which is superimposed on a tonotopic analysis: at low 
SPLs and fundamental frequencies > 500 Hz, a spectral or place mechanism codes 
for pitch. With increasing SPL the place code degrades but entracking improves and 
first occurs in neurons with low thresholds for the spectral components present. The 
prediction is that populations of entracking neurons, extended across characteristic 
frequency, form plateaus (“buttes”) of firing rate tied to periodicity.
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1  Introduction

Pitch perception is a fascinating area because it appears so simple and yet is a process of 
considerable subtlety and complexity. (Green 1976)
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Pitch perception is considered to represent the heart of hearing theory, and is, without 
doubt, the topic most discussed over the years. (Plomp 2002)

Pitch may be the most important perceptual feature of sound. (Yost 2009)

Despite more than a century of study, there is no consensus regarding the basic 
nature of pitch, causing a palpable level of frustration among hearing researchers. 
The wealth of behavioral research on pitch perception contrasts with the paucity of 
physiological research into its neural basis beyond the level of the auditory nerve 
(AN). Processing in the central nervous system (CNS) is expected to be fundamen-
tally different for the various temporal vs. spectral schemes that have been pro-
posed, so physiological insights have the potential to reveal which (combination) of 
the two classes of schemes underlies human pitch perception.

A robust but implicit code for pitch exists in the AN in the form of an across-fiber 
pooled interspike interval (ISI) distribution (Cariani and Delgutte 1996a, 1996b; 
Meddis and Hewitt 1991a, b), which resembles the stimulus autocorrelation. An 
unsolved question is how and whether this implicit temporal representation is trans-
formed into a more explicit representation. Following an early model (Licklider 
1951), various autocorrelation-type schemes have been proposed, in which peri-
odicity-tuning is generated by some combination of coincidence detection and a 
source of delay. It is generally assumed that such a computation is implemented 
at a brainstem level, where responses are temporally precise over a broad range of 
frequencies. However, recordings have not revealed convincing evidence for level-
invariant, periodicity-tuned neurons or sources of delay that cover a sufficiently 
broad temporal range (Neuert et al. 2005; Sayles et al. 2013; Sayles and Winter 
2008a, 2008b; Verhey and Winter 2006; Wang and Delgutte 2012).

Here, simple properties of the early central auditory system are brought into 
focus and it is argued that the relevant representation is fundamentally different 
from autocorrelation-type schemes à la Licklider (1951). The key proposal is that 
entrained phase-locking (contracted to “entracking”) generates a scalar rate code for 
pitch early in the brainstem.

2  AN to Brain Stem: A Change in Orientation

In the AN, ISI histograms of responses to low-frequency pure tones are always 
multimodal (Kiang et al. 1965); i.e., after firing a spike, fibers often skip one or 
more cycles before firing another spike. Cycle skipping allows temporal and aver-
age rate behavior to be uncoupled. For example, neither the sigmoidal shape of 
rate-level functions (firing rate as a function of stimulus SPL), their dynamic range, 
nor maximum firing rate, are dependent on stimulus frequency per se but on stimu-
lus frequency relative to characteristic frequency (CF). This behavior, combined 
with cochlear band-pass filtering, underlies rate-place coding: spectral components 
are translated into a firing rate profile of the population of AN fibers (Cedolin and 
Delgutte 2005; Larsen et al. 2008). This is a tonotopic or “vertical” view of the audi-
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tory system in which strength of response along the tonotopic axis is proportional 
to spectral energy. Experimental studies in which large populations of AN fibers 
are studied support this view (Delgutte and Kiang 1984; Kim and Molnar 1979; 
Sachs and Young 1979). Frequency in an absolute sense is inconsequential in these 
displays. For example, similar rate-place profiles would be expected for an animal 
with low-frequency hearing and one with high-frequency hearing, if the stimuli and 
filter widths and shapes could be appropriately scaled between the two species.

In contrast, in the CNS, skipping of cycles is often less prominent. At low stimu-
lus frequencies, higher modes in the ISI distribution, at multiples of the stimulus 
period, can be strongly attenuated relative to the mode corresponding to the tone 
period (references: see Sect. 3). One corollary of this behavior is that average firing 
rate can approach the stimulus frequency. Perfect entracking means that a neuron 
fires one spike per cycle so that the firing rate equals the stimulus repetition fre-
quency. A rate-place profile for neurons with perfect entracking would look quite 
different from that in the AN, and stimulus frequency in an absolute sense would 
now affect the display. For a low-frequency pure tone at some supra-threshold level, 
the rate-place profile would show a horizontal rather than a vertical pattern: all 
entracking neurons would be firing at the same firing rate, which would equal the 
stimulus frequency. Of course, only neurons with CF sufficiently close to the stimu-
lus frequency would receive enough drive from their inputs to show entracking. 
The expected output is therefore a mixture of the vertical and horizontal pattern: a 
butte of activity in which all neurons would have the same average firing rate, and 
whose edges are formed by neurons whose CF is too far removed from the stimulus 
frequency for full entracking. A mixture of two low-frequency tones, if sufficiently 
separated in frequency, would be expected to generate two buttes with different 
height, corresponding to the two frequencies.

3  Entracking to Pure Tones

Pure tones are rare in nature but relevant in the context of pitch, not only to define 
and measure pitch, but also because of the dominant role of resolved harmonics 
(Plack and Oxenham 2005). Entracking to pure tones is visible in some of the early 
studies of the brainstem (Moushegian et al. 1967; Rose et al. 1974), and is exten-
sively documented in studies from the Madison group (Joris et al. 1994b; Recio-
Spinoso 2012; Rhode and Smith 1986). These data show that near-perfect entrack-
ing can be observed in low-CF neurons, or in the “low-frequency tail” of neurons 
with higher CFs. As expected from refractory behavior, there is an upper limit, 
which varies across neurons and across species. In rare instances neurons will fully 
entrack at 800 Hz or even higher, but more often the upper limit is near 500 Hz or 
lower. Over the frequency range of entracking, average firing rate increases linearly 
with frequency, and depends little on SPL except at low suprathreshold SPLs. One 
consequence is that neurons may fire at much higher rates to low-frequency stimuli 
in their “tail” than to tones near their CF (see Fig. 13 in Joris et al. 1994a).
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Entracking is not a rare phenomenon. We and others have observed it in vari-
ous cell types and nuclei, and in a number of species. In the ventral CN of the cat, 
most types of projection neuron display this behavior to some degree (spherical and 
globular bushy cells, octopus cells, commissural multipolar cells, stellate cells). We 
have observed it in the medial nucleus of the trapezoid body (Mc Laughlin et al. 
2008) and in other neurons of the superior olivary complex (e.g. Joris and Smith 
2008). We have observed entracking in different species (cat, chinchilla, gerbil; see 
also studies cited above), and have limited evidence in the CN of macaque monkey.

An important qualifier is that the entracking observed is not always the extreme 
form (exactly 1 spike/cycle), particularly at frequencies above a few 100 Hz. The 
defining property is that there is an effect of absolute frequency on average firing 
rate so that rate increases monotonically with frequency up to a certain maximum. 
Thus, in the brainstem, firing rate does not only depend on SPL and stimulus fre-
quency relative to CF, as it does in the AN, but also depends on absolute stimulus 
frequency. For the extreme cases of this behavior a stronger statement can be made: 
SPL and stimulus frequency relative to CF have remarkably little effect, and abso-
lute frequency is the overriding stimulus parameter determining response rate.

Besides being present in various cell types, nuclei, and species, entracking has 
inherent properties that make it an attractive coding mechanism. It is remarkably 
invariant with SPL, i.e. once perfect entracking is reached, further increases in SPL 
do not affect average response rate: the rate-level function shows a limited (20 dB) 
dynamic range, and at higher SPLs the firing rate remains clamped at the stimulus 
frequency. At the population level, increases in SPL cause an increase in the number 
of entracking neurons. A second striking property is the low variability in firing rate. 
In some cases there is no variability: exactly the same number of spikes is generated 
in response to the same stimulus presented at the same or other SPLs.

4  Yes We SAM

Data regarding entracking to pitch stimuli other than pure tones are limited. An 
early striking example is to click trains: octopus cells in the CN can fire one spike 
per click up to ~ 700 clicks/s (Godfrey et al. 1975; Oertel et al. 2000). This behavior 
occurs at high CFs, to which octopus neurons are biased. As mentioned, octopus 
cells that can be driven by low-frequency tones also show entracking to tones. In 
AN fibers, firing rate also shows some dependence on click train frequency, but 
much weaker than in octopus cells.

We have also observed entracking to sinusoidally amplitude modulated (SAM) 
tones. Figure 3G in Joris and Smith (2008) shows data at different SPLs over a 
range of modulation frequencies for one monaural neuron, recorded just laterally 
to the MSO, in an area which may correspond to the mLNTB (Spirou and Berrebi 
1996). Similar to entracking to pure tones mentioned in the previous section, fir-
ing rate increased linearly with modulation frequency; was similar for the different 
SPLs tested; and declined steeply once an upper limit is reached. The CF of the 
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neuron was 2.4 kHz, but the response to pure tones at CF was much lower than to 
low-frequency tones delivered in the tail of the tuning curve, to which the neuron 
entracked (Fig. 3C in Joris and Smith 2008).

5  Scalar versus Vector Code

Various schemes and neural mechanisms have been proposed for the encoding of 
pitch-related periodicity based on the temporal information carried by peripheral 
neurons. They have in common that they predict tuning in which a neuron is opti-
mally responsive to a certain periodicity. Sounds that differ in pitch would activate 
different neurons; different sounds with the same pitch would activate the same 
neurons. Such schemes are referred to as vector codes (Churchland and Sejnowski 
1992). Periodicity tuning is typically achieved by comparing spike trains with a 
delayed copy. The comparison involves multiplicative, subtractive, or additive neu-
ral interactions; and some source of delay from axons, cochlea, synapses, intrinsic 
membrane properties, etc. (reviewed by de Cheveigné 2005). From a physiological 
point of view, problems with this approach are that there is only limited evidence 
for such tuning in the brainstem and only over a limited range of periodicities; that 
no convincing delay mechanisms have been identified that cover a wide range of 
values (tens to tenths of ms); and that some of these schemes require elaborate (and 
biologically implausible) wiring.

The scheme proposed here dispenses with delays and suggests a scalar code, 
based on a property which is physiologically well documented. We surmise that en-
tracking neurons at the brain stem level are not tuned to a particular periodicity but 
all code for a range of periodicities by their monotonic relationship between average 
firing rate and pitch-related period.

6  Buttes

To some extent (increasingly so with increasing SPL), the representation hypoth-
esized here is “orthogonal” to the tonotopic representation. The rate-place profile 
in the AN to a low-frequency tone increasingly broadens with increasing SPL, and 
flattens due to rate saturation (Kim and Molnar 1979). If a population of central 
neurons shows entracking, this property causes a stratification in the rate-place pro-
file. Instead of a vertical or “hilly” profile where resolved components cause local 
increases in firing rate and unresolved components lead to a broad mound of activ-
ity, entracking generates horizontally flattened profiles or buttes, for which firing 
rate is dictated by the dominant interval between spikes fed to neurons in these 
frequency channels. For multiple, truly resolved components, a staircase of buttes 
would result with increasing firing rates corresponding to the frequency of succes-
sive harmonics. For unresolved components, many factors come into play (filter 
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shape, limits to fine-structure and envelope, component phase), but buttes could be 
formed by neurons entracking to the dominant stimulus period.

An obvious limitation in this scalar code is the upper limit of firing (usually near 
~ 500 Hz). We surmise that at low SPLs and fundamental frequencies > 500 Hz, a 
spectral or place mechanism codes for pitch (Cedolin and Delgutte 2005; Larsen 
et al. 2008). With increasing SPL the place code degrades but entracking improves 
and first occurs in the neurons with the lowest thresholds for the spectral compo-
nents present.

For a given stimulus and time window, a neuron can only have one firing rate. 
One may wonder what distinguishes the low firing rate of an entracking neuron to a 
low frequency component vs. the low firing rate to a component above the entrack-
ing limit. The key would again be in the uniform firing rate, with low variability, 
across neurons in the case of a low frequency component. Above the entracking 
limit, firing rate is no longer clamped to the value dictated by the dominant ISI of a 
neuron’s inputs and will vary across neurons.

7  Discussion

The main goal of this chapter is to introduce a new way of thinking about pitch 
coding, grounded in CNS physiology. If there is a robust representation of pitch in 
the dominant ISI distribution in the AN (Cariani and Delgutte 1996a, 1996b), and 
if some neurons convert ISI directly into a corresponding firing rate, then it seems 
possible that the dominant ISI interval is coded as predominant firing rate. Evident-
ly, the scheme proposed here is incomplete. Questions arise how and where a butte 
profile would be read out; how such a representation would mesh with the spectral 
representation needed for F0 above ~ 500 Hz; how phase-invariant this representa-
tion would be; etc. We conclude with some interrelated issues.

An important issue is the effective bandwidth of central neurons. Several CN 
neuron types integrate over wide frequency regions (Godfrey et al. 1975; Winter 
and Palmer 1995): partials that are resolved at the level of the AN may be un-
resolved in these CN populations. The autocorrelogram-like display in the domi-
nant ISI hypothesis sums across frequency channels (Cariani and Delgutte 1996a, 
1996b): for such an operation a wide bandwidth would be beneficial. Another issue 
is whether there is a specific physiological subset of neurons or even a separate 
brainstem nucleus which codes periodicity via entracking. Entracking is observed 
in a diversity of structures and neuron types, suggesting a distributed mechanism, 
but this does not exclude the existence of a brainstem “pitch center” specialized in 
this form of encoding. For CN neurons showing entracking, convergence of multi-
ple inputs from the AN is obviously required; the degree of entracking in responses 
beyond the CN suggests that there are multiple stages of such convergence. A strong 
form of the butte hypothesis is based on perfect entracking; a weaker form only re-
quires a monotonic relationship between firing rate and pitch-related period without 
attaining equality. One of the most critical issues is phase invariance, which we see 
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as an experimental issue. Some neurons in the CN show good envelope coding to 
quasi-frequency-modulated (QFM) stimuli (Rhode 1995). Possibly there are always 
some neurons entracking at the pitch-related period, no matter what the phase spec-
trum is. Finally, entracking is invariably accompanied by exquisite phase-locking. 
One could debate whether it fundamentally is a temporal or rate code. The temporal 
aspects of the response are disregarded here in the sense that it is the constancy in 
rate, within and across neurons and stimuli, that codes for pitch, while the phase of 
spiking is surmised to be irrelevant.
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