
2Basic Constructions

2.1 If Tests

Very often in life, and in computer programs, the next action depends on the out-
come of a question starting with “if”. This gives the possibility to branch into
different types of action depending on some criterion. Let us as usual focus on
a specific example, which is the core of so-called random walk algorithms used in
a wide range of branches in science and engineering, including materials manufac-
turing and brain research. The action is to move randomly to the north (N), east (E),
south (S), or west (W) with the same probability. How can we implement such an
action in life and in a computer program?

We need to randomly draw one out of four numbers to select the direction in
which to move. A deck of cards can be used in practice for this purpose. Let the
four suits correspond to the four directions: clubs to N, diamonds to E, hearts to S,
and spades to W, for instance. We draw a card, perform the corresponding move,
and repeat the process a large number of times. The resulting path is a typical
realization of the path of a diffusing molecule.

In a computer program, we need to draw a random number, and depending on
the number, update the coordinates of the point to be moved. There are many ways
to draw random numbers and translate them into (e.g.) four random directions, but
the technical details usually depend on the programming language. Our technique
here is universal: we draw a random number in the interval Œ0; 1/ and let Œ0; 0:25/

correspond to N, Œ0:25; 0:5/ to E, Œ0:5; 0:75/ to S, and Œ0:75; 1/ to W. Let x and y
hold the coordinates of a point and let d be the length of the move. A pseudo code
(i.e., not “real” code, just a “sketch of the logic”) then goes like

25© The Author(s) 2016
S. Linge, H.P. Langtangen, Programming for Computations – MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_2



26 2 Basic Constructions

r = random number in [0,1)

if 0 <= r < 0.25

move north: y = y + d

else if 0.25 <= r < 0.5

move east: x = x + d

else if 0.5 <= r < 0.75

move south: y = y - d

else if 0.75 <= r < 1

move west: x = x - d

Note the need for first asking about the value of r and then performing an action.
If the answer to the “if” question is positive (true), we are done and can skip the
next else if questions. If the answer is negative (false), we proceed with the next
question. The last test if 0:75 � r < 1 could also read just else, since we here
cover all the remaining possible r values.

The exact code in Matlab reads

r = rand() % random number in [0,1)

if 0 <= r < 0.25

% move north

y = y + d;

elseif 0.25 <= r < 0.5

% move east

x = x + d;

elseif 0.5 <= r < 0.75

% move south

y = y - d;

else

% move west

x = x - d;

end

We use else in the last test to cover the different types of syntax that is allowed.
Matlab recognizes the reserved words if, elseif, and else and expects the code
to be compatible with the rules of if tests:

� The test reads if condition, elseif condition, or else, where condition
is a boolean expression that evaluates to true (1) or false (0).

� If condition is true, the following statements up to the next elseif, else, or
end are executed, and the remaining elseif or else branches are skipped.

� If condition is false, the program flow jumps to the next elseif or else
branch.

The blocks after if, elseif, or else may contain new if tests, if desired.
Working with if tests requires mastering boolean expressions. Here are some

basic boolean expressions involving the logical operators ==, =, <, <=, >, and
>=. Given the assignment to temp, you should go through each boolean expression
below and determine if it is true or false.



2.2 Functions 27

temp = 21 % assign value to a variable

temp == 20 % temp equal to 20

temp ~= 20 % temp not equal to 20

temp < 20 % temp less than 20

temp > 20 % temp greater than 20

temp <= 20 % temp less than or equal to 20

temp >= 20 % temp greater than or equal to 20

2.2 Functions

Functions are widely used in programming and is a concept that needs to be mas-
tered. In the simplest case, a function in a program is much like a mathematical
function: some input number x is transformed to some output number. One ex-
ample is the tanh�1.x/ function, called atan in computer code: it takes one real
number as input and returns another number. Functions in Matlab are more gen-
eral and can take a series of variables as input and return one or more variables, or
simply nothing. The purpose of functions is two-fold:

1. to group statements into separate units of code lines that naturally belong to-
gether (a strategy which may dramatically ease the problem solving process),
and/or

2. to parameterize a set of statements such that they can be written only once and
easily be re-executed with variations.

Examples will be given to illustrate how functions can be written in various con-
texts.

If we modify the program ball.m from Sect. 1.2 slightly, and include a function,
we could let this be a new program ball_function.m as

function ball_function()

% This is the main program

time = 0.6; % Just pick some time

vertical_position = y(time);

fprintf(’%f \n’,vertical_position)

time = 0.9; % Pick another time

vertical_position = y(time);

fprintf(’%f \n’,vertical_position)

end

% The function ’y’ is a _local_ function in this file

function result = y(t)

g = 9.81; % Acceleration of gravity

v0 = 5; % Initial velocity

result = v0*t - 0.5*g*t^2;

end

Here, Matlab interprets this as the definition of two functions, recognized
by the reserved word function that appears two places. The first function
ball_function, is defined by the statements between (and including) function

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_function.m


28 2 Basic Constructions

ball_function() and the first end. Note that the first function in a file should
have the same name as the name of the file (apart from the extension .m). The
second function, i.e. y, is similarly defined between function result = y(t)
and the second end.

Opposed to the function y, the function ball_functiondoes not return a value.
This is stated in the first line of each function definition. Comparing, you notice that
y has an assignment there, whereas ball_function has not. The final statement
of the function y, i.e.

result = v0*t - 0.5*g*t^2;

will be understood by Matlab as “first compute the expression, then place the result
in result and send it back (i.e. return) to where the function was called from”.
The function depends on one variable (or we say that it takes one argument or input
parameter), the value of which must be provided when the function is called.

What do these things mean? Well, the function definition itself, e.g. of y, just
tells Matlab that there is a function y, taking the specified arguments as input, and
returning a specified output result. Matlab keeps this information ready for use
in case a call to y is performed elsewhere in the code. In our case, a call to y
happens twice by the line vertical_position = y(time). By this instruction,
Matlab takes y(time) as a call to the function y, assigning the value of time to the
variable t. So in the first call, t becomes 0.6, while in the second call t becomes
0.9. In both cases the code lines of y are executed and the returned result (the output
parameter) is stored in vertical_position, before it is next printed by Matlab.

Note that the reserved word returnmay be used to enforce a return from a func-
tion before it reaches the end. For example, if a function contains if-elseif-else
constructions, return may be done from within any of the branches. This may be
illustrated by the following function containing three return statements:

function result = check_sign(x)

if x > 0

result = ’x is positive’;

return;

elseif x < 0

result = ’x is negative’;

return;

else

result = ’x is zero’;

return;

end

end

Remember that only one of the branches is executed for a single call on check_
sign, so depending on the number x, the return may take place from any of the
three return alternatives.

One phrase you will meet often when dealing with programming, is main pro-
gram or main function, or that some code is in main. This is nothing particu-
lar to Matlab, and simply means the first function that is defined in a file, e.g.



2.2 Functions 29

ball_function above. You may define as many functions as you like in a file after
the main function. These then become local functions, i.e. they are only known in-
side that file. In particular, only the main function may be called from the command
window, whereas local functions may not.

A function may take no arguments, or many, in which case they are just listed
within the parentheses (following the function name) and separated by a comma.
Let us illustrate. Take a slight variation of the ball example and assume that the
ball is not thrown straight up, but at an angle, so that two coordinates are needed to
specify its position at any time. According to Newton’s laws (when air resistance is
negligible), the vertical position is given by y.t/ D v0yt �0:5gt2 and the horizontal
position by x.t/ D v0xt . We can include both these expressions in a new version of
our program that prints the position of the ball for chosen times. Assume we want
to evaluate these expressions at two points in time, t D 0:6 s and t D 0:9 s. We
can pick some numbers for the initial velocity components v0y and v0x, name the
program ball_position_xy.m, and write it for example as

function ball_position_xy()

initial_velocity_x = 2.0;

initial_velocity_y = 5.0;

time = 0.6; % Just pick one point in time

x_pos = x(initial_velocity_x, time);

y_pos = y(initial_velocity_y, time);

fprintf(’%f %f \n’, x_pos, y_pos)

time = 0.9; % Pick another point in time

x_pos = x(initial_velocity_x, time);

y_pos = y(initial_velocity_y, time);

fprintf(’%f %f \n’, x_pos, y_pos)

end

function result = y(v0y, t)

g = 9.81; % Acceleration of gravity

result = v0y*t - 0.5*g*t^2;

end

function result = x(v0x, t)

result = v0x*t;

end

Now we compute and print the two components for the position, for each of the
two chosen points in time. Notice how each of the two functions now takes two
arguments. Running the program gives the output

1.2 1.2342

1.8 0.52695

A function may also return more than one value. For example, the two functions
we just defined could alternatively have been defined into one as

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_position_xy.m


30 2 Basic Constructions

function [result1, result2] = xy(v0x, v0y, t)

g = 9.81; % acceleration of gravity

result1 = v0x*t;

result2 = v0y*t - 0.5*g*t^2;

end

Notice the two return values result1 and result2 that are listed in the function
header, i.e., the first line of the function definition. When calling the function,
arguments must appear in the same order as in the function definition. We would
then write

[x_pos,y_pos] = xy(initial_x_velocity, initial_y_velocity, time);

The variables x_pos and y_pos could then have been printed or used in other ways
in the code.

There are possibilities for having a variable number of function input and output
parameters (using nargin and nargout). However, we do not go further into that
topic here.

Variables that are defined inside a function, e.g., g in the last xy function, are
local variables. This means they are only known inside the function. Therefore,
if you had accidentally used g in some calculation outside the function, you would
have got an error message. By use of the reserved word global, a variable may
be known also outside the function in which it is defined (without transferring it as
a parameter). For example, if, in some function A, we write

global some_variable;

some_variable = 2;

then, in another function B, we could use some_variabledirectly if we just specify
it first as being global, e.g.

global some_variable;

some_other_variable = some_variable*2;

We could even change the value of some_variable itself inside B if we like, so
that upon return to the function A, some_variablewould have a new value. If you
define one global and one local variable, both with the same name, the function
only sees the local one, so the global variable is not affected by what happens with
its local companion of the same name. The arguments named in the header of
a function definition are by rule local variables inside the function. One should
strive to define variables mostly where they are needed and not everywhere.

In any programming language, it is a good habit to include a little explanation
of what the function is doing, unless what is done by the function is obvious, e.g.,
when having only a few simple code lines. This explanation (sometimes known as
a doc string) should be placed just at the top of the function. This explanation is
meant for a human who wants to understand the code, so it should say something
about the purpose of the code and possibly explain the arguments and return values
if needed. If we do that with our xy function from above, we may write the first
lines of the function as



2.2 Functions 31

function xy(v0x, v0y, t)

% Compute the x and y position of the ball at time t

Note that a function you have written may call another function you have written,
even if they are not defined within the same file. Such a call requires the called
function to be located in a file with the same name as the function (apart from the
extension .m). This file must also be located in a folder where Matlab can find it,
e.g. in the same folder as the calling function.

Functions are straightforwardly passed as arguments to other functions, as illus-
trated by the following script function_as_argument.m:

function function_as_argument()

x = 2;

y = 3;

% Create handles to the functions defined below

sum_xy_handle = @sum_xy;

prod_xy_handle = @prod_xy;

sum = treat_xy(sum_xy_handle, x, y);

fprintf(’%f \n’, sum);

prod = treat_xy(prod_xy_handle, x, y);

fprintf(’%f \n’, prod);

end

function result = treat_xy(f, x, y)

result = f(x, y);

end

function result = sum_xy(x, y)

result = x + y;

end

function result = prod_xy(x, y)

result = x*y;

end

When run, this program first prints the sum of x and y (i.e., 5), and then it
prints the product (i.e., 6). We see that treat_xy takes a function name as its first
parameter. Inside treat_xy, that function is used to actually call the function that
was given as input parameter. Therefore, as shown, we may call treat_xy with
either sum_xy or prod_xy, depending on whether we want the sum or product of x
and y to be calculated.

To transfer a function to the function treat_xy, we must use function handles,
one for each function we want to transfer. This is done by the sign @ combined with
the function name, as illustrated by the lines

sum_xy_handle = @sum_xy;

prod_xy_handle = @prod_xy;

https://github.com/hplgit/prog4comp/tree/master/src/m/function_as_argument.m


32 2 Basic Constructions

Note that it is the handle that is used in the function call, as, e.g., in

sum = treat_xy(sum_xy_handle,x,y);

Functions may also be defined within other functions. It that case, they become
local functions, or nested functions, known only to the function inside which they
are defined. Functions defined in main are referred to as global functions. A nested
function has full access to all variables in the parent function, i.e. the function within
which it is defined.

One convenient way of defining one-line functions (they can not be more than
one line!), is by use of anonymous functions. You may then define, e.g., a square
function by the name my_square, as

my_square = @(x) x^2;

and then use it simply as

y = my_sqare(2);

which would have assigned the value 4 to y. Note that my_square here becomes
a handle that may be used directly as a function parameter for example.

Overhead of function calls
Function calls have the downside of slowing down program execution. Usu-
ally, it is a good thing to split a program into functions, but in very computing
intensive parts, e.g., inside long loops, one must balance the convenience of call-
ing a function and the computational efficiency of avoiding function calls. It is
a good rule to develop a program using plenty of functions and then in a later
optimization stage, when everything computes correctly, remove function calls
that are quantified to slow down the code.

2.3 For Loops

Many computations are repetitive by nature and programming languages have cer-
tain loop structures to deal with this. Here we will present what is referred to as
a for loop (another kind of loop is a while loop, to be presented afterwards). Assume
you want to calculate the square of each integer from 3 to 7. This could be done
with the following program.

for i = 3:7

i^2

end

What happens when Matlab interprets your code here? First of all, the word
for is a reserved word signalling to Matlab that a for loop is wanted. Matlab then
sticks to the rules covering such constructions and understands that, in the present



2.3 For Loops 33

example, the loop should run 5 successive times (i.e., 5 iterations should be done),
letting the variable i take on the numbers 3; 4; 5; 6; 7 in turn. During each iteration,
the statement inside the loop (i.e. i^2) is carried out. After each iteration, i is
automatically (behind the scene) updated. When the last number is reached, the last
iteration is performed and the loop is finished. When executed, the program will
therefore print out 9; 16; 25; 36 and 49. The variable i is often referred to as a loop
index, and its name (here i) is a choice of the programmer.

Note that, had there been several statements within the loop, they would all be
executed with the same value of i (before i changed in the next iteration). Make
sure you understand how program execution flows here, it is important.

The specification of the values desired for the loop variable (here 3:7) is more
generally given as start:step:stop, meaning that the loop variable should take
on the integers from start to stop, inclusive at both ends, in steps of step. If step
is skipped, the default value is 1, as in the example above. Note that decreasing
integers may be produced by letting start > stop combined with a negative step.
This makes it easy to, e.g., traverse arrays in either direction.

Let us modify ball_plot.m from Sect. 1.4 to illustrate how useful for loops
are if you need to traverse arrays. In that example we computed the height of the
ball at every milli-second during the first second of its (vertical) flight and plotted
the height versus time.

Assume we want to find the maximum height during that time, how can we do
it with a computer program? One alternative may be to compute all the thousand
heights, store them in an array, and then run through the array to pick out the maxi-
mum. The program, named ball_max_height.m, may look as follows.

g = 9.81;

v0 = 5;

t = linspace(0, 1, 1000);

y = v0*t - 0.5*g*t.^2;

% At this point, the array y with all the heights is ready.

% Now we need to find the largest value within y.

largest_height = y(1); % Preliminary value

for i = 2:1000

if y(i) > largest_height

largest_height = y(i);

end

end

fprintf(’The largest height achieved was %f m \n’,largest_height);

% We might also like to plot the path again just to compare

plot(t,y);

xlabel(’Time (s)’);

ylabel(’Height (m)’)

There is nothing new here, except the for loop construction, so let us look at it
in more detail. As explained above, Matlab understands that a for loop is desired
when it sees the word for. The value in y(1) is used as the preliminary largest

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_max_height.m


34 2 Basic Constructions

height, so that, e.g., the very first check that is made is testing whether y(2) is
larger than this height. If so, y(2) is stored as the largest height. The for loop
then updates i to 2, and continues to check y(3), and so on. Each time we find
a larger number, we store it. When finished, largest_height will contain the
largest number from the array y. When you run the program, you get

The largest height achieved was 1.274210 m

which compares favorably to the plot that pops up.
To implement the traversing of arrays with loops and indices, is sometimes chal-

lenging to get right. You need to understand the start, stop and step length choices
for an index, and also how the index should enter expressions inside the loop. At the
same time, however, it is something that programmers do often, so it is important
to develop the right skills on these matters.

Having one loop inside another, referred to as a double loop, is sometimes useful,
e.g., when doing linear algebra. Say we want to find the maximum among the
numbers stored in a 4 � 4 matrix A. The code fragment could look like

largest_number = A(1,1);

for i = 1:length(A)

for j = 1:length(A)

if A(i,j) > largest_number

largest_number = A(i,j);

end

end

end

Here, all the j indices (1 - 4) will be covered for each value of index i. First, i
stays fixed at i = 1, while j runs over all its indices. Then, i stays fixed at i = 2
while j runs over all its indices again, and so on. Sketch A on a piece of paper and
follow the first few loop iterations by hand, then you will realize how the double
loop construction works. Using two loops is just a special case of using multiple or
nested loops, and utilizing more than two loops is just a straightforward extension
of what was shown here. Note, however, that the loop index name in multiple loops
must be unique to each of the nested loops. Note also that each nested loop may
have as many code lines as desired, both before and after the next inner loop.

The vectorized computation of heights that we did in ball_plot.m (Sect. 1.4)
could alternatively have been done by traversing the time array (t) and, for each t
element, computing the height according to the formula y D v0t � 1

2
gt2. However,

it is important to know that vectorization goes much quicker. So when speed is
important, vectorization is valuable.

Use loops to compute sums
One important use of loops, is to calculate sums. As a simple example, assume
some variable x given by the mathematical expression

x D
NX

iD1

2 � i;



2.4 While Loops 35

i.e., summing up the N first even numbers. For some given N , say N D 5, x

would typically be computed in a computer program as:

N = 5;

x = 0;

for i = 1:N

x = x + 2*i;

end

x

Executing this code will print the number 30 to the screen. Note in particular
how the accumulation variable x is initialized to zero. The value of x then gets
updated with each iteration of the loop, and not until the loop is finished will
x have the correct value. This way of building up the value is very common in
programming, so make sure you understand it by simulating the code segment
above by hand. It is a technique used with loops in any programming language.

2.4 While Loops

Matlab also has another standard loop construction, the while loop, doing iterations
with a loop index very much like the for loop. To illustrate what such a loop may
look like, we consider another modification of ball_plot.m in Sect. 1.4. We will
now change it so that it finds the time of flight for the ball. Assume the ball is
thrown with a slightly lower initial velocity, say 4:5ms�1, while everything else is
kept unchanged. Since we still look at the first second of the flight, the heights at the
end of the flight become negative. However, this only means that the ball has fallen
below its initial starting position, i.e., the height where it left the hand, so there is
no problem with that. In our array y we will then have a series of heights which
towards the end of y become negative. Let us, in a program named ball_time.m
find the time when heights start to get negative, i.e., when the ball crosses y D 0.
The program could look like this

g = 9.81;

v0 = 4.5; % Initial velocity

t = linspace(0, 1, 1000); % Acceleration of gravity

y = v0*t - 0.5*g*t.^2; % Generate all heights

% At this point, the array y with all heights is ready

i = 1;

while y(i) >= 0

i = i + 1;

end

% Having the index, we may look up the time in the array t

fprintf(’The time (switch from positive to negative): %f\n’, t(i));

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_time.m


36 2 Basic Constructions

% We plot the path again just for comparison

plot(t, y);

xlabel(’Time (s)’);

ylabel(’Height (m)’);

If you type and run this program you should get

y=0 at 0.917417417417

The new thing here is the while loop only. The loop will run as long as the boolean
expression y(i) >= 0 evaluates to true. Note that the programmer introduced
a variable (the loop index) by the name i, initialized it (i = 1) before the loop, and
updated it (i = i + 1) in the loop. So for each iteration, i is explicitly increased
by 1, allowing a check of successive elements in the array y.

Compared to a for loop, the programmer does not have to specify the number
of iterations when coding a while loop. It simply runs until the boolean expression
becomes false. Thus, a loop index (as we have in a for loop) is not required. Fur-
thermore, if a loop index is used in a while loop, it is not increased automatically;
it must be done explicitly by the programmer. Of course, just as in for loops and
if blocks, there might be (arbitrarily) many code lines in a while loop. Any for
loop may also be implemented as a while loop, but while loops are more general
so not all of them can be expressed as a for loop.

A problem to be aware of, is what is usually referred to as an infinite loop. In
those unintentional (erroneous) cases, the boolean expression of the while test
never evaluates to false, and the program can not escape the loop. This is one
of the most frequent errors you will experience as a beginning programmer. If you
accidentally enter an infinite loop and the program just hangs forever, press Ctrl+c
to stop the program.

2.5 Reading from andWriting to Files

Input data for a program often come from files and the results of the computations
are often written to file. To illustrate basic file handling, we consider an example
where we read x and y coordinates from two columns in a file, apply a function f

to the y coordinates, and write the results to a new two-column data file. The first
line of the input file is a heading that we can just skip:

% x and y coordinates

1.0 3.44

2.0 4.8

3.5 6.61

4.0 5.0

The relevant Matlab lines for reading the numbers and writing out a similar file are
given in the file file_handling.m

https://github.com/hplgit/prog4comp/tree/master/src/m/file_handling.m


2.5 Reading from and Writing to Files 37

filename = ’tmp.dat’;

infileID = fopen(filename, ’r’); % Open file for reading

fgetl(infileID); % Read and skip first line

% First read file to count number of lines with data

no_of_lines = 0;

while ~feof(infileID)

no_of_lines = no_of_lines + 1;

fgetl(infileID);

end

fclose(infileID);

% Can now define arrays x and y of known length

x = zeros(no_of_lines, 1);

y = zeros(no_of_lines, 1);

% Re-open the file for reading

infileID = fopen(filename, ’r’); % Open file for reading

fgetl(infileID); % Read and skip first line

% Read x and y coordinates from the file and store in arrays

i = 1;

while i <= no_of_lines

x(i) = fscanf(infileID, ’%f’, 1);

y(i) = fscanf(infileID, ’%f’, 1);

i = i + 1;

end

fclose(infileID);

% Next, we treat the y-coordinates and write to file

F = @(y) log(y);

y = F(y); % Overwrite y with new values

filename = ’tmp_out.dat’;

outfileID = fopen(filename, ’w’); % Open file for writing

i = 1;

while i <= no_of_lines

fprintf(outfileID, ’%10.5f %10.5f’, x(i), y(i));

i = i + 1;

end

fclose(outfileID);

Such a file with a comment line and numbers in tabular format is very common
so Matlab has functionality to ease reading and writing. Here is the same example
(file file_handling_easy.m):

filename = ’tmp.dat’;

data = load(filename);

x = data(:,1);

y = data(:,2);

data(:,2) = log(y); % insert transformed y back in array

filename = ’tmp_out.dat’;

outfile = fopen(filename, ’w’); % open file for writing

fprintf(outfile, ’%% x and y coordinates\n’);

https://github.com/hplgit/prog4comp/tree/master/src/m/file_handling_easy.m


38 2 Basic Constructions

fprintf(outfile, ’%10.5f %10.5f\n’, data);

fclose(outfile);

2.6 Exercises

Exercise 2.1: Introducing errors
Write the program ball_function.m as given in the text and confirm that the
program runs correctly. Then save a copy of the program and use that program
during the following error testing.

You are supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Matlab’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a) Change the first line from function ball_function() to ball_
function(), i.e. remove the word function.

b) Change the first line from function ball_function() to function ball_
func(), i.e., change the name of the function.

c) Change the line function result = y(t) to function y(t).
d) Change the line function result = y(t) to function result = y(),

i.e., remove the parameter t.
e) Change the first statement that calls y from vertical_position = y(time);

to vertical_position = y();.

Filename: introducing_errors.m.

Exercise 2.2: Compare integers a and b
Explain briefly, in your own words, what the following program does.

a = input(’Give an integer a: ’);

b = input(’Give an integer b: ’);

if a < b

fprintf(’a is the smallest of the two numbers\n’);

elseif a == b

fprintf(’a and b are equal\n’);

else

fprintf(’a is the largest of the two numbers\n’);

end

Proceed by writing the program, and then run it a few times with different values
for a and b to confirm that it works as intended. In particular, choose combinations
for a and b so that all three branches of the if construction get tested.
Filename: compare_a_and_b.m.

Exercise 2.3: Functions for circumference and area of a circle
Write a program that takes a circle radius r as input from the user and then computes
the circumference C and area A of the circle. Implement the computations of C and



2.6 Exercises 39

A as two separate functions that each takes r as input parameter. Print C and A to
the screen along with an appropriate text. Run the program with r D 1 and confirm
that you get the right answer.
Filename: functions_circumference_area.m.

Exercise 2.4: Function for area of a rectangle
Write a program that computes the area A D bc of a rectangle. The values of b

and c should be user input to the program. Also, write the area computation as
a function that takes b and c as input parameters and returns the computed area.
Let the program print the result to screen along with an appropriate text. Run the
program with b D 2 and c D 3 to confirm correct program behavior.
Filename: function_area_rectangle.m.

Exercise 2.5: Area of a polygon
One of the most important mathematical problems through all times has been to
find the area of a polygon, especially because real estate areas often had the shape
of polygons, and it was necessary to pay tax for the area. We have a polygon as
depicted below.

The vertices (“corners”) of the polygon have coordinates .x1; y1/, .x2; y2/, : : :,
.xn; yn/, numbered either in a clockwise or counter clockwise fashion. The area A

of the polygon can amazingly be computed by just knowing the boundary coordi-
nates:

A D 1

2

ˇ
ˇ.x1y2 C x2y3 C : : : C xn�1yn C xny1/

� .y1x2 C y2x3 C : : : C yn�1xn C ynx1/
ˇ
ˇ :



40 2 Basic Constructions

Write a function polyarea(x, y) that takes two coordinate arrays with the ver-
tices as arguments and returns the area. Assume that x and y are either lists or
arrays.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.
Filename: polyarea.m.

Exercise 2.6: Average of integers
Write a program that gets an integer N > 1 from the user and computes the average
of all integers i D 1; : : : ; N . The computation should be done in a function that
takes N as input parameter. Print the result to the screen with an appropriate text.
Run the program with N D 5 and confirm that you get the correct answer.
Filename: average_1_to_N.m.

Exercise 2.7: While loop with errors
Assume some program has been written for the task of adding all integers i D
1; 2; : : : ; 10:

some_number = 0;

i = 1;

while j < 11;

some_number += 1

print some_number

a) Identify the errors in the program by just reading the code and simulating the
program by hand.

b) Write a new version of the program with errors corrected. Run this program and
confirm that it gives the correct output.

Filename: while_loop_errors.m.

Exercise 2.8: Area of rectangle versus circle
Consider one circle and one rectangle. The circle has a radius r D 10:6. The
rectangle has sides a and b, but only a is known from the outset. Let a D 1:3 and
write a program that uses a while loop to find the largest possible integer b that
gives a rectangle area smaller than, but as close as possible to, the area of the circle.
Run the program and confirm that it gives the right answer (which is b D 271).
Filename: area_rectangle_vs_circle.m.

Exercise 2.9: Find crossing points of two graphs
Consider two functions f .x/ D x and g.x/ D x2 on the interval Œ�4; 4�.

Write a program that, by trial and error, finds approximately for which values
of x the two graphs cross, i.e., f .x/ D g.x/. Do this by considering N equally
distributed points on the interval, at each point checking whether jf .x/�g.x/j < �,
where � is some small number. Let N and � be user input to the program and let
the result be printed to screen. Run your program with N D 400 and � D 0:01.
Explain the output from the program. Finally, try also other values of N , keeping
the value of � fixed. Explain your observations.
Filename: crossing_2_graphs.m.



2.6 Exercises 41

Exercise 2.10: Sort array with numbers
The built-in function rand may be used to draw pseudo-random numbers for the
standard uniform distribution between 0 and 1 (exclusive at both ends). See help
rand.

Write a script that generates an array of 6 random numbers between 0 and 10.
The program should then sort the array so that numbers appear in increasing order.
Let the program make a formatted print of the array to the screen both before and
after sorting. The printouts should appear on the screen so that comparison is made
easy. Confirm that the array has been sorted correctly.
Filename: sort_numbers.m.

Exercise 2.11: Compute �

Up through history, great minds have developed different computational schemes
for the number � . We will here consider two such schemes, one by Leibniz (1646–
1716), and one by Euler (1707–1783).

The scheme by Leibniz may be written

� D 8

1X

kD0

1

.4k C 1/.4k C 3/
;

while one form of the Euler scheme may appear as

� D
v
u
u
t6

1X

kD1

1

k2
:

If only the first N terms of each sum are used as an approximation to � , each
modified scheme will have computed � with some error.

Write a program that takes N as input from the user, and plots the error develop-
ment with both schemes as the number of iterations approaches N . Your program
should also print out the final error achieved with both schemes, i.e. when the num-
ber of terms is N. Run the program with N D 100 and explain briefly what the
graphs show.
Filename: compute_pi.m.

Exercise 2.12: Compute combinations of sets
Consider an ID number consisting of two letters and three digits, e.g., RE198. How
many different numbers can we have, and how can a program generate all these
combinations?

If a collection of n things can have m1 variations of the first thing, m2 of the sec-
ond and so on, the total number of variations of the collection equals m1m2 � � � mn.
In particular, the ID number exemplified above can have 26�26�10�10�10 D 676;000

variations. To generate all the combinations, we must have five nested for loops.
The first two run over all letters A, B, and so on to Z, while the next three run over
all digits 0; 1; : : : ; 9.

To convince yourself about this result, start out with an ID number on the form
A3 where the first part can vary among A, B, and C, and the digit can be among 1,
2, or 3. We must start with A and combine it with 1, 2, and 3, then continue with



42 2 Basic Constructions

B, combined with 1, 2, and 3, and finally combine C with 1, 2, and 3. A double for
loop does the work.

a) In a deck of cards, each card is a combination of a rank and a suit. There are 13
ranks: ace (A), 2, 3, 4, 5, 6, 7, 8, 9, 10, jack (J), queen (Q), king (K), and four
suits: clubs (C), diamonds (D), hearts (H), and spades (S). A typical card may
be D3. Write statements that generate a deck of cards, i.e., all the combinations
CA, C2, C3, and so on to SK.

b) A vehicle registration number is on the form DE562, where the letters vary from
A to Z and the digits from 0 to 9. Write statements that compute all the possible
registration numbers and stores them in a list.

c) Generate all the combinations of throwing two dice (the number of eyes can
vary from 1 to 6). Count how many combinations where the sum of the eyes
equals 7.

Filename: combine_sets.m.

Exercise 2.13: Frequency of random numbers
Write a program that takes a positive integer N as input and then draws N random
integers in the interval Œ1; 6� (both ends inclusive). In the program, count how many
of the numbers, M , that equal 6 and write out the fraction M=N . Also, print all the
random numbers to the screen so that you can check for yourself that the counting
is correct. Run the program with a small value for N (e.g., N = 10) to confirm that
it works as intended.

Hint Use 1+floor(6*rand()) to draw a random integer between 1 and 6.
Filename: count_random_numbers.m.

Remarks For large N , this program computes the probability M=N of getting six
eyes when throwing a dice.

Exercise 2.14: Game 21
Consider some game where each participant draws a series of random integers
evenly distributed from 0 and 10, with the aim of getting the sum as close as pos-
sible to 21, but not larger than 21. You are out of the game if the sum passes 21.
After each draw, you are told the number and your total sum, and are asked whether
you want another draw or not. The one coming closest to 21 is the winner.

Implement this game in a program.

Hint Use floor(11*rand()) to draw random integers in Œ0; 10�.
Filename: game_21.m.

Exercise 2.15: Linear interpolation
Some measurements yi , i D 0; 1; : : : ; N (given below), of a quantity y have been
collected regularly, once every minute, at times ti D i , i D 0; 1; : : : ; N . We want
to find the value y in between the measurements, e.g., at t D 3:2min. Computing
such y values is called interpolation.



2.6 Exercises 43

Let your program use linear interpolation to compute y between two consecutive
measurements:

1. Find i such that ti � t � tiC1.
2. Find a mathematical expression for the straight line that goes through the points

.i; yi / and .i C 1; yiC1/.
3. Compute the y value by inserting the user’s time value in the expression for the

straight line.

a) Implement the linear interpolation technique in a function that takes an array
with the yi measurements as input, together with some time t , and returns the
interpolated y value at time t .

b) Write another function with a loop where the user is asked for a time on the
interval Œ0; N � and the corresponding (interpolated) y value is written to the
screen. The loop is terminated when the user gives a negative time.

c) Use the following measurements: 4:4; 2:0; 11:0; 21:5; 7:5, corresponding to
times 0; 1; : : : ; 4 (min), and compute interpolated values at t D 2:5 and
t D 3:1min. Perform separate hand calculations to check that the output
from the program is correct.

Filename: linear_interpolation.m.

Exercise 2.16: Test straight line requirement
Assume the straight line function f .x/ D 4x C 1. Write a script that tests the
“point-slope” form for this line as follows. Within a chosen interval on the x-axis
(for example, for x between 0 and 10), randomly pick 100 points on the line and
check if the following requirement is fulfilled for each point:

f .xi / � f .c/

xi � c
D a; i D 1; 2; : : : ; 100 ;

where a is the slope of the line and c defines a fixed point .c; f .c// on the line. Let
c D 2 here.
Filename: test_straight_line.m.

Exercise 2.17: Fit straight line to data
Assume some measurements yi ; i D 1; 2; : : : ; 5 have been collected, once every
second. Your task is to write a program that fits a straight line to those data.

a) Make a function that computes the error between the straight line f .x/ D axCb

and the measurements:

e D
5X

iD1

.axi C b � yi /
2 :

b) Make a function with a loop where you give a and b, the corresponding value of
e is written to the screen, and a plot of the straight line f .x/ D ax C b together
with the discrete measurements is shown.



44 2 Basic Constructions

c) Given the measurements 0:5; 2:0; 1:0; 1:5; 7:5, at times 0; 1; 2; 3; 4, use the func-
tion in b) to interactively search for a and b such that e is minimized.

Filename: fit_straight_line.m.

Remarks Fitting a straight line to measured data points is a very common task. The
manual search procedure in c) can be automated by using a mathematical method
called the method of least squares.

Exercise 2.18: Fit sines to straight line
A lot of technology, especially most types of digital audio devices for processing
sound, is based on representing a signal of time as a sum of sine functions. Say the
signal is some function f .t/ on the interval Œ��; �� (a more general interval Œa; b�

can easily be treated, but leads to slightly more complicated formulas). Instead of
working with f .t/ directly, we approximate f by the sum

SN .t/ D
NX

nD1

bn sin.nt/; (2.1)

where the coefficients bn must be adjusted such that SN .t/ is a good approximation
to f .t/. We shall in this exercise adjust bn by a trial-and-error process.

a) Make a function sinesum(t, b) that returns SN .t/, given the coefficients bn

in an array b and time coordinates in an array t. Note that if t is an array, the
return value is also an array.

b) Write a function test_sinesum() that calls sinesum(t, b) in a) and deter-
mines if the function computes a test case correctly. As test case, let t be an
array with values ��=2 and �=4, choose N D 2, and b1 D 4 and b2 D �3.
Compute SN .t/ by hand to get reference values.

c) Make a function plot_compare(f, N, M) that plots the original function f .t/

together with the sum of sines SN .t/, so that the quality of the approximation
SN .t/ can be examined visually. The argument f is a Matlab function imple-
menting f .t/, N is the number of terms in the sum SN .t/, and M is the number
of uniformly distributed t coordinates used to plot f and SN .

d) Write a function error(b, f, M) that returns a mathematical measure of the
error in SN .t/ as an approximation to f .t/:

E D
sX

i

.f .ti / � SN .ti //
2;

where the ti values are M uniformly distributed coordinates on Œ��; ��. The
array b holds the coefficients in SN and f is a Matlab function implementing the
mathematical function f .t/.

e) Make a function trial(f, N) for interactively giving bn values and getting
a plot on the screen where the resulting SN .t/ is plotted together with f .t/.
The error in the approximation should also be computed as indicated in d). The
argument f is a Matlab function for f .t/ and N is the number of terms N in the



2.6 Exercises 45

sum SN .t/. The trial function can run a loop where the user is asked for the bn

values in each pass of the loop and the corresponding plot is shown. You must
find a way to terminate the loop when the experiments are over. Use M=500 in
the calls to plot_compare and error.

f) Choose f .t/ to be a straight line f .t/ D 1
�

t on Œ��; ��. Call trial(f, 3)
and try to find through experimentation some values b1, b2, and b3 such that the
sum of sines SN .t/ is a good approximation to the straight line.

g) Now we shall try to automate the procedure in f). Write a function that has
three nested loops over values of b1, b2, and b3. Let each loop cover the interval
Œ�1; 1� in steps of 0:1. For each combination of b1, b2, and b3, the error in the
approximation SN should be computed. Use this to find, and print, the smallest
error and the corresponding values of b1, b2, and b3. Let the program also plot
f and the approximation SN corresponding to the smallest error.

Filename: fit_sines.m.

Remarks

1. The function SN .x/ is a special case of what is called a Fourier series. At
the beginning of the 19th century, Joseph Fourier (1768–1830) showed that any
function can be approximated analytically by a sum of cosines and sines. The
approximation improves as the number of terms (N ) is increased. Fourier series
are very important throughout science and engineering today.
(a) Finding the coefficients bn is solved much more accurately in Exercise 3.12,

by a procedure that also requires much less human and computer work!
(b) In real applications, f .t/ is not known as a continuous function, but func-

tion values of f .t/ are provided. For example, in digital sound applications,
music in a CD-quality WAV file is a signal with 44100 samples of the corre-
sponding analog signal f .t/ per second.

Exercise 2.19: Count occurrences of a string in a string
In the analysis of genes one encounters many problem settings involving searching
for certain combinations of letters in a long string. For example, we may have
a string like

gene = ’AGTCAATGGAATAGGCCAAGCGAATATTTGGGCTACCA’

We may traverse this string letter by letter. The length of the string is given by
length(gene), so with a loop index i, for i = 1:length(gene)will produce
the required index values. Letter number i is then reached through gene(i), and
a substring from index i up to and including j, is created by gene(i:j).

a) Write a function freq(letter, text) that returns the frequency of the letter
letter in the string text, i.e., the number of occurrences of letter divided
by the length of text. Call the function to determine the frequency of C and G
in the gene string above. Compute the frequency by hand too.

b) Write a function pairs(letter, text) that counts how many times a pair
of the letter letter (e.g., GG) occurs within the string text. Use the function



46 2 Basic Constructions

to determine how many times the pair AA appears in the string gene above.
Perform a manual counting too to check the answer.

c) Write a function mystruct(text) that counts the number of a certain structure
in the string text. The structure is defined as G followed by A or T until a double
GG. Perform a manual search for the structure too to control the computations
by mystruct.

Filename: count_substrings.m.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

