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Abstract The human ability to understand speech across an enormous range of 
listening conditions is underpinned by a hierarchical auditory processing system 
whose successive stages process increasingly complex attributes of the acoustic 
input. In order to produce a categorical perception of words and phonemes, it has 
been suggested that, while earlier areas of the auditory system undoubtedly respond 
to acoustic differences in speech tokens, later areas must exhibit consistent neural 
responses to those tokens. Neural indices of such hierarchical processing in the 
context of continuous speech have been identified using low-frequency scalp-
recorded electroencephalography (EEG) data. The relationship between continuous 
speech and its associated neural responses has been shown to be best described 
when that speech is represented using both its low-level spectrotemporal informa-
tion and also the categorical labelling of its phonetic features (Di Liberto et al., Curr 
Biol 25(19):2457–2465, 2015). While the phonetic features have been proven to 
carry extra-information not captured by the speech spectrotemporal representation, 
the causes of this EEG activity remain unclear. This study aims to demonstrate a 
framework for examining speech-specific processing and for disentangling high-
level neural activity related to intelligibility from low-level activity in response to 
spectrotemporal fluctuations of speech. Preliminary results suggest that neural mea-
sure of processing at the phonetic level can be isolated.
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1  Introduction

Speech processing is an active cognitive activity underpinned by a complex hierar-
chical system (Chang et al. 2010; Okada et al. 2010; Peelle et al. 2010; DeWitt and 
Rauschecker 2012; Hickok 2012). In particular, evidence for hierarchical speech 
processing emerged from functional magnetic resonance imaging (fMRI) and elec-
trocorticography (ECoG) studies. Although these methodologies have provided im-
portant scientific insights, they have many limitations. For example, fMRI does not 
allow for the study of the fast temporal dynamics typical of continuous speech, and 
ECoG studies are limited to patients suffering from severe cases of epilepsy.

Electro- and magnetoencephalography (EEG/MEG), as macroscopic non-inva-
sive technologies, have the potential for further progress on this topic. Traditionally, 
the low signal-to-noise ratio (SNR) has hampered the experiments conducted with 
these instruments, limiting the study of speech processing to repeated presentations 
of simple short sounds, which elicit neural responses known as event related poten-
tials (ERPs). Although studies based on ERPs have provided important insights on 
this topic, the human auditory processing mechanisms are tuned to process continu-
ous speech and respond differently to discrete sounds (Bonte et al. 2006). Recent 
studies have provided encouraging evidence on the capability of EEG and MEG 
to track neural correlates of the low-frequency amplitude envelope of continuous 
speech (Aiken and Picton 2008; Lalor and Foxe 2010; Ding and Simon 2012), a 
finding that has proven useful for investigating the mechanisms underlying speech 
processing (Luo and Poeppel 2007) and its dependence on attention and multisenso-
ry integration (Power et al. 2012; Zion Golumbic et al. 2013). However, the causes 
of this envelope-tracking phenomenon remain unclear.

Our recent research effort has focused on the identification of neural indices 
of continuous speech processing at different levels of this hierarchical system. In 
particular, phonetic-features of speech have been shown to capture information that 
does not emerge when using models based on the envelope, suggesting that EEG is 
indexing higher-level speech processing (Di Liberto et al. 2015). Here we seek to 
build on this work by disentangling the higher-level phonemic processing contribu-
tions from those related to the low-level acoustic properties of the speech signal. By 
utilising priming, we can control how much a degraded speech stimulus is recog-
nised without changing the stimulus itself, exploiting the fact that speech recogni-
tion is an active process (Hickok 2012). In doing so, we demonstrate a framework 
for examining speech-specific processing using EEG.
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2  Methods

2.1  Subjects and Data Acquisition

Ten healthy subjects (5 male, aged between 21 and 31) participated in this study. 
Electroencephalographic (EEG) data were recorded from 128 electrode positions, 
digitised at 512 Hz using a BioSemi Active Two system. Monophonic audio stimuli 
were presented at a sampling rate of 44,100 Hz using Sennheiser HD650 head-
phones and Presentation software from Neurobehavioral Systems (http://www.neu-
robs.com). Testing was carried out in a dark room and subjects were instructed to 
maintain visual fixation on a crosshair centred on the screen, and to minimize motor 
activities for the duration of each trial.

2.2  Stimuli and Experimental Procedure

Audio-book versions of two classic works of fiction read by the same American 
English speaker were partitioned into speech snippets, each with a duration of 10s. 
120 snippets were randomly selected for the experiment. In order to alter the intelli-
gibility of the speech, a method known as noise-vocoding was implemented (Shan-
non et al. 1995). This method filters the speech into a number of frequency-bands, 
and uses the amplitude envelope of each band to modulate band-limited noise. 
In our experiment, frequency-bands were logarithmically spaced between 70 and 
5000 Hz. To determine the number of frequency-bands to use, an offline intelligibil-
ity test was performed for each subject using a separate set of 40 speech snippets. 
The number of frequency-bands was chosen such that subjects could understand 
an average of two words in each snippet. Each EEG trial consisted of the presenta-
tion of 3 speech snippets (Fig. 1). A standard trial consisted of a first presentation 
(snippet a) in which the speech was degraded using noise-vocoding as previously 
described. Therefore it was largely unintelligible. The second snippet (snippet b) 
contained the same speech, but in its original clear form. The noise-vocoded ver-
sion was then played again (snippet c). As such, this third condition was affected by 
priming because the original clear speech was played immediately before and be-
cause the speech was vocoded at the limit of intelligibility. Importantly, the speech 
snippets used to determine the number of vocoding frequency-bands served also to 
reduce the adaptation to the noise-vocoded speech during the experiment (Davis 
et al. 2005).

In order to measure the effect of priming, we also introduced deviant trials. These 
trials consisted of a modified version of ( a) and/or ( c), where a random chunk of 
~ 5s was replaced with words from a different trial. In both cases, the deviant prob-
abilities were set to 10 %. The participants were asked to identify the first and the 
second speech vocoded streams as a standard or a deviant presentation (after the 
presentations ( b) and ( c), respectively), using a level of confidence from 1 to 5 
(from ‘definitely a deviant’ to ‘definitely a standard’).

http://www.neurobs.com
http://www.neurobs.com
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2.3  EEG Data Analysis

The EEG data were inspected to identify channels with excessive noise or motor 
artefacts. Data were then digitally filtered using a Chebyshev type-2 band-pass filter 
with pass-band between 1 and 15 Hz and down-sampled to 128 Hz. Also, data was 
referenced to the average of the two mastoid channels.

Linear regression (http://sourceforge.net/projects/aespa) was used to create a 
mapping between the EEG and five different representations of the speech stimuli:

1. The broadband amplitude envelope (Env) of the speech signal, which was calcu-
lated as ( )( ) , ( ) ( ) ( ),a aEnv x t x t x t jx t= = +  where x ta ( )  is the complex analytic 
signal obtained by the sum of the original speech x t( ) and its Hilbert transform 
x t( ).

2. The spectrogram (Sgram) was obtained by partitioning the speech signal into 
three frequency-bands logarithmically spaced between 70 and 5000 Hz accord-
ing to Greenwood’s equation (70–494–1680–5000 Hz, the same used for the 
vocoder), and computing the amplitude envelope for each band.

Fig. 1  EEG data were recorded while subjects listened to groups of three 10s long speech snip-
pets. In the standard trial, the first (a) and third (c) speech streams of each group were the noise-
vocoded version of the original one (b). The deviant presentations consisted of a modified version 
of (a) and/or (c). After both (b) and (c), the participants were asked to identify the first and the 
second speech vocoded streams as a standard or a deviant presentation. Linear regression was used 
to fit multivariate temporal response functions (TRFs) between the low-frequency EEG and each 
representation of the speech stimulus

 

http://sourceforge.net/projects/aespa
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3. The phonemic (Ph) representation was computed using forced alignment (Yuan 
and Liberman 2008), given a speech file and the correspondent orthographic 
transcription broken into 26 phonemes in the International Phonetic Alphabet 
(IPA). A multivariate time-series composed of 26 indicator variables was then 
obtained.

4. The phonetic features (Fea) encoding is a linear mapping of the phonetic rep-
resentation into a space of 18 features (Mesgarani et al. 2014), which describe 
specific articulatory and acoustic properties of the speech phonetic content 
(Chomsky and Halle 1968). In particular, the chosen features are related to the 
manner and place of articulation, to the voicing of a consonant, and to the back-
ness of a vowel.

5. Finally, we propose a model that combines Fea and Sgram ( FS) by applying a 
concatenation of the two representations.

For each representation of the speech, the result is a set of regression weights re-
ferred to as multivariate temporal response functions (TRFs). k-fold cross-valida-
tion ( k = 10) was employed to build predictions of the EEG signal from the TRFs of 
each distinct speech representation model. The prediction accuracies were obtained 
as an average of the correlation values over a set of 12 best predictive electrodes 
(6 on the left side of the scalp and the symmetrical counterparts on the right), on a 
time-lag window from 0 to 250 ms (Lalor et al. 2006; Di Liberto et al. 2015).

The study was undertaken in accordance with the Declaration of Helsinki and 
was approved by the Ethics Committee of the School of Psychology at Trinity Col-
lege Dublin. Each subject provided written informed consent. Subjects reported no 
history of hearing impairment or neurological disorder.

3  Results

The main idea underlying the experimental paradigm was to take advantage of the 
priming effect to create two conditions in which the same speech stimuli were un-
intelligible and intelligible (condition a and c respectively; the prime is referred to 
as condition b). Such an experiment has the potential to disentangle acoustic and 
phonetic models and to allow us to address the non-overlapping cortical activity 
encoded by their TRFs.

3.1  Behavioural Results

The behavioural results (Fig. 2a) confirm that the experiment is creating these 
two conditions. Specifically, standard trials are detected with a higher confidence 
level (paired t-test, p = 3.1 × 10−5) while no difference emerged for deviant trials 
( p = 0.41). The distribution of responses (Fig. 2b, top) confirms that the participants 
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were more confident in the detection of standard trials; therefore they could better 
understand the vocoded speech in the primed condition. Interestingly, the deviant 
trials were not confidently detected (Fig. 2b, bottom), in fact they consisted of a 
vocoded speech snippet with a ~ 5s portion inconsistent with the original one, for 
which the prime has no effect. The hypothesis that subjects understand more the 
noise-vocoded speech presented after the prime is met for standard trials, therefore 
the analysis is conducted on them.

3.2  EEG Predictions and Model Comparison

128-channel EEG data were recorded from 10 subjects as they performed the task 
(Fig. 1). In this experiment, the original speech (condition b) was used as a prime 
for the second presentation of the noise-vocoded speech (condition c). Also, the 
results obtained in condition b provide a baseline with which to compare with pre-
vious research (Di Liberto et al. 2015). Indeed, the main interest relies on the com-
parison between vocoded speech in the primed ( a) and in the non-primed ( c) condi-
tions. In particular, we studied the standard trials, in which the difference between 
the primed and non-primed conditions can originate only in the EEG signal and it is 
related to an improved intelligibility (Fig. 2a).

TRF models were fit using linear regression on the standard for each speech 
representation ( Env, Sgram, Ph, Fea, and FS) in the primed and non-primed condi-
tions. These models were then compared in terms of their ability of predicting the 
EEG data (see Methods). Interestingly, the phonetic models show an improvement 

Fig. 2  Subjects were presented with sequences of vocoded-original-vocoded speech snippets and 
were asked to identify the two noise-vocoded streams (non-primed and primed conditions) as 
standard or deviant presentations by comparing them with the original speech snippet. Responses 
consisted of a level of confidence from 1 (‘different’) to 5 (‘identical’). (a), the confidence in the 
identification of the standard trials was higher in the primed case for standard trials ( p < 0.0005), 
while no significant difference emerged for the deviants ( p > 0.05). (b), compares the distribution 
of response values across subjects in the primed and non-primed conditions, for standard and 
deviant trials
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in their EEG predictions unseen for the ones based only on acoustical information 
(Fig. 3). Importantly, this effect is driven by the whole distribution and not only by 
single subjects (Jack-knife analysis, two-way repeated measures ANOVA, Green-
house-Geisser sphericity correction, df = 1.8, F = 66.6, p < 0.0005).

Further analysis can be performed on the model weights returned by the linear 
regression, which can be interpreted as the activation of macroscopic areas of the 
cerebral cortex in response to continuous speech at specific delays (time-lags). In 
the case of the current dataset, the three conditions can be compared in terms of 
response to Env (not shown) and to Ph and Fea (Fig. 4a and b).

4  Discussion

The ability of processing natural speech correctly is of extreme importance for hu-
mans as it represents the main method of direct communication between individu-
als. Although social interaction can be performed in other ways, deficits in any of its 
aspects can be the cause of discomfort, isolation, and depression. The awareness of 
this issue is essential for avoiding such consequences, however the diagnosis can be 
problematic, especially in the less severe cases. Certainly, methodologies for study-
ing this articulated hierarchical system have the potential to drive the understanding 
of new insights into its mechanisms and to serve as an instrument of diagnosis for 
neural disorders related to speech. In particular, we are seeking the consolidation of 
a dependent measure capable of quantifying the higher-level processing of speech 
contribution to the scalp recorded neural activity.

EEG has been shown to be sensitive to phonetic-features of speech (Di Liberto 
et al. 2015). These categorical features capture information to which the envelope 
of speech is not sensitive, however the actual contribution of higher-level active 

Fig. 3  The models Env, Sgram, Ph, Fea, and FS were compared using the Pearson correlation 
index between the EEG signal and its prediction as a quality indicator. The results for the non-
primed and primed presentations of the vocoded speech are reported in (a) and (b) respectively, 
while (c) shows their difference (b−a). The error-bars represent the standard deviation of the Jack-
knife distribution
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processes related to intelligibility remains unclear. The framework we have defined 
here has the potential to disentangle these contributions from low-level EEG re-
sponses to spectrogram fluctuations. The results presented here support this hypoth-
esis and motivate further studies.

The definition of a neural dependent measure of speech processing related to in-
telligibility could find application in clinical areas. For example, previous research 
(Pisoni 2000) suggests that the inability of deaf children with cochlear implants 
to discriminate fine phonetic differences in place of articulation and voicing is re-
flected in their perception of spoken words in terms of broad phonetic categories or 
functional equivalence classes. Indeed, such models are potentially useful in moni-
toring the development of patients in those situations and may provide new insights 
on the mechanisms underlying speech processing.

Acknowledgments Funding sources: Science Foundation Ireland; Irish Research Council.

Fig. 4  Temporal response functions (TRFs) in response to Ph (a) and to Fea (b) are compared 
across conditions. The colour-scale relates to the neural activation in response to continuous 
speech for a specific phoneme or phonetic-feature. The y-axis labels are grouped in macroscopic 
categories which exhibit similar patterns of activations
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