
Chapter 6

Pseudo-differential operators on
the Heisenberg group

The Heisenberg group was introduced in Example 1.6.4. It was our primal ex-
ample of a stratified Lie group, see Section 3.1.1. Due to the importance of the
Heisenberg group and of its many realisations, we start this chapter by sketching
various descriptions of the Heisenberg group. We also describe its dual via the well
known Schrödinger representations. Eventually, we particularise our general ap-
proach given in Chapter 5 to the Heisenberg group. Among other things, we show
that using the (Euclidean) Weyl quantization, the analysis of pseudo-differential
operators on the Heisenberg group can be reduced to considering scalar-valued
symbols parametrised not only by the elements of the Heisenberg group but also
by a parameter λ ∈ R\{0}; such symbols will be called λ-symbols. The correspond-
ing classes of symbols are of Shubin-type but with an interesting dependence on
λ which we explore in detail in this chapter; such classes will be called λ-Shubin
classes. Some results of this chapter have been announced in the authors’ paper
[FR14b], this chapter contains their proofs.

In [BFKG12a], a pseudo-differential calculus on the Heisenberg group was
developed with a different approach (but related results) from our work presented
here.

There is an important change of notation concerning the Heisenberg group in
this chapter. In Example 1.6.4, where the Heisenberg group Hno

was introduced,
we used the index no as its subscript because the index n was already used to
denote quantities associated with the homogeneous groups. However, throughout
Chapter 6, general groups will hardly appear, so we can simplify the notation by
denoting the Heisenberg group by Hn instead of Hno

, so that the notation change
is

Hno −→ Hn
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428 Chapter 6. Pseudo-differential operators on the Heisenberg group

We emphasise that n is the index here (not the dimension): the topological dimen-
sion on Hn is 2n+ 1, and its homogeneous dimension is 2n+ 2.

6.1 Preliminaries

In this section, we discuss several aspects of the Heisenberg group, hopefully shed-
ding some light on its importance and general structure.

6.1.1 Descriptions of the Heisenberg group

We remind the reader that the Heisenberg group Hn was defined in Example 1.6.4
in the following way: the Heisenberg group Hn is the manifold R2n+1 endowed with
the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

2
(xy′ − x′y)), (6.1)

where (x, y, t) and (x′, y′, t′) are in Rn × Rn × R ∼ Hn.

In the formula above as in the whole chapter, we adopt the following con-
vention: if x and y are two vectors in Rn for some n ∈ N, then xy denotes their
standard scalar product

xy =

n∑
j=1

xjyj if x = (x1, . . . , xn), y = (y1, . . . , yn).

First we remark that the factor 1
2 in the group law given by (6.1) is irrelevant

in the following sense. Let α ∈ R∗ = R\{0}. Consider the group H(α)
n endowed

with the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

α
(xy′ − x′y)).

Then the groups H(α)
n and Hn = H(2)

n are isomorphic via{
Hn −→ H(α)

n

(x, y, t) �−→ (x, y, 2
α t)

.

In the same way, consider the polarised Heisenberg group H̃n (or Hpol
n ) endowed

with the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ + xy′).

Then the groups H̃n and Hn are isomorphic via{
Hn −→ H̃n

(x, y, t) �−→ (x, y, t+ 1
2xy)

.
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Note that the Heisenberg group Hn can be also viewed as a matrix group. For
simplicity, we consider n = 1, in which case the group H̃1 is isomorphic to T3, the
group of 3-by-3 upper triangular real matrices with 1 on the diagonal:⎧⎪⎪⎨⎪⎪⎩

H̃1 −→ T3

(x, y, t) �−→

⎡⎣ 1 x t
0 1 y
0 0 1

⎤⎦ .

All the statements above can be readily checked by a straightforward computation.
Combining two isomorphisms above, we obtain the identification H1 −→ H̃1 −→
T3 given by ⎧⎪⎪⎨⎪⎪⎩

H1 −→ T3

(x, y, t) �−→

⎡⎣ 1 x t+ 1
2xy

0 1 y
0 0 1

⎤⎦ .

Although we will not use it, let us mention a couple of other important
appearances of the Heisenberg group. The Heisenberg group can be also realised
as a group of transformations; for example, for each

h = (x, y, t) ∈ H1,

the affine (holomorphic) map given by

φh : C×C � (z1, z2) �−→ (z1 + x+ iy, z2 + t+ 2iz1(x− iy) + i(x2 + y2)) ∈ C×C,

sends the (Siegel) domain

U := {(z1, z2) ∈ C× C : Im z2 > |z1|2} (= SU(2, 1)/U(2))

to itself, and the (Shilov) boundary of U ,

bU := {(z1, z2) ∈ C× C : Im z2 = |z1|2},

also to itself. One can check that H1 � h �→ φh defines an action of H1 on U and
on bU . Furthermore, the action of H1 on bU is simply transitive. A Cayley type
transform

(w1, w2) �−→ (z1, z2) with z1 =
w1

1 + w2
, z2 = i

1− w2

1 + w2
,

is a biholomorphic bijective mapping which sends U onto the unit complex ball
of C2. It also send bU to the unit complex sphere S3, more precisely onto S3\{S}
where S = (0,−1) is the south pole (which may be viewed as the image of ∞).
Hence the Heisenberg group acts simply transitively on S3\{S}.
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We can also mention here that the group U(n) acts naturally by automor-
phisms on Hn leading to the interpretation of (U(n), Hn) as a nilpotent Gelfand
pair with strong relation to the theory of commutative convolution algebras. For
example, such analysis can be used to characterise Gelfand (spherical) transforms
of K-invariant Schwartz functions on Hn for a group K ⊂ U(n) ([BJR98]), or view
them as Schwartz functions on the Gelfand spectrum ([ADBR09]).

6.1.2 Heisenberg Lie algebra and the stratified structure

The Lie algebra hn of Hn is identified with the vector space of left-invariant vector
fields. Its canonical basis is given by the left-invariant vector fields

Xj = ∂xj
− yj

2
∂t, Yj = ∂yj

+
xj

2
∂t, j = 1, . . . , n, and T = ∂t. (6.2)

For comparison, the corresponding right-invariant vector fields are

X̃j = ∂xj +
yj
2
∂t, Ỹj = ∂yj −

xj

2
∂t, j = 1, . . . , n, and T̃ = ∂t. (6.3)

The canonical commutation relations are

[Xj , Yj ] = T, j = 1, . . . , n,

and T is the centre of hn. This shows that the Lie algebra hn and the Lie group
Hn are nilpotent of step 2. Hence the Heisenberg group Hn described above in
Section 6.1.1, that is, R2n+1 endowed with the group law given in (6.1), is the
connected simply connected (step-two nilpotent) Lie group whose Lie algebra is
hn and which is realised via the exponential mapping together with the canonical
basis. This means that the element (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t) of Hn can
be written as

(x, y, t) = expHn
(x1X1 + . . .+ xnXn + y1Y1 + . . .+ ynYn + tT ).

We fix
dxdydt = dx1 . . . dxndy1 . . . dyndt

as the Lebesgue measure on Hn, see Proposition 1.6.6. Therefore, we may be free
to write formulae like ∫

Hn

· · · dxdydt =
∫
R2n+1

· · · dxdydt.

The Heisenberg Lie algebra is stratified via hn = V1⊕V2, where V1 is linearly
spanned by the Xj ’s and Yj ’s, while V2 = RT . Since the Heisenberg Lie algebra is
stratified via hn = V1 ⊕ V2, the natural dilations on the Lie algebra are given by

Dr(Xj) = rXj and Dr(Yj) = rYj , j = 1, . . . , n, and Dr(T ) = r2T, (6.4)
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see Section 3.1.2. We keep the same notation Dr for the dilations on the group
Hn. They are therefore given by

Dr(x, y, t) = r(x, y, t) = (rx, ry, r2t), (x, y, t) ∈ Hn, r > 0.

We also keep the same notation Dr for the dilations on the universal enveloping
algebra U(hn) induced by Property (6.4).

Note that the homogeneous dimension of Hn is Q = 2n+ 2. This is also the
homogeneous degree of the Lebesgue measure dxdydt.

Example 6.1.1. The sub-Laplacian

L :=

n∑
j=1

(X2
j + Y 2

j ) (6.5)

=

n∑
j=1

(
∂xj
− yj

2
∂t

)2

+
(
∂yj

+
xj

2
∂t

)2

,

is homogeneous of degree 2 since

Dr(L) = r2L.

Remark 6.1.2. The ‘canonical’ positive Rockland operator in this setting is

R = −L.

We will also use the mapping Θ : Hn → Hn given by

Θ(x, y, t) := (x,−y,−t).
One checks easily that for any (x, y, t), (x′, y′, t′) ∈ Hn, we have

Θ
(
(x, y, t)(x′, y′, t′)

)
= Θ(x, y, t) Θ(x′, y′, t′) and Θ

(
Θ(x, y, t)

)
= (x, y, t).

Therefore, Θ is a group automorphism and an involution. Furthermore, it is clear
that it commutes with the dilations:

∀r > 0 Θ ◦Dr = Dr ◦Θ.

We keep the same notation for the corresponding Lie algebra morphism and
we have

Θ(Xj) = Xj , Θ(Yj) = −Yj , j = 1, . . . , n, Θ(T ) = −T. (6.6)

6.2 Dual of the Heisenberg group

In this section we will analyse the unitary dual of the Heisenberg group Hn. For
our purposes, it will be more convenient to work with the Schrödinger representa-
tions. This will lead to the group Fourier transform parametrised by λ in (6.19).
Such group Fourier transforms yield operators acting on the representation space
L2(Rn). The latter can be, in turn, analysed using the Weyl quantization on Rn

that appears naturally.
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6.2.1 Schrödinger representations πλ

The Schrödinger representations of the Heisenberg group Hn are the infinite di-
mensional unitary representations of Hn, where, as usual, we allow ourselves to
identify unitary representations with their unitary equivalence classes. They are
parametrised by the co-adjoint orbits (see Section 1.8.1) and more concretely by
λ ∈ R\{0}. We denote these representations πλ. Each πλ acts on the Hilbert space

Hπλ
= L2(Rn)

in the way we now describe. An element of L2(Rn) will very often be denoted as
a function h of the variable u = (u1, . . . , un) ∈ Rn.

First let us define π1 corresponding to λ = 1. It is the representation of the
group Hn acting on L2(Rn) via

π1(x, y, t)h(u) := ei(t+
1
2xy)eiyuh(u+ x),

for h ∈ L2(Rn) and (x, y, t) ∈ Hn. Here xy denotes the scalar product in Rn of
x and y, and similarly for yu. Consequently its infinitesimal representation (see
Section 1.7) is given by⎧⎨⎩ π1(Xj) = ∂uj

(differentiate with respect to uj), j = 1, . . . , n,
π1(Yj) = iuj , (multiplication by iuj), j = 1, . . . , n,
π1(T ) = iI, (multiplication by i).

(6.7)

The Schrödinger representations πλ on the group are realised in this mono-
graph using

πλ :=

{
π1 ◦D√

λ if λ > 0,
π−λ ◦Θ if λ < 0,

that is,

πλ(x, y, t)h(u) = eiλ(t+
1
2xy)ei

√
λyuh(u+

√
|λ|x), (6.8)

for h ∈ L2(Rn) and (x, y, t) ∈ Hn where we use the following convention:

√
λ := sgn(λ)

√
|λ| =

{ √
λ if λ > 0,

−
√
|λ| if λ < 0.

(6.9)

We observe that for any λ ∈ R\{0} and r > 0,

πλ ◦Θ = π−λ and πλ ◦Dr = πr2λ, (6.10)

and this is true for the group representation πλ on Hn and for its corresponding
infinitesimal representation on the Lie algebra hn and on the universal enveloping
algebra U(hn). As usual we keep the same notation, here πλ for the corresponding
infinitesimal representation.
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Lemma 6.2.1. The infinitesimal representation of πλ acts on the canonical basis
of hn via

πλ(Xj) =
√
|λ|∂uj , πλ(Yj) = i

√
λuj , j = 1, . . . , n, and πλ(T ) = iλI, (6.11)

using the convention in (6.9).

Proof. Formulae (6.11) can be computed easily from (6.8). Here we show that they
also follow from Properties (6.7) and (6.10). Indeed we have for λ > 0⎧⎨⎩

πλ(Xj) = π1(D√
λ(Xj)) =

√
λπ1(Xj) =

√
λ∂uj

j = 1, . . . , n,

πλ(Yj) = π1(D√
λ(Yj)) =

√
λπ1(Yj) =

√
λiuj , j = 1, . . . , n,

πλ(T ) = π1(D√
λ(T )) = λπ1(T ) = iλ,

and thus for λ < 0⎧⎨⎩ πλ(Xj) = π−λ(Θ(Xj)) = π−λ(Xj) =
√
|λ|∂uj

j = 1, . . . , n,

πλ(Yj) = π−λ(Θ(Yj)) = −π−λ(Yj) = −
√
|λ|iuj , j = 1, . . . , n,

πλ(T ) = π−λ(Θ(T )) = −π−λ(T ) = −(−λ)i = iλ,

proving (6.11) in both cases. �

Consequently, the group Fourier transform of the sub-Laplacian

L =

n∑
j=1

(X2
j + Y 2

j )

is

πλ(L) = |λ|
n∑

j=1

(∂2
uj
− u2

j ). (6.12)

A direct characterisation implies that the space of smooth vectors of πλ is

H∞
πλ

= S(Rn).

This is true more generally for any representation of a connected simply connected
nilpotent Lie group realised on some L2(Rm) via the orbit method, see [CG90,
Corollary 4.1.2].

6.2.2 Group Fourier transform on the Heisenberg group

We could have realised the equivalence classes [πλ] of Schrödinger representa-
tions in various ways. For instance by composing with the unitary operator Uλ :
L2(Rn) → L2(Rn) given by Uf(x) = |λ|n2 f(

√
λx), one would have obtained a

slightly different, although equivalent, representation. Another realisation is with
the Bargmann representations, see, e.g., [Tay86]. Our choice of representation πλ
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to represent its equivalence class will prove useful in relation with the Weyl-Shubin
calculus on Rn later, see Section 6.5.

The group Fourier transform of a function κ ∈ L1(Hn) at π1 is

FHn
(κ)(π1) = π1(κ) =

∫
Hn

κ(x, y, t)π1(x, y, t)
∗dxdydt,

that is, the operator on L2(Rn) given by

π1(κ)h(u) =

∫
Hn

κ(x, y, t)ei(−t+ 1
2xy)e−iyuh(u− x)dxdydt.

We now fix the notation concerning the Euclidean Fourier transform and recall
some facts about the Weyl quantization on Rn.

The Euclidean Fourier transform

In order to give a nicer expression for the operator FHn(κ)(π1), we adopt here the
following notation for the Euclidean Fourier transform on RN :

FRN f(ξ) = (2π)−
N
2

∫
RN

f(x)e−ixξdx, (6.13)

where ξ ∈ RN and f : RN → C is for instance integrable. With our choice of
notation and normalisation, the mapping FRN extends unitarily to a mapping on
L2(RN ) and

FRN (f)(x) = F−1
RN (f)(−x).

Let us also recall the Fourier inversion formula for a (e.g. Schwartz) function
f : Rn → C: ∫

RN

∫
RN

ei(u−v)ξf(v)dvdξ = (2π)Nf(u). (6.14)

In our context N will be equal to 2n+ 1.

Unfortunately, due to our choice of notation π for the representations, in the
formulae in the sequel π will appear both as a representation and as the constant
π = 3.1415926... However, as powers of this 2π will appear mostly as constants in
front of integrals it should not lead to major confusion.

The (Euclidean) Weyl quantization

Let us also set some notation regarding the Weyl quantization on Rn. If a is a
symbol, that is, a reasonable function on Rn × Rn, then the Weyl quantization
associates to a the operator

OpW (a) ≡ a(D,X)
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given by

OpW (a)f(u) = (2π)−n

∫
Rn

∫
Rn

ei(u−v)ξa(ξ,
u+ v

2
)f(v)dvdξ, (6.15)

where f ∈ S(Rn) and u ∈ Rn.

Example 6.2.2. Particular examples are

OpW (1) = I, OpW (ξj) =
1

i
∂uj , OpW (uj) = uj ,

and

OpW (ξkuj) =
1

2i
(∂uk

uj + uj∂uk
).

The composition of two Weyl-quantized operators is

OpW (a) ◦OpW (b) = OpW (a � b), (6.16)

where (see, e.g., [Ler10])

a � b(ζ, u) = (2π)−2n4n
∫
Rn

∫
Rn

∫
Rn

∫
Rn

e−2i{(ξ−ζ)(y−u)−(η−ζ)(x−u)}

a(ξ, x) b(η, y) dξdηdxdy,

and asymptotically

a � b ∼
∞∑

m′=0

cm′,n

∑
|α1|+|α2|=m′

(−1)|α2|

α1!α2!

((
1

i
∂ξ

)α1

∂α2
x a

)((
1

i
∂ξ

)α2

∂α1
x b

)
, (6.17)

with c0,n0 = 1 and, in fact,

a � b ∼ ab+
1

2i
{a, b}+ . . . where {a, b} =

n∑
j=1

(
∂a

∂ξj

∂b

∂uj
− ∂a

∂uj

∂b

∂ξj

)
.

This formula can already be checked on the basic examples given in Example 6.2.2
and on the following property:

Lemma 6.2.3. Let a be a symbol. Then we have

(aduj)
(
OpW (a)

)
≡ ujOpW (a)−OpW (a)uj = OpW (i∂ξja),(

ad∂uj

) (
OpW (a)

)
≡ ∂uj

OpW (a)−OpW (a)∂uj
= OpW (∂uj

a).
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Proof. Let f ∈ S(Rn) and u ∈ Rn. Then we have

(aduj)
(
OpW (a)

)
f(u) = ujOpW (a)f(u)−OpW (a)(ujf)(u)

= uj(2π)
−n

∫
Rn

∫
Rn

ei(u−v)ξa(ξ,
u+ v

2
)f(v)dvdξ

−(2π)−n

∫
Rn

∫
Rn

ei(u−v)ξa(ξ,
u+ v

2
)vjf(v)dvdξ

= (2π)−n

∫
Rn

∫
Rn

ei(u−v)ξa(ξ,
u+ v

2
)(uj − vj)f(v)dvdξ

= (2π)−n

∫
Rn

∫
Rn

1

i
∂ξj

{
ei(u−v)ξ

}
a(ξ,

u+ v

2
)f(v)dvdξ

= (2π)−n

∫
Rn

∫
Rn

ei(u−v)ξi∂ξj

{
a(ξ,

u+ v

2
)

}
f(v)dvdξ,

after integration by parts. This shows the first equality.

For the second one, we compute

∂uj
OpW (a)f(u) = (2π)−n

∫
Rn

∫
Rn

∂uj

{
ei(u−v)ξa(ξ,

u+ v

2
)

}
f(v)dvdξ.

Since

∂uj

{
ei(u−v)ξ a(ξ,

u+ v

2
)

}
= −

{
∂vje

i(u−v)ξ
}
a(ξ,

u+ v

2
)

+
1

2
ei(u−v)ξ{∂uj

a}(ξ, u+ v

2
),

we compute using integration by parts∫
Rn

∫
Rn

∂uj

{
ei(u−v)ξa(ξ,

u+ v

2
)

}
f(v)dvdξ

= −
∫
Rn

∫
Rn

{
∂vj

ei(u−v)ξ
}
a(ξ,

u+ v

2
)f(v)dvdξ

+

∫
Rn

∫
Rn

ei(u−v)ξ 1

2
{∂uj

a}(ξ, u+ v

2
)f(v)dvdξ

=

∫
Rn

∫
Rn

ei(u−v)ξ∂vj

{
a(ξ,

u+ v

2
)f(v)

}
dvdξ

+

∫
Rn

∫
Rn

ei(u−v)ξ 1

2
{∂uj

a}(ξ, u+ v

2
)f(v)dvdξ.

Now

∂vj

{
a(ξ,

u+ v

2
)f(v)

}
=

1

2
{∂uj

a}(ξ, u+ v

2
)f(v) + a(ξ,

u+ v

2
)∂vjf(v),
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thus ∫
Rn

∫
Rn

∂uj

{
ei(u−v)ξa(ξ,

u+ v

2
)

}
f(v)dvdξ

=

∫
Rn

∫
Rn

ei(u−v)ξ{∂uja}(ξ,
u+ v

2
)f(v)dvdξ

+

∫
Rn

∫
Rn

ei(u−v)ξa(ξ,
u+ v

2
)∂vjf(v)dvdξ.

We have obtained

∂uj
OpW (a)f(u)

= (2π)−n

∫
Rn

∫
Rn

ei(u−v)ξ{∂uj
a}(ξ, u+ v

2
)f(v)dvdξ

+(2π)−n

∫
Rn

∫
Rn

ei(u−v)ξa(ξ,
u+ v

2
)∂vjf(v)dvdξ.

Therefore, we have(
ad∂uj

) (
OpW (a)

)
f(u) = ∂ujOpW (a)f(u)−OpW (a)(∂ujf)(u)

= (2π)−n

∫
Rn

∫
Rn

ei(u−v)ξ{∂uj
a}(ξ, u+ v

2
)f(v)dvdξ

= OpW (∂uja)f(u).

This shows the second equality. �

The operator FHn
(κ)(π1)

Going back to π1(κ) ≡ κ̂(π1) and using the well-known properties of the Euclidean
Fourier transform FR2n+1 , for instance see (6.14), it is not difficult to turn into
rigorous computations the following calculations:

π1(κ)h(u) =

∫
R2n+1

κ(x, y, t)ei(−t+ 1
2xy)e−iyuh(u− x)dxdydt

=

∫
R2n+1

∫
R2n+1

(2π)−
2n+1

2 FR2n+1(κ)(ξ, η, τ)eitτeiyηeixξ

ei(−t+ 1
2xy)e−iyuh(u− x)dξdηdτdxdydt

=
√
2π

∫
Rn×Rn

FR2n+1(κ)(ξ, u− x

2
, 1)eixξh(u− x)dξdx

=
√
2π

∫
Rn×Rn

FR2n+1(κ)(ξ, u− u− v

2
, 1)eiξ(u−v)h(v)dξdv,

after the change of variable v = u−x. Comparing this last expression with (6.15),
we see that

π1(κ)h(u) =
√
2π

∫
Rn

∫
Rn

eiξ(u−v)FR2n+1(κ)(ξ,
u+ v

2
, 1)h(v)dξdv,
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may be written as

π1(κ) = (2π)
2n+1

2 OpW [FR2n+1(κ)(·, ·, 1)] = (2π)
2n+1

2 FR2n+1(κ)(D,X, 1). (6.18)

More generally, we could compute in the same way πλ(κ) or use the following
computational remarks.

Lemma 6.2.4. Let λ ∈ R\{0}. With the convention given in (6.9) we obtain

πλ(κ) = |λ|−(n+1)πsgn(λ)1

(
κ ◦D

1/
√

|λ|

)
(6.19)

= (2π)
2n+1

2 OpW
[
FR2n+1(κ)(

√
|λ| ·,

√
λ ·, λ)

]
, (6.20)

or, equivalently,

πλ(κ)h(u)

=

∫
R2n+1

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt (6.21)

= (2π)
2n+1

2

∫
Rn×Rn

ei(u−v)ξFR2n+1(κ)(
√
|λ| ξ,

√
λ

u+ v

2
, λ)h(v)dvdξ.(6.22)

We also have
πλ(κ) = π−λ(κ ◦Θ), (6.23)

and for r > 0, Q = 2n+ 2,

πλ(r
Qκ ◦Dr) = πr−2λ(κ). (6.24)

For any X ∈ U(hn) and r > 0, we have

πλ(Dr−1X) = πr−2λ(X). (6.25)

Here U(hn) stands for the universal enveloping algebra of the Lie algebra hn,
see Section 1.3.

Proof of Lemma 6.2.4. By (6.8), we have for h ∈ L2(Rn) and (x, y, t) ∈ Hn,

πλ(x, y, t)
∗h(u) = πλ

(
(x, y, t)−1

)
h(u) = πλ(−x,−y,−t)h(u)

= eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x).

Thus

πλ(κ)h(u) =

∫
Hn

κ(x, y, t) πλ(x, y, t)
∗h(u) dxdydt

=

∫
R2n+1

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt.
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This is Formula (6.21).
For Formula (6.23), since by (6.10) we have π−λ = πλ ◦Θ for any λ ∈ R\{0},

we see that

πλ(κ) =

∫
Hn

κ(x, y, t)πλ(x, y, t)
∗dxdydt

=

∫
Hn

κ(x, y, t)π−λ

(
Θ(x, y, t)

)∗
dxdydt

=

∫
Hn

κ
(
Θ(x, y, t)

)
π−λ(x, y, t)

∗dxdydt = π−λ(κ ◦Θ),

after the change of variables given by Θ, which has the Jacobian equal to 1. We
proceed in the same way for formula (6.24)

πλ(r
Qκ ◦Dr) =

∫
Hn

κ ◦Dr(x, y, t)πλ(x, y, t)
∗rQdxdydt

=

∫
Hn

κ(x, y, t)πλ

(
D−1

r (x, y, t)
)∗
dxdydt

=

∫
Hn

κ(x, y, t)πr−2λ(x, y, t)
∗dxdydt = πr−2λ(κ),

after the change of variable given by Dr, using (6.10).

For any X ∈ U(hn) and κ ∈ S(G), recalling Dr−1X from (6.4), then using

(Xκ) ◦Dr = (Dr−1X)(κ ◦Dr) (6.26)

and (6.24), we have

πr−2λ(X)πr−2λ(κ) = πr−2λ(Xκ)

= πλ(r
Q(Xκ) ◦Dr)

= πλ(r
Q(Dr−1X)(κ ◦Dr))

= πλ(Dr−1X)πλ(r
Qκ ◦Dr)

= πλ(Dr−1X)πr−2λ(κ),

and this shows (6.25).
Thus Formulae (6.25), (6.24) and (6.23) hold for any λ ∈ R\{0}.
Let us assume λ > 0. Using πλ = π1 ◦D√

λ we see that

πλ(κ) =

∫
Hn

κ(x, y, t)π1

(
D√

λ(x, y, t)
)∗
dxdydt

=

∫
Hn

κ
(
D1/

√
λ(x, y, t)

)
π1(x, y, t)

∗λ−(n+1)dxdydt

= λ−(n+1)π1

(
κ ◦D1/

√
λ

)
,
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and this gives Formula (6.19) for λ > 0. But Formula (6.18) gives here

π1

(
κ ◦D1/

√
λ

)
= (2π)n+

1
2OpW

[
FR2n+1(κ ◦D1/

√
λ)(·, ·, 1)

]
.

Since a simple change of variable in R2n+1 yields

FR2n+1

(
κ ◦D1/

√
λ

)
= λn+1

(
FR2n+1(κ)

)
◦D√

λ, (6.27)

we obtain Formula (6.20) for any λ > 0.

For λ < 0, we use Formula (6.23) and the case λ > 0, that is,

πλ(κ) = π−λ(κ ◦Θ)

= (−λ)−(n+1)π1

(
κ ◦Θ ◦D1/

√−λ

)
= (−λ)−(n+1)π1

(
κ ◦D1/

√−λ ◦Θ
)

= (−λ)−(n+1)π−1

(
κ ◦D1/

√−λ

)
.

Hence Formula (6.19) is proved for any λ < 0. Here, Formula (6.18) and the
relation FR2n+1(κ ◦Θ) = FR2n+1(κ) ◦Θ with (6.27) give

π1

(
κ ◦Θ ◦D1/

√−λ

)
= (2π)n+

1
2OpW

[
FR2n+1(κ ◦Θ ◦D1/

√−λ)(·, ·, 1)
]

= (2π)n+
1
2 (−λ)n+1

(
FR2n+1(κ)

)
◦Θ ◦D√−λ(·, ·, 1),

we obtain Formula (6.20) for any λ < 0. �

From Lemma 6.2.4 or from (6.11), we see that

πλ(Xj) = OpW (i
√
|λ|ξj) and πλ(Yj) = OpW (i

√
λuj). (6.28)

Remark 6.2.5. This was already noted in [Tay84, BFKG12a]. However in [Tay84],
the Fourier transform on Rn is chosen to be non-unitarily defined by

ξ �−→
∫
Rn

f(x)e−ixξdx, f ∈ S(Rn).

Remark 6.2.6. The Schwartz space on the Heisenberg group Hn, realised as we
have done, is defined as S(R2n+1), see Section 3.1.9. The characterisation of the
Fourier image of the (full) Schwartz space on Hn is a difficult problem analysed
by Geller in [Gel80]. See also the more recent paper [ADBR13].
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6.2.3 Plancherel measure

The dual Ĥn of the Heisenberg group Hn may be described together with its
Plancherel measure by the orbit method, see Section 1.8.1. Here we obtain a con-
crete formula for the Plancherel measure μ of the Heisenberg group Hn using well
known properties of Euclidean analysis together with our choice of representatives
for the elements of Ĥn, especially the Schrödinger representations πλ.

Proposition 6.2.7. Let f ∈ S(Hn). Then for each λ ∈ R\{0} the operator f̂(πλ)
acting on L2(Rn) is the Hilbert-Schmidt operator with integral kernel

Kf,λ : Rn × Rn −→ C,

given by

Kf,λ(u, v) = (2π)n+
1
2

∫
Rn

ei(u−v)ξFR2n+1(f)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)dξ,

and Hilbert-Schmidt norm

‖f̂(πλ)‖HS(L2(Rn)) = (2π)
3n+1

2 |λ|−n
2 ‖FR2n+1(f)(·, ·, λ)‖L2(R2n)

= (2π)
3n+1

2 |λ|−n
2

(∫
Rn

∫
Rn

|FR2n+1(f)(ξ, w, λ)|2dξdw
) 1

2

.

Furthermore, we have∫
Hn

|f(x, y, t)|2dxdydt = cn

∫
λ∈R\{0}

‖f̂(πλ)‖2HS(L2(Rn))|λ|ndλ,

where cn = (2π)−(3n+1).

In particular, Proposition 6.2.7 implies that the Plancherel measure μ on the
Heisenberg group is supported in {[πλ], λ ∈ R\{0}}, see (6.29). Moreover, we have

dμ(πλ) ≡ cn|λ|ndλ, λ ∈ R\{0}.

The constant cn depends on our choice of realisation of πλ ∈ [πλ].

Proof of Proposition 6.2.7. By (6.22), we have for h ∈ L2(Rn) and u ∈ Rn,

f̂(πλ)h(u) = (2π)n+
1
2

∫
Rn

∫
Rn

ei(u−v)ξFR2n+1(f)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)h(v)dvdξ

=

∫
Rn

Kf,λ(u, v)h(v)dv,

where Kf,λ is the integral kernel of f̂(πλ) hence given by

Kf,λ(u, v) = (2π)n+
1
2

∫
Rn

ei(u−v)ξFR2n+1(f)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)dξ.
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Using the Euclidean Fourier transform (see (6.13) for our normalisation of FRn),
we may rewrite this as

Kf,λ(u, v) = (2π)
3
2n+

1
2FRn

{
FR2n+1(f)(

√
|λ| ·,

√
λ
u+ v

2
, λ)

}
(v − u).

The L2(Rn × Rn)-norm of the integral kernel is∫
Rn×Rn

|Kf,λ(u, v)|2dudv

= (2π)3n+1

∫
Rn×Rn

|FRn

{
FR2n+1(f)(

√
|λ| ·,

√
λ
u+ v

2
, λ)

}
(v − u)|2dudv

= (2π)3n+1

∫
Rn

∫
Rn

|FRn

{
FR2n+1(f)(

√
|λ| ·, w2, λ)

}
(w1)|2|λ|−

n
2 dw1dw2,

after the change of variable (w1, w2) = (v−u,
√
λu+v

2 ). The (Euclidean) Plancherel
formula on Rn in the variable w1 (with dual variable ξ1) then yields∫

Rn×Rn

|Kf,λ(u, v)|2dudv

= (2π)3n+1

∫
Rn

∫
Rn

|FR2n+1(f)(
√
|λ|ξ1, w2, λ)|2|λ|−

n
2 dξ1dw2

= (2π)3n+1|λ|−n

∫
Rn

∫
Rn

|FR2n+1(f)(ξ, w2, λ)|2dξdw2,

after the change of variable ξ =
√
|λ|ξ1. Since f ∈ S(Hn), this quantity is fi-

nite. Since the integral kernel of f̂(πλ) is square integrable, the operator f̂(πλ) is
Hilbert-Schmidt and its Hilbert-Schmidt norm is the L2-norm of its integral kernel
(see, e.g., [RS80, Theorem VI.23]). This shows the first part of the statement.

To finish the proof, we now integrate each side of the last equality against
|λ|ndλ and then use again the (Euclidean) Plancherel formula on R2n+1 in the
variable (ξ, w2, λ). We obtain∫

R\{0}

∫
Rn×Rn

|Kf,λ(u, v)|2dudv |λ|ndλ

= (2π)3n+1

∫
R\{0}

∫
Rn

∫
Rn

|FR2n+1(f)(ξ, w2, λ)|2dξdw2dλ

= (2π)3n+1

∫
R2n+1

|f(x, y, t)|2dxdydt.

This concludes the proof of Proposition 6.2.7. �
It follows from the Plancherel formula in Proposition 6.2.7 that the Schrö-

dinger representations πλ, λ ∈ R\{0}, are almost all the representations of Hn
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modulo unitary equivalence. ‘Almost all’ here refers to the Plancherel measure
μ = cn|λ|ndλ on Ĥn. The other representations are finite dimensional and in fact
1-dimensional. They are given by the unitary characters of Hn

χw : (x, y, t) �→ ei(xw1+yw2), w = (w1, w2) ∈ Rn × Rn ∼ R2n.

See also Example 1.8.1 for the link with the orbit method.

We can summarise this paragraph by writing

Ĥn = {[πλ], λ ∈ R\{0}}
⋃{

[χw], w ∈ R2n
} μ a.e.

= {[πλ], λ ∈ R\{0}} . (6.29)

6.3 Difference operators

In this section we compute the difference operators Δxj
, Δyj

, and Δt which are
the operators defined via

Δxj κ̂(πλ) := πλ(xjκ),

Δyj κ̂(πλ) := πλ(yjκ),

Δtκ̂(πλ) := πλ(tκ).

General properties of such difference operators have been analysed in Section 5.2.1.
Here we aim at providing explicit expressions for them in the setting of the Heisen-
berg group Hn.

6.3.1 Difference operators Δxj
and Δyj

We start with the difference operators with respect to x and y.

Lemma 6.3.1. For any j = 1, . . . , n,

Δxj
|πλ

=
1

iλ
ad (πλ(Yj)) =

1√
|λ|

aduj ,

Δyj
|πλ

= − 1

iλ
ad (πλ(Xj)) = −

1

i
√
λ
ad∂uj

.

By this we mean that for any κ in some Ka,b(Hn) such that xjκ is in some
Ka′,b′(Hn) or yjκ in some Ka′,b′(Hn) for Δxj

or Δyj
, respectively, we have for

all h ∈ S(Rn) that

(
Δxj

κ̂(πλ)
)
h (u) =

1√
|λ|

(uj (κ̂(πλ)h) (u)− (κ̂(πλ)(ujh)) (u)) ,

(
Δyj

κ̂(πλ)
)
h (u) =

1

i
√
λ

(
−∂uj

{κ̂(πλ)h} (u) + κ̂(πλ){∂uj
h} (u)

)
.
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Proof. Although we could just use direct computations, we prefer to use the fol-
lowing observations. Firstly we have by (6.2) and (6.3) that

Yj − Ỹj = xj∂t = ∂txj and X̃j −Xj = yj∂t = ∂tyj .

Secondly for any κ1 in some Ka,b(Hn),

πλ(∂tκ1) = πλ(Tκ1) = πλ(T )πλ(κ1) = iλπλ(κ1), (6.30)

as T = ∂t and using (6.11). Therefore, these two observations yield

πλ(xjκ) =
1

iλ
πλ (∂txjκ) =

1

iλ
πλ

(
(Yj − Ỹj)κ

)
=

1

iλ

(
πλ(Yjκ)− πλ(Ỹjκ)

)
=

1

iλ
(πλ(Yj)πλ(κ)− πλ(κ)πλ(Yj)) ,

and

πλ(yjκ) =
1

iλ
πλ (∂tyjκ) =

1

iλ
πλ

(
(X̃j −Xj)κ

)
=

1

iλ
(πλ(κ)πλ(Xj)− πλ(Xj)πλ(κ)) .

Using Lemma 6.2.1, we have obtained the expressions for Δyj and Δxj given in
the statement. �

Above and also below, we use the formula for the symbols of right derivatives,
for example, πλ(Ỹjκ) = πλ(κ)πλ(Yj), see Proposition 1.7.6, (iv).

Before giving some examples of applications of the difference operators Δxj

and Δyj , let us make a couple of remarks.

Remark 6.3.2. 1. The formulae in Lemma 6.3.1 respect the properties of the
automorphism Θ. Indeed, using (6.23) we have(
Δxj

κ̂(π)
)
|π=π−λ

= (x̂jκ(π)) |π=π−λ
= π−λ(xjκ) = πλ ((xjκ) ◦Θ)

= πλ (xj κ ◦Θ) = Δxj κ̂ ◦Θ(πλ) = Δxj (κ̂(π−λ)) ,(
Δyj κ̂(π)

)
|π=π−λ

= (ŷjκ(π)) |π=π−λ
= π−λ(yjκ) = πλ ((yjκ) ◦Θ)

= πλ (−yj κ ◦Θ) = −Δyj
κ̂ ◦Θ(πλ) = −Δyj

(κ̂(π−λ)) .

This can also be viewed directly from the formulae in Lemma 6.3.1:(
Δxj

κ̂(π)
)
|π=π−λ

=
1√
| − λ|

aduj (κ̂(π−λ)) = Δxj
(κ̂(π−λ)) ,

(
Δyj

κ̂(π)
)
|π=π−λ

= − 1

i
√
−λ

ad∂uj
= −Δyj

(κ̂(π−λ)) .
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2. The formulae in Lemma 6.3.1 respect the properties of the dilations Dr. This
time using (6.24), we have(
Δxj

κ̂(π)
)
|π=πr−2λ

= (x̂jκ(π)) |π=πr−2λ
= πr−2λ(xjκ) = πλ

(
rQ(xjκ) ◦Dr

)
= r πλ

(
rQxj κ ◦Dr

)
= r Δxj

(κ̂(πr−2λ)) .

This can also be viewed directly from the formulae in Lemma 6.3.1:(
Δxj κ̂(π)

)
|π=πr−2λ

=
1√
|r−2λ|

(aduj) (κ̂(πr−2λ))

= r ×
(

1√
|λ|

(aduj) (κ̂(πr−2λ))

)
= r Δxj

(κ̂(πr−2λ)) .

In exactly the same two ways we obtain for Δyj
that(

Δyj
κ̂(π)

)
|π=πr−2λ

= rΔyj
(κ̂(πr−2λ)) .

Lemmata 6.3.1 and 6.2.3 imply:

Corollary 6.3.3. If κ̂(πλ) = OpW (aλ) and aλ = {aλ(ξ, u)}, then

Δxj
κ̂(πλ) = OpW

(
i√
|λ|

∂ξjaλ

)
,

Δyj κ̂(πλ) = OpW
(

i√
λ
∂ujaλ

)
.

If κ̂(πλ) = OpW (aλ) and aλ = {aλ(ξ, u)} as in the statement above, we will
often say that aλ is the λ-symbol.

Up to now, we analysed the difference operators applied to a ‘general’ group
Fourier transform of a distribution κ (provided that the difference operators made
sense, see Definition 5.2.1 and the subsequent discussion). This is equivalent to
applying difference operators acting on symbols, see Section 5.1.3. In what follows,
we particularise this to some known symbols, mainly to the one in Example 5.1.26,
that is, to π(A) where A is a left-invariant differential operator such as A = Xj , Yj

or T .
We now give some explicit examples.

Example 6.3.4. We already know that Δxj I = 0, see Example 5.2.8. We can
compute

Δxj
πλ(Xk) = −δjkI, Δxj

πλ(Yk) = 0 and Δxj
πλ(T ) = 0, (6.31)

and
Δxj

πλ(L) = −2πλ(Xj). (6.32)
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Proof. By Lemma 6.3.1,

Δxj
πλ(Xk) =

1

iλ
ad (πλ(Yj))πλ(Xk) =

1

iλ
[πλ(Yj), πλ(Xk)]

=
1

iλ
πλ[Yj , Xk],

since πλ is a representation of the Lie algebra g. Similarly,

Δxjπλ(Yk) =
1

iλ
ad (πλ(Yj))πλ(Yk) =

1

iλ
πλ[Yj , Yk],

Δxj
πλ(T ) =

1

iλ
ad (πλ(Yj))πλ(T ) =

1

iλ
πλ[Yj , T ].

By the canonical commutation relations, we have

[Yj , Xk] = −δjkT, [Yj , Yk] = 0 and [Yj , T ] = 0.

Since πλ(T ) = iλI, we obtain (6.31).

In the same way, we have

Δxj
πλ(Xk)

2 =
1

iλ
πλ[Yj , X

2
k ] and Δxj

πλ(Y
2
k ) =

1

iλ
πλ[Yj , Y

2
k ].

Using the canonical commutation relations, we see that Yj and Yk commute in
the Lie algebra g thus Yj and Y 2

k commute in the enveloping Lie algebra U(g):
[Yj , Y

2
k ] = 0. Again using the canonical commutation relation we compute

[Yj , X
2
k ] = −2δjkXkT,

since

YjX
2
k = YjXkXk = (−δjkT +XkYj)Xk

= −δjkTXk +Xk(−δjkT +XkYj)

= −2δjkXkT +X2
kYj .

Therefore,

Δxj
πλ(Xk)

2 =
1

iλ
πλ(−2δjkXkT ) =

−2δjk
iλ

πλ(XkT ) =
−2δjk
iλ

πλ(Xk)πλ(T )

=
−2δjk
iλ

πλ(Xk)(iλ) = −2δjkπλ(Xk),

and Δxj
πλ(Y

2
k ) = 0. This implies (6.32). �

Example 6.3.5. We already know that Δyj
I = 0, see Example 5.2.8. We can com-

pute

Δyj
πλ(Xk) = 0, Δyj

πλ(Yk) = −δjkI and Δyj
πλ(T ) = 0, (6.33)

and
Δyj

πλ(L) = −2πλ(Yj). (6.34)
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Proof. Proceeding as in the proof of Example 6.3.4, we have

Δyj
πλ(Xk) = − 1

iλ
ad (πλ(Xj))πλ(Xk) = −

1

iλ
πλ[Xj , Xk],

Δyjπλ(Yk) = − 1

iλ
ad (πλ(Xj))πλ(Yk) = −

1

iλ
πλ[Xj , Yk],

Δyjπλ(T ) = − 1

iλ
ad (πλ(Xj))πλ(T ) = −

1

iλ
πλ[Xj , T ],

and this together with the canonical commutation relations and πλ(T ) = iλI, yield
(6.33).

For the second part of Example 6.3.5, we have

Δyjπλ(Xk)
2 = − 1

iλ
πλ[Xj , X

2
k ] and Δyjπλ(Y

2
k ) = −

1

iλ
πλ[Xj , Y

2
k ],

and using the canonical commutation relations we compute [Xj , X
2
k ] = 0 whereas

[Xj , Y
2
k ] = 2δjkYkT,

since

XjY
2
k = XjYkYk = (δjkT + YkXj)Yk

= δjkTYk + Yk(δjkT + YkXj)

= 2δjkYkT + Y 2
k Xj .

Therefore

Δyjπλ(Yk)
2 = − 1

iλ
πλ(2δjkYkT ) = −2δjkπλ(Yk) and Δyjπλ(X

2
k) = 0.

This implies (6.34). �

6.3.2 Difference operator Δt

Naturally, very important information will be contained in the difference operator
corresponding to multiplication by t.

Lemma 6.3.6. We have

Δt|πλ
= i∂λ +

1

2

n∑
j=1

Δxj
Δyj
|πλ

+
i

2λ

n∑
j=1

{
πλ(Yj)Δyj

|πλ
+Δxj

|πλ
πλ(Xj)

}
.

By this we mean that for any κ in some Ka,b(Hn) such that tκ is in some Ka′,b′(Hn),
we have

Δtπλ(κ) = i∂λπλ(κ) +
1

2

n∑
j=1

ΔxjΔyjπλ(κ)

+
i

2λ

n∑
j=1

{
πλ(Yj)Δyjπλ(κ) + Δxjπλ(κ)πλ(Xj)

}
,
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or, rewriting this with the equivalent notation κ̂(πλ) as before,

Δtκ̂(πλ) = i∂λκ̂(πλ) +
1

2

n∑
j=1

ΔxjΔyj κ̂(πλ)

+
i

2λ

n∑
j=1

{
πλ(Yj)Δyj κ̂(πλ) + Δxj κ̂(πλ)πλ(Xj)

}
.

Before giving some examples of applications of the difference operator Δt,
let us make a couple of remarks.

Remark 6.3.7. 1. This lemma shows that the difference operators act on the
field of operators {πλ(κ), λ ∈ R\{0}}, rather than on ‘one’ πλ(κ) for an
individual λ, see Remark 5.2.2.

2. In a similar way as in Remark 6.3.2, the formula in Lemma 6.3.6 respects the
properties of the automorphism Θ and the dilations Dr. Indeed, using (6.23)
we have

(Δtκ̂(π)) |π=π−λ
=

(
t̂κ(π)

)
|π=π−λ

= π−λ(tκ) = πλ ((tκ) ◦Θ)

= πλ (−t κ ◦Θ) = −Δtκ̂ ◦Θ(πλ) = −Δt (κ̂(π−λ)) ,

that is
(Δtκ̂(π)) |π=π−λ

= −Δt (κ̂(π−λ)) . (6.35)

For the dilations, using (6.24), we have

(Δtκ̂(π)) |π=πr−2λ
=

(
t̂κ(π)

)
|π=πr−2λ

= πr−2λ(tκ) = πλ

(
rQ(tκ) ◦Dr

)
= r2πλ

(
rQt κ ◦Dr

)
= r2Δt (κ̂(πr−2λ)) .

that is
(Δtκ̂(π)) |π=πr−2λ

= r2Δt (κ̂(πr−2λ)) . (6.36)

Formulae (6.35) and (6.36) can also be viewed directly from the formula in
Lemma 6.3.6:

(Δtκ̂(π)) |π=π−λ
= i∂λ1=−λ{πλ1

(κ)}+ 1

2

n∑
j=1

{Δxj
Δyj

π(κ)}π=π−λ

+
i

−2λ

n∑
j=1

{π(Yj)Δyj
π(κ) + Δxj

π(κ)π(Xj)}π=π−λ
, (6.37)

(Δtκ̂(π)) |π=πr−2λ
= i∂λ1=r−2λ{πλ1(κ)}+

1

2

n∑
j=1

{ΔxjΔyjπ(κ)}π=πr−2λ

+
i

2r−2λ

n∑
j=1

{π(Yj)Δyjπ(κ) + Δxjπ(κ)π(Xj)}π=πr−2λ
. (6.38)
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For the first terms in the right hand side in (6.37) and (6.38) we have easily
that

∂λ1=−λπλ1
(κ) = −∂λ{π−λ(κ)},

∂λ1=r−2λπλ1
(κ) = r2∂λ{πr−2λ(κ)}.

From Remark 6.3.2 we know that⎧⎪⎪⎨⎪⎪⎩
(
Δxj κ̂(π)

)
|π=π−λ

= Δxj (κ̂(π−λ))(
Δyj κ̂(π)

)
|π=π−λ

= −Δyj (κ̂(π−λ))(
Δxj κ̂(π)

)
|π=πr−2λ

= rΔxj (κ̂(πr−2λ))(
Δyj κ̂(π)

)
|π=πr−2λ

= rΔyj (κ̂(πr−2λ))

(6.39)

so we have for the second term of the right hand side in (6.37) and (6.38)
respectively:

n∑
j=1

{Δxj
Δyj

π(κ)}π=π−λ
= −

n∑
j=1

Δxj
Δyj

(κ̂(π−λ)) ,

n∑
j=1

{Δxj
Δyj

π(κ)}π=πr−2λ
= r2

n∑
j=1

Δxj
Δyj

(κ̂(πr−2λ)) .

Now viewing Xj and Yj as elements of the Lie algebra and left invariant
vector fields, we see using (6.23) and (6.6) that

π−λ(Xj) = π−λ(Θ(Xj)) = π−λ(Xj ◦Θ) = πλ(Xj),

π−λ(Yj) = −π−λ(Θ(Yj)) = −π−λ(Yj ◦Θ) = −πλ(Yj),

and, using (6.25) and (6.4), we obtain

πr−2λ(Xj) = πλ(Dr−1Xj) = r−1πλ(Xj),

πr−2λ(Yj) = πλ(Dr−1Yj) = r−1πλ(Yj).

So from this and (6.39) we obtain for the third terms of the right hand side
in (6.35) and in (6.36) that

i

−2λ

n∑
j=1

{π(Yj)Δyj
π(κ) + Δxj

π(κ)π(Xj)}π=π−λ

= − i

2λ

n∑
j=1

π−λ(Yj)Δyj
π−λ(κ) + Δxj

π−λ(κ)π−λ(Xj),

i

2r−2λ

n∑
j=1

{π(Yj)Δyjπ(κ) + Δxjπ(κ)π(Xj)}π=πr−2λ

= r2
i

2λ

n∑
j=1

πr−2λ(Yj)Δyjπr−2λ(κ) + Δxjπr−2λ(κ)π−λ(Xj).
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Collecting the new expressions for the three terms of the right hand sides in
(6.35) and in (6.36) we obtain a new proof for Equalities (6.35) and (6.36).

Proof of Lemma 6.3.6. Let κ be in some Ka,b(Hn) and h ∈ S(Rn). We start by
differentiating with respect to λ the expression from Lemma 6.2.4:

πλ(κ)h(u) =

∫
Hn

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt,

and obtain

∂λ {πλ(κ)h(u)} =
∫
Hn

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyu([

i(−t+ 1

2
xy)− i

yu

2
√
|λ|

]
h(u−

√
|λ|x)− 1

2
√
λ
x∇h(u−

√
|λ|x)

)
dxdydt;

indeed with our convention we have

x∇h =

n∑
j=1

xj∂ujh, and ∂λ{
√
λ} = 1

2
√
|λ|

, ∂λ{
√
|λ|} = 1

2
√
λ
.

We can now interpret the formula above in the light of difference operators as

∂λπλ(κ) = iπλ((−t+
1

2
xy)κ) +

n∑
j=1

{
− iuj

2
√
|λ|

πλ(yjκ)−
1

2
√
λ
πλ(xjκ)∂uj

}

= −iΔtπλ(κ) +
i

2

n∑
j=1

Δxj
Δyj

πλ(κ)

− 1

2λ

n∑
j=1

{
πλ(Yj)

(
Δyjπλ(κ)

)
+

(
Δxjπλ(κ)

)
πλ(Xj)

}
,

using (6.11). �
We already know that

ΔtI = 0 and Δtπλ(Xk) = Δtπλ(Yk) = 0, (6.40)

see Example 5.2.8 and Lemma 5.2.9, but we can also test it with the formula given
in Lemma 6.3.6. We also obtain the following (more substantial) examples:

Example 6.3.8. We can compute

Δtπλ(T ) = −I, (6.41)

and
Δtπλ(L) = 0. (6.42)
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Proof. Since
πλ(T ) = iλI

(see Lemma 6.2.1), we compute directly ∂λπλ(T ) = iI. By (6.31) and (6.33), we
know

Δyj
πλ(T ) = Δxj

πλ(T ) = 0,

thus we have obtained (6.41) by Lemma 6.3.6. Furthermore, by (6.12), we have

∂λπλ(L) = sgn(λ)

n∑
j=1

(
∂2
uj
− u2

j

)
=

1

λ
πλ(L)

and by (6.32) and (6.34)

n∑
j=1

{
πλ(Yj)Δyjπλ(L) + Δxjπλ(L)πλ(Xj)

}
= −

n∑
j=1

{πλ(Yj)2πλ(Yj) + 2πλ(Xj)πλ(Xj) = −2πλ(L)} ,

and also by Example 6.3.4, we get

Δxj
Δyj

πλ(L) = −Δxj
2πλ(Yj) = 0.

Combining all these equalities together with Lemma 6.3.6 yields (6.42). �
Note that (6.42) can also be obtained from (6.40) and the Leibniz formula

(in the sense of (5.28)) for Δt.

In terms of λ-symbols, we obtain

Corollary 6.3.9. If κ̂(πλ) ≡ πλ(κ) = OpW (aλ) with aλ = {aλ(ξ, u)}, then

Δtκ̂ (πλ) = iOpW
(
∂̃λ,ξ,uaλ

)
,

where

∂̃λ,ξ,u := ∂λ −
1

2λ

n∑
j=1

(
uj∂uj

+ ξj∂ξj
)
. (6.43)

Proof. Using formulae (6.28), Corollary 6.3.3 and the properties of the Weyl cal-
culus (see especially the composition formula in (6.16)), we obtain easily that

πλ(Yj)Δyj
πλ(κ) = OpW

(
i
√
λuj

)
OpW

(
−1
i
√
λ
∂uj

aλ

)
= −OpW (uj)OpW

(
∂uj

aλ
)

= −OpW
(
uj∂uj

aλ −
1

2i
∂ξj∂uj

aλ

)
,
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and

Δxj
πλ(κ)πλ(Xj) = OpW

(
−1

i
√
|λ|

∂ξjaλ

)
OpW

(
i
√
|λ|ξj

)
= −OpW

(
∂ξjaλ

)
OpW (ξj)

= −OpW
(
(∂ξjaλ)ξj −

1

2i
∂uj

∂ξjaλ

)
,

thus

πλ(Yj)Δyj
πλ(κ) + Δxj

πλ(κ)πλ(Xj)

= −OpW
(
uj∂uj

aλ −
1

2i
∂ξj∂uj

aλ

)
−OpW

(
(∂ξjaλ)ξj −

1

2i
∂uj

∂ξjaλ

)
.

= OpW
(
−uj∂uj

aλ − ξj∂ξjaλ +
1

i
∂ξj∂uj

aλ

)
.

We also have

Δxj
Δyj

πλ(κ) = OpW

(
−1

i
√
|λ|

∂ξj
−1
i
√
λ
∂uj

aλ

)

= − 1

λ
OpW

(
∂ξj∂ujaλ

)
. (6.44)

Bringing these equalities in the formula for Δt in Lemma 6.3.6, we obtain

Δtπλ(κ) = i∂λπλ(κ) +
1

2

n∑
j=1

ΔxjΔyjπλ(κ)

+
i

2λ

n∑
j=1

{
πλ(Yj)Δyj

πλ(κ) + Δxj
πλ(κ)πλ(Xj)

}
= iOpW (∂λaλ) +

1

2

n∑
j=1

− 1

λ
OpW

(
∂ξj∂uj

aλ
)

+
i

2λ

n∑
j=1

OpW
(
−uj∂uj

aλ − ξj∂ξjaλ +
1

i
∂ξj∂uj

aλ

)

= OpW

⎛⎝i∂λaλ −
i

2λ

n∑
j=1

(
uj∂ujaλ + ξj∂ξjaλ

)⎞⎠ .

This completes the proof. �
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6.3.3 Formulae

Here we summarise the formulae obtained so far in Sections 6.3.1 and 6.3.2. Let
us recall our convention regarding square roots (6.9) setting

√
λ := sgn(λ)

√
|λ| =

{ √
λ if λ > 0

−
√
|λ| if λ < 0

.

For the Schrödinger infinitesimal representation we have obtained (see (6.11),
(6.12) and (6.28)) that

πλ(Xj) =
√
|λ|∂uj = OpW

(
i
√
|λ|ξj

)
πλ(Yj) = i

√
λuj = OpW

(
i
√
λuj

)
πλ(T ) = iλI = OpW (iλ)

πλ(L) = |λ|
∑

j(∂
2
uj
− u2

j ) = OpW
(
|λ|

∑
j(−ξ2j − u2

j )
)

while for difference operators (cf. Lemmata 6.3.1 and 6.3.6) we have

Δxj |πλ
= 1

iλad (πλ(Yj)) = 1√
|λ|aduj

Δyj |πλ
= − 1

iλad (πλ(Xj)) = − 1
i
√
λ
ad∂uj

Δt|πλ
= i∂λ+

1
2

∑n
j=1 ΔxjΔyj |πλ

+ i
2λ

∑n
j=1

{
πλ(Yj)|πλ

Δyj+Δxj |πλ
πλ(Xj)

}
and in terms of λ-symbols, that is, with

κ̂(πλ) ≡ πλ(κ) = OpW (aλ) and aλ = {aλ(ξ, u)},

(cf. Corollaries 6.3.3 and 6.3.9):

Δxj
πλ(κ) = iOpW

(
1√
|λ|∂ξjaλ

)
Δyj

πλ(κ) = iOpW
(

1√
λ
∂uj

aλ

)
Δtπλ(κ) = iOpW

(
∂̃λ,ξ,uaλ

)
= iOpW

(
(∂λ − 1

2λ

∑n
j=1{uj∂uj

+ ξj∂ξj})aλ
)

(6.45)

In Examples 6.3.4, 6.3.5, 6.3.8 together with (6.40), we have also obtained

πλ(Xk) πλ(Yk) πλ(T ) πλ(L)
Δxj

−δj=k 0 0 −2πλ(Xj)
Δyj

0 −δj=k 0 −2πλ(Yj)
Δt 0 0 −I 0

The equalities given in the following lemma concern another normalisation of
the Weyl symbol which is motivated by (6.20) and by the fact that the expressions
of the right-hand sides in (6.45), in particular for the operator ∂̃λ,ξ,u, become then
very simple:
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Lemma 6.3.10. Let aλ = {aλ(ξ, u)} be a family of Weyl symbols depending smoothly
on λ �= 0. If ãλ is the renormalisation obtained via

aλ(ξ, u) = ãλ(
√
|λ|ξ,

√
λu), (6.46)

then

{∂̃λ,ξ,uaλ} (ξ, u) = {∂λãλ}(
√
|λ|ξ,

√
λu),

1√
|λ|
{∂ξjaλ} (ξ, u) = {∂ξj ãλ}(

√
|λ|ξ,

√
λu),

1√
λ
{∂uj

aλ} (ξ, u) = {∂uj
ãλ}(

√
|λ|ξ,

√
λu).

Proof. We see that

ãλ(ξ, u) = aλ

(
1√
|λ|

ξ,
1√
λ
u

)
,

thus

∂λãλ(ξ, u) = (∂λaλ)

(
1√
|λ|

ξ,
1√
λ
u

)

−
n∑

j=1

ξj

2λ
√
|λ|

(
∂ξjaλ

)( 1√
|λ|

ξ,
1√
λ
u

)

−
n∑

j=1

uj

2|λ|
√
|λ|

(
∂uj

aλ
)( 1√

|λ|
ξ,

1√
λ
u

)
,

and

{∂λãλ}
(√
|λ|ξ,

√
λu

)
= (∂λaλ)(ξ, u)

−
n∑

j=1

(√
|λ|ξj

2λ
√
|λ|

∂ξjaλ(ξ, u) +

√
λuj

2|λ|
√
|λ|

∂ujaλ(ξ, u)

)

= ∂λaλ(ξ, u)−
1

2λ

n∑
j=1

(
ξj∂ξjaλ(ξ, u) + uj∂ujaλ(ξ, u)

)
= ∂̃λ,ξ,uaλ(ξ, u).

This shows the first stated equality. The other two are easy. �
Lemma 6.3.10 and the formulae already obtained yield

Δxj
πλ(κ) = iOpW

(
∂ξj ãλ

)
,

Δyj
πλ(κ) = iOpW

(
∂uj

ãλ
)
,

Δtπλ(κ) = iOpW (∂λãλ) ,
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where the λ-symbol aλ of πλ(κ), that is, πλ(κ) = OpW (aλ), has been rescaled via
(6.46), i.e.

aλ(ξ, u) = ãλ(
√
|λ|ξ,

√
λu).

Recall that
aλ(ξ, u) = (2π)

2n+1
2 FR2n+1(κ)(

√
|λ|ξ,

√
λu, λ),

see (6.20), so

ãλ(ξ, u) = (2π)
2n+1

2 FR2n+1(κ)(ξ, u, λ).

The above formulae in terms of the rescaled λ-symbols look neat. The draw-
back of using this rescaling is that one rescales the Weyl quantization:

κ̂(πλ) = OpW (aλ) = OpW
(
ãλ

(√
|λ| ·,

√
λ ·

))
.

Since our aim is to study the group Fourier transform on Hn, it is more natural
to study the Weyl-symbol aλ without any rescaling.

In fact, the following two sections are devoted to understanding κ̂ ≡ {πλ(κ)}
as a family of Weyl pseudo-differential operators parametrised by λ ∈ R\{0}. The
Weyl quantization will force us to work on the λ-symbol aλ directly, and not on
its rescaling ãλ.

This will lead to defining a family of symbol classes parametrised by λ ∈
R\{0} for the λ-symbols aλ. This will be done via a family of Hörmander metrics
parametrised by λ ∈ R\{0}. Importantly the structural bounds of these metrics
will be uniform with respect to λ. The resulting symbol classes will be called
λ-Shubin classes.

6.4 Shubin classes

In this Section, we recall elements of the Weyl-Hörmander pseudo-differential cal-
culus and the associated Sobolev spaces, and we apply this to obtain the Shubin
classes of symbols and the associated Sobolev spaces. The dependence in a pa-
rameter λ will be of particular importance to us. We will call the resulting symbol
classes the λ-Shubin classes.

6.4.1 Weyl-Hörmander calculus

Here we present the main elements of the Weyl-Hörmander calculus that will be
relevant for our analysis. For more details on the underlying general theory, we
can refer, for instance, to [Ler10].

We consider Rn and identify its cotangent bundle T ∗Rn with R2n. The canon-
ical symplectic form on R2n is ω defined by

ω(T, T ′) = x · ξ′ − x′ · ξ, T = (ξ, x), T ′ = (ξ′, x′) ∈ R2n.
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Definition 6.4.1. If q is a positive quadratic form on R2n, then we define its con-
jugate qω by

∀T ∈ R2n qω(T ) := sup
T ′∈R2n\{0}

|ω(T, T ′)|2
q(T ′)

,

and its gain factor by

Λq := inf
T∈R2n\{0}

qω(T )

q(T )
.

Definition 6.4.2. A metric is a family of positive quadratic forms

g = {gX , X ∈ R2n}

depending smoothly on X ∈ R2n.

• The metric g is uncertain when ∀X ∈ R2n, ΛgX ≥ 1.

• The metric g is slowly varying when there exists a constant C̄ > 0 such that
we have for any X,X ′ ∈ R2n:

gX(X −X ′) ≤ C̄−1 =⇒ sup
T∈R2n\{0}

(
gX(T )

gX′(T )
+

gX′(T )

gX(T )

)
≤ C̄.

• The metric g is temperate when there are constants C̄ > 0 and N̄ > 0 such
that we have for any X,X ′ ∈ R2n and T ∈ R2n\{0}:

gX(T )

gX′(T )
≤ C̄(1 + gωX(X −X ′))N̄ .

A metric g is of Hörmander type if it is uncertain, slowly varying and tem-
perate. In this case the constants C̄ and N̄ appearing above and any constant
depending only on them are called structural.

Proposition 6.4.3. A metric g = {gX , X ∈ R2n} is slowly varying if and only if
there exist constants C, r > 0 such that we have for any X,Y ∈ R2n that

gX(Y −X) ≤ r2 =⇒ ∀T gY (T ) ≤ CgX(T ). (6.47)

Proof. If g is slowly varying then it satisfies (6.47). Conversely, let us assume
(6.47). Necessarily C ≥ 1 since we can take X = Y in (6.47). If gX(Y − X) ≤
C−1r2, then gX(Y −X) ≤ r2 and, applying (6.47) with T = Y −X, we obtain

gY (Y −X) ≤ CgX(Y −X) ≤ r2,

thus re-applying (6.47) (but at gY ), we have gX(T ) ≤ CgY (T ) for all T . This
shows that g is slowly varying. �
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Remark 6.4.4. If g satisfies (6.47) with constant C > 1 and r > 0 then g is slowly
varying with a constant C̄ = min(C−1r2, 2C).

Example 6.4.5. Let φ be a positive smooth function on R2n which is Lipschitz on
R2n. We denote by T �→ |T |2 the canonical (Euclidean) quadratic form on R2n.
The metric g given by

gX(T ) = φ(X)−2|T |2

is slowly varying.

Proof. Let us assume gX(Y −X) ≤ r2 for a constant r > 0 to be determined. This
means |Y −X| ≤ rφ(X). Since φ is Lipschitz on R2n, denoting by L its Lipschitz
constant, we have

φ(X) ≤ φ(Y ) + L|X − Y | ≤ φ(Y ) + Lrφ(X),

thus
(1− Lr)φ(X) ≤ φ(Y ).

Hence if we choose r > 0 so that 1− Lr > 0, we have obtained

∀T gY (T ) ≤ CgX(T ),

with C = (1 − Lr)−1. This shows that gX satisfies (6.47) and is therefore slowly
varying. �
Remark 6.4.6. If φ is L-Lipschitz then g given in Example 6.4.5 satisfies (6.47)
with any r ∈ (0, L−1) and a corresponding C = (1− Lr)−1.

Definition 6.4.7. Let g be a metric of Hörmander type. A positive function M de-
fined on R2n is a g-weight when there are structural constants C̄ ′ and N̄ ′ satisfying
for any X,Y ∈ R2n:

gX(X − Y ) ≤ C̄ ′−1 =⇒ M(X)

M(Y )
+

M(Y )

M(X)
≤ C̄ ′,

and
M(X)

M(Y )
≤ C̄(1 + gωX(X − Y ))N̄

′
.

It is easy to check that the set of g-weights forms a group for the usual
multiplication of positive functions.

Definition 6.4.8 (Hörmander symbol class S(M, g)). Let g be a metric of Hör-
mander type and M a g-weight on R2n. The symbol class S(M, g) is the set of
functions a ∈ C∞(R2n) such that for each integer � ∈ N0, the quantity

‖a‖S(M,g),� := sup
�′≤�,X∈R

2n

gX(T�′ )≤1

|∂T1 . . . ∂T�′a(X)|
M(X)

is finite.
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Here ∂Ta denotes the quantity (da, T ).

The following properties are well known [Ler10, Chapters 1 and 2]:

Theorem 6.4.9. Let g be a metric of Hörmander type and let M,M1,M2 be g-
weights.

1. The symbol class S(M, g) is a vector space endowed with a Fréchet topology
via the family of seminorms ‖ · ‖S(M,g),�, � ∈ N0.

2. If a ∈ S(M, g) then the symbol b defined by

OpW b =
(
OpWa

)∗
is in S(M, g) as well. Furthermore, for any � ∈ N0 there exist a constant
C > 0 and a integer �′ ∈ N0 such that

‖b‖S(M,g),� ≤ C‖a‖S(M,g),�′ .

The constant C and the integer �′ may be chosen to depend on � and on the
structural constants and to be independent of g,M and a.

3. If a1 ∈ S(M1, g) and a2 ∈ S(M2, g) then the symbol b defined by

OpW b =
(
OpWa1

) (
OpWa2

)
,

is in S(M1M2, g). Furthermore, for any � ∈ N0 there exist a constant C > 0
and two integers �1, �2 ∈ N0 such that

‖b‖S(M1M2,g),� ≤ C‖a1‖S(M1,g),�1‖a2‖S(M2,g),�2 .

The constant C and the integers �1, �2 may be chosen to depend on � and on
the structural constants and to be independent of g,M1,M2 and a1, a2.

Definition 6.4.10 (Sobolev spaces H(M, g)). Let g be a metric of Hörmander type
and M a g-weight on R2n. We denote by H(M, g) the set of all tempered distribu-
tions f on Rn such that for any symbol a ∈ S(M, g) we have OpW (a)f ∈ L2(Rn).

Theorem 6.4.11. Let g be a metric of Hörmander type on R2n.

1. The space H(1, g) coincides with L2(Rn). Furthermore, there exist a struc-
tural constant C > 0 and a structural integer � ∈ N0 such that for any symbol
a ∈ S(1, g), we have

‖OpW (a)‖L (L2(Rn)) ≤ C‖a‖S(1,g),�.

2. Let M1,M2 be g-weights. For any a ∈ S(M1, g), the operator OpW (a) maps
continuously H(M2, g) to H(M2M

−1
1 , g). Furthermore, there exist a constant

C > 0 and an integer � ∈ N0 such that

‖OpW (a)‖L (H(M2,g),H(M2M
−1
1 ,g)) ≤ C‖a‖S(M1,g),�.

The constant C and the integers � may be chosen to depend only on the
structural constants of g,M1,M2 and to be independent of g,M and a.
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6.4.2 Shubin classes Σm
ρ (R

n) and the harmonic oscillator

It is well known (and can be readily checked) that the metric

dξ2 + du2

(1 + |u|2 + |ξ|2)ρ ,

is of Hörmander type with corresponding weights (1 + |u|2 + |ξ|2)m/2 for m ∈ R.
This will be also shown later in the proof of Proposition 6.4.21. For m ∈ R and
ρ ∈ (0, 1], we denote by Σm

ρ (Rn) the corresponding symbol class, often called the
Shubin classes of symbols on Rn:

Σm
ρ (Rn) := S

(
(1 + |u|2 + |ξ|2)m/2,

dξ2 + du2

(1 + |u|2 + |ξ|2)ρ

)
.

This means that a symbol a ∈ C∞(R2n) is in Σm
ρ (Rn) if and only if for any

α, β ∈ Nn
0 there exists a constant C = Cα,β > 0 such that

∀(ξ, u) ∈ R2n |∂α
ξ ∂

β
ua(ξ, u)| ≤ C

(
1 + |ξ|2 + |u|2

)m−ρ(|α|+|β|)
2 .

The class Σm
ρ (Rn) is a vector subspace of C∞(Rn ×Rn) which becomes a Fréchet

space when endowed with the family of seminorms

‖a‖Σm
ρ ,N = sup

(ξ,u)∈R
n×R

n

|α|,|β|≤N

(
1 + |ξ|2 + |u|2

)−m−ρ(|α|+|β|)
2 |∂α

ξ ∂
β
ua(ξ, u)|,

where N ∈ N0. We denote by

ΨΣm
ρ (Rn) := OpW (Σm

ρ (Rn))

the corresponding class of operators and by ‖ · ‖ΨΣm
ρ ,N the corresponding semi-

norms.

We have the inclusions

ρ1 ≥ ρ2 and m1 ≤ m2 =⇒ ΨΣm1
ρ1

(Rn) ⊂ ΨΣm2
ρ2

(Rn).

Example 6.4.12. The operators ∂uj = OpW (iξj), j = 1, . . . , n, or multiplication

by uk = OpW (uk), k = 1, . . . , n, are two operators in ΨΣ1
1(R

n).

Standard computations also show:

Example 6.4.13. For each m ∈ R, the symbol bm, where

b(ξ, u) =
√

1 + |u|2 + |ξ|2,

is in Σm
1 (Rn).
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The following is well known and can be viewed more generally as a conse-
quence of the Weyl-Hörmander calculus (see Theorem 6.4.9)

Theorem 6.4.14. • The class of operators ∪m∈RΨΣm
ρ (Rn) forms an algebra of

operators stable by taking the adjoint. Furthermore, the operations

ΨΣm
ρ (Rn) −→ ΨΣm

ρ (Rn)
A �−→ A∗

and
ΨΣm1

ρ (Rn)×ΨΣm2
ρ (Rn) −→ ΨΣm1+m2

ρ (Rn)
(A,B) �−→ AB

are continuous.

• The operators in ΨΣ0
ρ(R

n) extend boundedly to L2(Rn). Furthermore, there
exist C > 0 and N ∈ N such that if A ∈ ΨΣ0

ρ(R
n) then

‖A‖L (L2(Rn)) ≤ C‖A‖ΨΣm
ρ ,N .

From Example 6.4.12, it follows that the (positive) harmonic oscillator

Q :=

n∑
j=1

(−∂2
uj

+ u2
j ), (6.48)

is in ΨΣ2
1(R

n).

Note that from now on Q denotes the harmonic oscillator and not the homo-
geneous dimension as in all previous chapters.

We keep the same notation for Q and for its self-adjoint extension as an un-
bounded operator on L2(Rn). The harmonic oscillator Q is a positive (unbounded)
operator on L2(Rn). Its spectrum is

{2|�|+ n, � ∈ Nn
0},

where |�| = �1+. . .+�n. The eigenfunctions associated with the eigenvalues 2|�|+n
are

h� : x = (x1, . . . , xn) �−→ h�1(x1) . . . h�n(xn),

where each hj , j = 0, 1, 2 . . . , is a Hermite function, that is,

hj(τ) = (−1)j e
τ2

2√
2jj!
√
π

dj

dτ j
e−τ2

, τ ∈ R.

The Hermite functions are Schwartz, i.e. hj ∈ S(R). With our choice of normalisa-
tion, the functions hj , j = 0, 1, . . . , form an orthonormal basis of L2(R). Therefore,
the functions h� form an orthonormal basis of L2(Rn). For each s ∈ R, we define



6.4. Shubin classes 461

the operator (I + Q)s/2 using the functional calculus, that is, in this case, the
domain of (I +Q)s/2 is the space of functions

Dom(I +Q)s/2 = {h ∈ L2(Rn) :
∑
�∈Nn

0

(2|�|+ n)s|(h�, h)L2(Rn)|2 <∞},

and if h ∈ Dom(I +Q)s/2 then

(I +Q)s/2h =
∑
�∈Nn

0

(2|�|+ n)s/2(h�, h)L2(Rn)h�.

6.4.3 Shubin Sobolev spaces

In this section, we study Shubin Sobolev spaces. Many of their properties, espe-
cially their equivalent characterisations, are well known. Their proofs are quite
easy but often omitted in the literature. Thus we have chosen to sketch their
demonstrations.

The Shubin Sobolev spaces below are a special case of Sobolev spaces for
measurable fields on representation spaces, see Definition 5.1.6.

Our starting point will be the following definition for the Shubin Sobolev
spaces:

Definition 6.4.15. Let s ∈ R. The Shubin Sobolev space Qs(Rn) is the subspace of
S ′(Rn) which is the completion of Dom(I +Q)s/2 for the norm

‖h‖Qs
:= ‖(I +Q)s/2h‖L2(Rn).

They satisfy the following properties:

Theorem 6.4.16. 1. The space Qs(Rn) is a Hilbert space endowed with the ses-
quilinear form

(g, h)Qs
=

(
(I +Q)s/2g, (I +Q)s/2h

)
L2(Rn)

.

We have the inclusions

S(Rn) ⊂ Qs1(R
n) ⊂ Qs2(R

n) ⊂ S ′(Rn), s1 > s2.

We also have

L2(Rn) = Q0(R
n) and S(Rn) =

⋂
s∈R

Qs(R
n).

2. The dual of Qs(Rn) may be identified with Q−s(Rn) via the distributional
duality form 〈g, h〉 =

∫
Rn gh.
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3. If s ∈ N0, Qs(Rn) coincides with

Qs(R
n) = {h ∈ L2(Rn) : uα∂β

uh ∈ L2(Rn) ∀α, β ∈ Nn
0 , |α|+ |β| ≤ s}.

Furthermore, the norm given by

‖h‖(int)Qs
=

∑
|α|+|β|≤s

‖uα∂β
uh‖L2(Rn),

is equivalent to ‖ · ‖Qs .

4. For any s ∈ R, Qs(Rn) coincides with the completion (in S ′(Rn)) of the
Schwartz space S(Rn) for the norm

‖h‖(b)Qs
= ‖OpW (bs)h‖L2(Rn),

where b was given in Example 6.4.13. The norm ‖ · ‖(b)Qs
extended to Qs(Rn)

is equivalent to ‖ · ‖Qs .

5. For any s ∈ R, the Shubin Sobolev space Qs(Rn) coincides with the Sobolev
space associated with the following metric weight (see Definition 6.4.10)

Qs(R
n) = H

(
(1 + |u|2 + |ξ|2)s/2, dξ2 + du2

1 + |u|2 + |ξ|2

)
.

6. For any s ∈ R, the operators OpW (b−s)(I + Q)s/2 and (I + Q)s/2OpW (b−s)
are bounded and invertible on L2(Rn).

7. The complex interpolation between the spaces Qs0(R
n) and Qs1(R

n) is

(Qs0(R
n),Qs1(R

n))θ = Qsθ (R
n), sθ = (1− θ)s0 + θs1, θ ∈ (0, 1).

Before giving the proof of Theorem 6.4.16, let us recall the definition of
complex interpolation:

Definition 6.4.17 (Complex interpolation). Let X0 and X1 be two subspaces of a
vector space Z. We assume that X0 and X1 are Banach spaces with norms denoted
by | · |j , j = 0, 1.

Let Z be the space of the functions f defined on the strip S̄ = {0 ≤ Re z ≤
1} and valued in X0 + X1 such that f is continuous on S̄ and holomorphic in
S = {0 < Re z < 1}. For f ∈ Z we define the quantity (possibly infinite)

‖f‖Z := sup
y∈R

{|f(iy)|0, |f(1 + iy)|1}.

The complex interpolation space of exponent θ ∈ (0, 1) is the space (X0, X1)θ
of vectors v ∈ X0 + X1 such that there exists f ∈ Z satisfying f(θ) = v and
‖f‖Z <∞.

The space (X0, X1)θ is a subspace of Z; it is a Banach space when endowed
with the norm given by

|v|θ := inf{‖f‖Z : f ∈ Z and f(θ) = v}.
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We also refer to Appendix A.6 for the notion of analytic interpolation.

Proof of Theorem 6.4.16. From Definition 6.4.15, it is easy to prove that the space
Qs(Rn) is a Hilbert space, that it is included in S ′(Rn) and thatQ0(Rn) = L2(Rn).
It is a routine exercise left to the reader that the dual of Qs(Rn) is Q−s(Rn) via
the distributional duality (Part (2)) and that the spaces Qs(Rn) decrease with
s ∈ R.

Let us prove the complex interpolation property of Part (7). We may assume
s1 > s0. For h ∈ Qsθ , we consider the function

f(z) := (I +Q)
−(zs1+(1−z)s0)+sθ

2 h,

and we check easily that

f(θ) = h, ‖f(iy)‖Qs0
= ‖f(1 + iy)‖Qs1

= ‖h‖Qsθ
∀y ∈ R.

This shows that Qsθ is continuously included in (Qs0(R
n),Qs1(R

n))θ. By duality
of the complex interpolation and of the Qs(Rn), we obtain the reverse inclusion
and Part (7) is proved.

Let us prove Part (4). For any s ∈ R, the operator OpW (bs) maps S(Rn)

to itself and the mapping ‖ · ‖(b)Qs
as defined in Part (4) is a norm on S(Rn). We

denote its completion in S ′(Rn) by Q(b)
s (Rn). From the properties of the calculus it

is again a routine exercise left to the reader that the dual of Q(b)
s (Rn) is Q(b)

−s(R
n)

via the distributional duality and that the spaces Q(b)
s (Rn) decrease with s ∈ R.

We can prove the following property about interpolation between theQ(b)(Rn)
spaces which is analogous to Part (7):

(Q(b)
s0 (R

n),Q(b)
s1 (R

n))θ = Q(b)
sθ

(Rn), sθ = (1− θ)s0 + θs1, θ ∈ (0, 1). (6.49)

Indeed we may assume s1 > s0. For h ∈ Q(b)
sθ , we consider the function

f(z) = ez(sz−sθ)OpW
(
b−sz+sθ

)
h where sz = (1− z)s0 + zs1.

Clearly f(θ) = h. Furthermore,

‖f(iy)‖(b)Qs1
= |eiy(siy−sθ)|‖OpW (bs1)OpW

(
b−siy+sθ

)
h‖L2(Rn)

≤ e−y2(s1−s0)‖OpW (bs1)OpW
(
b−siy+sθ

)
OpW (b−sθ )‖L (L2(Rn))

‖h‖(b)Qsθ
, (6.50)

and

‖f(1 + iy)‖(b)Qs0
= |e(1+iy)(s1+iy−sθ)|‖OpW (bs0)OpW

(
b−s1+iy+sθ

)
h‖L2(Rn)

≤ es1−sθ−y2(s1−s0)‖OpW (bs0)OpW
(
b−s1+iy+sθ

)
OpW (b−sθ )‖L (L2(Rn))

‖h‖(b)Qsθ
. (6.51)
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From the calculus we obtain that the two operator norms on L2(Rn) in (6.50)
and (6.51) are bounded by a constant of the form C(1 + |y|)N where C > 0 and

N ∈ N0 are independent of y. This shows that Q(b)
sθ is continuously included in

(Q(b)
s0 (R

n),Q(b)
s1 (R

n))θ. By duality of the complex interpolation and of the spaces
Qs(Rn), we obtain the reverse inclusion and (6.49) is proved.

Let us show that the spaces Q(b)
s (Rn) and Qs(Rn) coincide. First let us

assume s ∈ 2N0. We have for any h ∈ Q(b)
s (Rn):

‖h‖Qs ≤ ‖(I +Q)s/2OpW (b−s)‖L(L2(Rn))‖h‖(b)Qs
.

As Q ∈ ΨΣ2
1(R

n), by Theorem 6.4.14, the operator (I + Q)s/2OpW (b−s) is in
ΨΣ0

1 and thus is bounded on L2(Rn). We have obtained a continuous inclusion of

Q(b)
s (Rn) into Qs(Rn). Conversely, we have for any h ∈ Qs(Rn) that

‖h‖(b)Qs
≤ ‖OpW (bs)(I +Q)−s/2‖L(L2(Rn))‖h‖Qs

.

The inverse of OpW (bs)(I + Q)−s/2 is (I + Q)s/2(OpW (bs))−1 since the opera-
tors I + Q and OpW (bs) are invertible. Moreover, for the same reason as above,
(I +Q)s/2(OpW (bs))−1 is bounded on L2(Rn). By the inverse mapping theorem,
OpW (bs)(I + Q)−s/2 is bounded on L2(Rn). This shows the reverse continuous
inclusion. We have proved

Q(b)
s (Rn) = Qs(R

n)

with equivalence of norms for s ∈ 2N0 and this implies that this is true for any

s ∈ R by the properties of duality and interpolation for Q(b)
s (Rn) and Qs(Rn).

This shows Part (4) and implies Parts (5) and (6).

Let us show that, for each s ∈ N0, the space Qs(Rn) coincides with the space

Q(int)
s (Rn) of functions h ∈ L2(Rn) such that the tempered distributions uα∂β

uh
are in L2(Rn) for every α, β ∈ Nn

0 such that |α| + |β| ≤ s. Endowed with the

norm ‖ · ‖(int)Qs
defined in Part (3), Q(int)

s (Rn) is a Banach space. We have for any

h ∈ Qs(Rn) = Q(b)
s (Rn)

‖h‖(int)Qs
≤

∑
|α|+|β|≤s

‖uα∂β
uOpW (b−s)‖L(L2(Rn))‖h‖(b)Qs

.

Since the operators uα∂β
uOpW (b−s) are in ΨΣ

|α|+|β|−s
1 (Rn) thus continuous on

L2(Rn) when |α| + |β| ≤ s, we see that Qs(Rn) is continuously included in

Q(int)
s (Rn). For the converse, we separate the cases s even and odd. If s ∈ 2N0

then we have easily that

‖h‖Qs = ‖
(
I +

∑
j

(−∂2
uj

+ u2
j )
)s/2

h‖L2(Rn)

≤ Cs

∑
|α|+|β|≤s

‖uα∂β
uh‖L2(Rn) = Cs‖h‖(int)Qs

.
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Now if s ∈ 2N0 + 1, we have, since OpW (b−1)(I +Q)1/2 is bounded and invertible
(see Part (6) already proven),

‖h‖Qs = ‖(I +Q)s/2h‖L2(Rn) ≤ C‖OpW (b−1)(I +Q)1/2(I +Q)s/2h‖L2(Rn)

≤ C‖OpW (b−1)(I +
∑
j

−∂2
uj

+ u2
j )

(s+1)/2h‖L2(Rn)

≤ Cs

∑
|α|+|β|≤s+1

‖OpW (b−1)xα∂β
xh‖L2(Rn)

≤ Cs

∑
|α′|+|β′|≤s

‖uα′
∂β′
u h‖L2(Rn) = Cs‖h‖(int)Qs

,

by the property of the calculus. Therefore, for s even and odd, Q(int)
s (Rn) is

continuously included in Qs(Rn). As we have already proven the reverse inclusion,
the equality holds and Part (3) is proved. This implies⋂

s∈R

Qs(R
n) = S(Rn)

and Part (1) is now completely proved. �

These Sobolev spaces enable us to characterise the operators in the calculus.
We allow ourselves to use the shorthand notation

(adu)α1 := (adu1)
α11 . . . (adun)

α1n ,

and
(ad∂u)

α2 := (ad∂u1)
α21 . . . (ad∂un)

α2n .

Theorem 6.4.18. We assume that ρ ∈ (0, 1]. Let A : S(Rn) → S ′(Rn) be a linear
continuous operator such that all the operators

(adu)α1(ad∂u)
α2A, α1, α2 ∈ Nn

0 ,

are in L (L2(Rn),Q−m+ρ(|α1|+|α2|)) in the sense that they extend to continuous
operators from L2(Rn) to Q−m+ρ(|α1|+|α2|). Then A ∈ ΨΣm

ρ (Rn). Moreover, for
any � ∈ N, there exist a constant C and an integer �′, both independent of A, such
that

‖A‖ΨΣm
ρ ,� ≤ C

∑
|α1|+|α2|≤�′

‖(adu)α1(ad∂u)
α2A‖L (L2(Rn),Q−m+ρ(|α1|+|α2|)).

Note that the converse is true, that is, given A ∈ ΨΣm
ρ then

∀α1, α2 ∈ Nn
0 (adu)α1(ad∂u)

α2A ∈ L (L2(Rn),Q−m+ρ(|α1|+|β|), ).
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This is just a consequence of the properties of the calculus.

The proof of Theorem 6.4.18 relies on the following characterisation of the
class of symbols

Σ0
0(R

n) := S(1, dξ2 + du2).

Theorem 6.4.19 (Beals’ characterisation of Σ0
0(R

n)). Let A : S(Rn) → S ′(Rn) be
a linear continuous operator such that all the operators

(adu)α1(ad∂u)
α2A, α1, α2 ∈ Nn

0 ,

are in L (L2(Rn)) in the sense that they extend to continuous operators on L2(Rn).
Then there exits a unique function a = {a(ξ, x)} ∈ Σ0

0(R
n) such that A = OpW (a).

Moreover, for any � ∈ N, there exist a constant C and an integer �′, both indepen-
dent of A, such that

‖a‖Σ0
0,�
≤ C

∑
|α1|+|α2|≤�′

‖(adu)α1(ad∂u)
α2A‖L (L2(Rn)).

The converse is true, that is, given a ∈ Σ0
0(R

n) then A = OpW (a) satisfies

∀α1, α2 ∈ Nn
0 (adu)α1(ad∂u)

α2A ∈ L (L2(Rn)).

We admit Beals’ theorem stated in Theorem 6.4.19, see the original article
[Bea77a] for the proof.

For the sake of completeness we prove Theorem 6.4.18. This proof can also
be found in [Hel84a, Théorème 1.21.1].

Sketch of the proof of Theorem 6.4.18. Let A be as in the statement and b as in
Example 6.4.13. We write

Bs := OpW (bs)

and

Aα1,α2
:= (adu)α1(ad∂u)

α2A, α1, α2 ∈ Nn
0 .

We set s := m − ρ(|α1| + |α2|). Then B−1
s Aα1,α2 ∈ L (L2(Rn)). Moreover,

we have

ad∂u1

(
B−1

s Aα1,α2

)
=

(
ad∂u1

(
B−1

s

))
Aα1,α2 +B−1

s ad∂u1 (Aα1,α2) ;

the first operator of the right-hand side is in L (L2(Rn),Q1(Rn)) whereas the
second is in L (L2(Rn),Qρ(Rn)). Proceeding recursively, we obtain that the op-
erator B−1

m−ρ(|α1|+|α2|)Aα1,α2 satisfies the hypothesis of Beals’ Theorem (Theorem

6.4.19). Therefore, there exists cα1,α2
∈ Σ0

0(R
n) such that

B−1
m−ρ(|α1|+|α2|)Aα1,α2 = OpW (cα1,α2)
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or, equivalently,

Aα1,α2 = OpW (aα1,α2) with aα1,α2 = bm−ρ(|α1|+|α2|) � cα1,α2 .

We have A = OpW (a0,0) and

OpW (aα1,α2
) = Aα1,α2

= (adu)α1(ad∂u)
α2A

= (adu)α1(ad∂u)
α2OpW (a0,0)

= OpW
(
i|α1|∂α1

ξ ∂α2
u a0,0

)
,

by Lemma 6.2.3, thus
aα1,α2

= i|α1|∂α1

ξ ∂α2
u a0,0.

Consequently a ∈ Σm
ρ . �

Looking back at the proof, we see that it can be slightly improved in the
following way:

Corollary 6.4.20. We assume that ρ ∈ (0, 1]. Let A : S(Rn) → S ′(Rn) be a linear
continuous operator.

The operator A is in ΨΣm
ρ (Rn) if and only if there exists γo ∈ R such that

for each α1, α2 ∈ Nn
0 we have

(adu)α1(ad∂u)
α2A ∈ L (Qγo

(Rn),Q−m+ρ(|α1|+|α2|)+γo
).

In this case this property is true for every γ ∈ R, that is, for each γ ∈ R and
α1, α2 ∈ Nn

0 , we have

(adu)α1(ad∂u)
α2A ∈ L (Qγ(R

n),Q−m+ρ(|α1|+|α2|)+γ).

Moreover, for any � ∈ N, there exist a constant C and an integer �′, both indepen-
dent of A, such that

‖A‖ΨΣm
ρ ,� ≤ C

∑
|α1|+|α2|≤�′

‖(adu)α1(ad∂u)
α2A‖L (Qγ(Rn),Q−m+ρ(|α1|+|α2|)+γ).

Sketch of the proof of Corollary 6.4.20. We keep the notation of the proof of The-
orem 6.4.18. Let A be as in the statement and let s := m − ρ(|α1| + |α2|). Then
B−1

s+γo
Aα1,α2

Bγo
∈ L (L2(Rn)). Moreover, we have

ad∂u1

(
B−1

s+γo
Aα1,α2

Bγo

)
=

(
ad∂u1

(
B−1

s+γo

))
Aα1,α2

Bγo

+B−1
s+γo

ad∂u1
(Aα1,α2

)Bγo

+B−1
s+γo

Aα1,α2Bγo B−1
γo

(ad∂u1Bγo) ;

the first operator of the right-hand side is in L (L2(Rn),Q1(Rn)), the second is
in L (L2(Rn),Qρ(Rn)) and the third is in L (L2(Rn)). Proceeding recursively, we
obtain that B−1

s+γo
Aα1,α2

Bγo
satisfies the hypothesis of Theorem 6.4.19. We then

conclude as in the proof of Theorem 6.4.18. �
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6.4.4 The λ-Shubin classes Σm
ρ,λ(R

n)

The Shubin metric depending on a parameter λ ∈ R\{0} is the metric g(λ) on R2n

defined via

g
(ρ,λ)
ξ,u (dξ, du) :=

(
|λ|

1 + |λ|(1 + |ξ|2 + |u|2)

)ρ

(dξ2 + du2).

The associated positive function M (λ) on R2n is defined via

M (λ)(ξ, u) :=
(
1 + |λ|(1 + |ξ|2 + |u|2)

) 1
2 .

These λ-families of metrics and weights were first introduced in [BFKG12a] in
the case ρ = 1. The authors of [BFKG12a] realised that, placing λ as above, the
structural constants may be chosen independently of λ:

Proposition 6.4.21. For each λ ∈ R\{0}, the metric g(ρ,λ) is of Hörmander type
(see Definition 6.4.2) and the function M (λ) is a g(ρ,λ)-weight (see Definition
6.4.7). Furthermore, if ρ ∈ (0, 1] is fixed, then the structural constants for g(ρ,λ)

and for M (λ) can be chosen independent of λ.

The proof of Proposition 6.4.21 follows the proof of the case ρ = 1 given in
[BFKG12a, Proposition 1.20].

Proof of Proposition 6.4.21. The conjugate of g
(ρ,λ)
ξ,u is (g

(ρ,λ)
ξ,u )ω given by

(g
(ρ,λ)
ξ,u )ω(dξ, du) =

(
1 + |λ|(1 + |ξ|2 + |u|2)

|λ|

)ρ

(dξ2 + du2).

The gain is then

Λ
g
(ρ,λ)
ξ,u

=

(
1 + |λ|(1 + |ξ|2 + |u|2)

|λ|

)2ρ

.

We have for any ρ, λ, ξ, u:

Λ
g
(ρ,λ)
ξ,u

≥
(
1 + |λ|
|λ|

)2ρ

≥ 1.

This proves the uniform uncertain property in Definition 6.4.2.

To show that the metric gρ,λ is slowly varying, we notice that it is of the
form φ(X)−2|T |2 as in Example 6.4.5 with

φ(X) =

(
1 + |λ|(1 + |X|2)

|λ|

)ρ/2

.
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We compute the gradient of φ and obtain

|∇Xφ| = ρ|λ|1−
ρ
2 |X|(1 + |λ|(1 + |X|2))

ρ
2−1

≤

⎧⎪⎨⎪⎩ ρ
(

|λ|
1+|λ|

)1− ρ
2 ≤ ρ if |X| ≤ 1,

ρ
(

|λ||X|2
1+|λ||X|2

)1− ρ
2 |X|1−2(1− ρ

2 ) ≤ ρ if |X| > 1.

So φ is ρ-Lipschitz on R2n. Therefore, gρ,λ is slowly varying with a constant C̄
independent of λ (see Example 6.4.5 as well as Remarks 6.4.4 and 6.4.6).

Let us prove that gρ,λ is temperate. For any X,Y ∈ R2n we have

|Y |2 ≤ 2|X|2 + 2|X − Y |2;

thus
1 + |λ|(1 + |Y |2)
1 + |λ|(1 + |X|2) ≤ 2 + 2

|λ|
1 + |λ|(1 + |X|2) |X − Y |2. (6.52)

Now

|λ| ≤ 1 + |λ|(1 + |X|2) thus

(
|λ|

1 + |λ|(1 + |X|2)

)1+ρ

≤ 1,

and
|λ|

1 + |λ|(1 + |X|2) ≤
(
1 + |λ|(1 + |X|2)

|λ|

)ρ

.

Plugging this into (6.52), we obtain

1 + |λ|(1 + |Y |2)
1 + |λ|(1 + |X|2) ≤ 2 + 2

(
1 + |λ|(1 + |X|2)

|λ|

)ρ

|X − Y |2.

Taking the ρth power yields

g
(ρ,λ)
X (T )

g
(ρ,λ)
Y (T )

=

(
1 + |λ|(1 + |Y |2)
1 + |λ|(1 + |X|2)

)ρ

≤ 2ρ
(
1 +

(
1 + |λ|(1 + |X|2)

|λ|

)ρ

|X − Y |2
)ρ

= 2ρ
(
1 + (g

(ρ,λ)
X )ω(X − Y )

)ρ

.

This shows that g(ρ,λ) is temperate with constant independent of λ.

So far we have shown that g(ρ,λ) is a metric of Hörmander type. Following
the same computations, it is not difficult to show that M (λ) are g-weights with
constants independent of λ. This concludes the proof of Proposition 6.4.21. �
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Let ρ ∈ (0, 1] be a fixed parameter.

For each parameter λ ∈ R\{0}, we define the λ-Shubin classes by

Σm
ρ,λ(R

n) := S
((

M (λ)
)m

, g(ρ,λ)
)
,

where we have used the Hörmander notation to define a class of symbols in terms
of a metric and a weight, see Definition 6.4.8.

Here this means that Σm
ρ,λ(R

n) is the class of functions a ∈ C∞(Rn × Rn)
such that for each N ∈ N0, the quantity

‖a‖Σm
ρ,λ,N

:= sup
(ξ,u)∈R

n×R
n

|α|,|β|≤N

|λ|−ρ
|α|+|β|

2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)−m−ρ(|α|+|β|)
2 |∂α

ξ ∂
β
ua(ξ, u)|,

is finite. This also means that a symbol a = {a(ξ, u)} is in Σm
ρ,λ(R

n) if and only if
it satisfies

∀α, β ∈ Nn
0 ∃C = Cα,β > 0 ∀(ξ, u) ∈ Rn × Rn

|∂α
ξ ∂

β
ua(ξ, u)| ≤ C|λ|ρ |α|+|β|

2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)m−ρ(|α|+|β|)
2 . (6.53)

The class of symbols Σm
ρ,λ(R

n) is a vector subspace of C∞(Rn × Rn) which
becomes a Fréchet space when endowed with the family of seminorms ‖ · ‖Σm

ρ,λ,N
,

N ∈ N0. We denote by

ΨΣm
ρ,λ(R

n) := OpW (Σm
ρ,λ(R

n))

the corresponding class of operators, and by ‖ · ‖ΨΣm
ρ,λ,N

the corresponding semi-

norms on the Fréchet space ΨΣm
ρ,λ(R

n).

It is clear that all the spaces of the same order m and parameter ρ coincide
in the sense that

∀λ �= 0 Σm
ρ,λ(R

n) = Σm
ρ,1(R

n) = Σm
ρ (Rn), (6.54)

and the same is true for ΨΣm
ρ,λ(R

n) = ΨΣm
ρ (Rn). However, the seminorms

‖ · ‖Σm
ρ,λ,N

and ‖ · ‖ΨΣm
ρ,λ,N

carry the dependence on λ. This dependence on λ will be crucial for our purposes.
From the general properties of metrics of Hörmander type (see Theorem 6.4.9 and
Proposition 6.4.21), we readily obtain the following ‘λ-uniform’ calculus.

Proposition 6.4.22. 1. If, for each λ ∈ R\{0}, we are given a symbol aλ =
{aλ(ξ, u)} in Σm

ρ,λ(R
n) such that

∀N ∈ N0 sup
λ �=0
‖aλ‖Σm

ρ,λ,N
<∞, (6.55)
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then each symbol bλ defined by

OpW bλ =
(
OpWaλ

)∗
is in Σm

ρ,λ(R
n) as well. Furthermore, for any � ∈ N0 there exist a constant

C > 0 and a integer �′ ∈ N0 such that for any λ �= 0

‖bλ‖Σm
ρ,λ,�
≤ C‖aλ‖Σm

ρ,λ,�
′ .

The constant C and the integer �′ may be chosen to depend on �,m, n and to
be independent of λ and a.

2. If, for each λ ∈ R\{0}, we are given two symbols a1,λ = {a1,λ(ξ, u)} in
Σm1

ρ,λ(R
n) and a2,λ = {a2,λ(ξ, u)} in Σm2

ρ,λ(R
n) such that

∀N ∈ N0 sup
λ �=0
‖a1,λ‖Σm1

ρ,λ,N
<∞ and sup

λ �=0
‖a2,λ‖Σm2

ρ,λ,N
<∞,

then each symbol bλ defined by

OpW bλ =
(
OpWa1,λ

) (
OpWa2,λ

)
,

is in Σm1+m2

ρ,λ (Rn). Furthermore, for any � ∈ N0 there exist a constant C > 0
and two integers �1, �2 ∈ N0 such that

‖bλ‖Σm1+m2
λ ,�

≤ C‖a1,λ‖Σm1
ρ,λ,�1

‖a2,λ‖Σm2
ρ,λ,�2

.

The constant C and the integers �1, �2 may be chosen to depend on �,m1,m2, n
and to be independent of λ and a1,λ, a2,λ.

We will say that a family of symbols aλ = {aλ(ξ, u)}, λ ∈ R\{0}, which
satisfies Property (6.55) is λ-uniform in Σm

ρ,λ(R
n). The corresponding family of

operators via the Weyl quantization is said to be λ-uniform in ΨΣm
ρ,λ(R

n).

Let us give some useful examples of such families of operators.

Example 6.4.23. The families of symbols given by

πλ(Xj) = i
√
|λ|ξj , πλ(Yj) = i

√
λuj and πλ(T ) = iλ

are λ-uniform in Σ1
1,λ(R

n), Σ1
1,λ(R

n), and Σ2
1,λ(R

n), respectively.

In particular, the constant operator πλ(T ) = iλ has to be considered as being
of order 2 because of the dependence on λ.

Proof. We want to estimate the supremum over λ �= 0 of each of the seminorms

‖πλ(Xj)‖ΨΣ1
1,λ,N

= ‖i
√
|λ|ξj‖Σ1

1,λ,N
and ‖πλ(Yj)‖ΨΣ1

1,λ,N
= ‖i
√
λuj‖Σ1

1,λ,N
.
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We compute directly for N = 0:

sup
λ �=0
‖i
√
|λ|ξj‖Σ1

1,λ,0
= sup

λ �=0,(ξ,u)∈Rn×Rn

√
|λ||ξj |√

1 + |λ|(1 + |ξ|2 + |u|2)
<∞,

sup
λ �=0
‖i
√
λuj‖Σ1

1,λ,0
= sup

λ �=0,(ξ,u)∈Rn×Rn

√
|λ||uj |√

1 + |λ|(1 + |ξ|2 + |u|2)
<∞,

and

sup
|α|+|β|=1

(ξ,u)∈R
n×R

n

|∂α
ξ ∂

β
u{

√
|λ|ξj}| = sup

|α|+|β|=1
(ξ,u)∈R

n×R
n

|∂α
ξ ∂

β
u{
√
λuj}| =

√
|λ|,

therefore

sup
λ �=0
‖i
√
|λ|ξj‖Σ1

1,λ,1
<∞ and sup

λ �=0
‖i
√
λuj‖Σ1

1,λ,1
<∞.

Since all the higher derivatives ∂α
ξ ∂

β
u with |α|+ |β| > 1 of the symbols i

√
|λ|ξj and

i
√
λuj are zero, we obtain that the families of symbols given by πλ(Xj), πλ(Yj),

are λ-uniform in Σ1
1,λ(R

n).

For πλ(T ) = OpW (iλ), we see that

‖iλ‖Σ2
1,λ,0

= sup
(ξ,u)∈Rn×Rn

|iλ|
1 + |λ|(1 + |ξ|2 + |u|2) <∞,

and since iλ is a constant, its derivatives are zero and the family of symbols given
by πλ(T ), is λ-uniform in Σ2

1,λ(R
n). �

As a consequence of Example 6.4.23 and Proposition 6.4.22, we also have

Example 6.4.24. The family of operators

πλ(L) =
n∑

j=1

{
πλ(Xj)

2 + πλ(Yj)
2
}
= −|λ|Q

is λ-uniform in ΨΣ2
1,λ(R

n).

Standard computations also show:

Example 6.4.25. For each m ∈ R, the family of symbols bmλ , λ ∈ R\{0}, where

bλ(ξ, u) =
√

1 + |λ|(1 + |u|2 + |ξ|2),

is λ-uniform in ΨΣm
1,λ(R

n).
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6.4.5 Commutator characterisation of λ-Shubin classes

In this section, we characterise the λ-Shubin classes in terms of commutators and
continuity on the Shubin Sobolev spaces.

First we need to understand some properties of the Sobolev spaces associated
with the λ-dependent metric used to define the λ-Shubin symbols.

Proposition 6.4.26. 1. For each λ ∈ R\{0} and s ∈ R, the Sobolev space corre-
sponding to g(1,λ) and (M (λ))

s
coincides with the Shubin Sobolev space:

H
(
(M (λ))

s
, g(1,λ)

)
= Qs(R

n).

2. The following define norms on Qs(Rn) equivalent to ‖ · ‖Qs
:

‖h‖Qs,λ
:= ‖(I + |λ|Q)s/2h‖L2(Rn),

‖h‖(bλ)Qs,λ
:= ‖OpW (bsλ)h‖L2(Rn),

where bλ was defined in Example 6.4.25. Moreover, in the case s ∈ N0, we
also have an equivalent norm

‖h‖(int)Qs,λ
:=

∑
|α|+|β|≤s

|λ|
|α|+|β|

2 ‖uα∂β
uh‖L2(Rn).

3. Furthermore, for each s ∈ R there exists a constant C1 = C1,s > 0 such that

∀λ ∈ R\{0}, h ∈ Qs(R
n) C−1

1 ‖h‖Qs,λ
≤ ‖h‖(bλ)Qs,λ

≤ C1‖h‖Qs,λ
,

and for each s ∈ N0 there exists a constant C2 = C2,s > 0 such that

∀λ ∈ R\{0}, h ∈ Qs(R
n) C−1

2 ‖h‖Qs,λ
≤ ‖h‖(int)Qs,λ

≤ C2‖h‖Qs,λ
.

Naturally, in Part (2), the constants in the equivalences between each of the

norms ‖ · ‖Qs,λ
, ‖ · ‖(int)Qs,λ

, ‖ · ‖(bλ)Qs,λ
, and the norm ‖ · ‖Qs

, depend on λ.

Proof of Proposition 6.4.26. Part (1) follows easily from (6.54), Definition 6.4.10,
Theorem 6.4.16 especially Part (5).

Using the Shubin calculus ∪mΨΣm
1 , it is not difficult to see that the norms

‖ · ‖(b)Qs
and ‖ · ‖(bλ)Qs,λ

are equivalent.

The fact that the norms ‖·‖Qs,λ
, ‖·‖(bλ)Qs,λ

and, if s ∈ N0, ‖·‖(int)Qs,λ
, are equivalent

with λ-uniform constants comes from following the same proof as Theorem 6.4.16
but using the seminorms of ∪mΣm

1,λ. This is left to the reader and concludes the
proof of Proposition 6.4.26. �
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Theorem 6.4.27. We assume that ρ ∈ (0, 1]. Let Aλ : S(Rn)→ S ′(Rn), λ ∈ R\{0},
be a family of linear continuous operators.

We assume that for every α1, α2 ∈ Nn
0 all the operators

|λ|−
|α1|+|α2

2 (adu)α1(ad∂u)
α2Aλ, λ ∈ R\{0},

are λ-uniformly in L (L2(Rn),Q−m+ρ(|α1|+|α2|)). This means that

sup
λ∈R\{0}

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (L2(Rn),Q−m+ρ(|α1|+|α2|)) <∞. (6.56)

Then Aλ ∈ ΨΣm
ρ,λ(R

n). Moreover, for any � ∈ N, there exist a constant C and an
integer �′, both independent of {Aλ′} and λ, such that

‖Aλ‖ΨΣm
ρ,λ,�
≤ C

∑
|α1|+|α2|≤�′

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (L2(Rn),Q−m+ρ(|α1|+|α2|)).

Proof. The proof follows exactly the same steps as the proof of Theorem 6.4.18
using the calculi ∪mΣm

ρ,λ(R
n) to give the uniformity in λ. This is left to the reader.

�

The converse is true from the λ-Shubin calculus: if Aλ : S(Rn) → S ′(Rn),
λ ∈ R\{0}, is uniformly in ΨΣm

ρ,λ(R
n) in the sense that

∀N ∈ N0 sup
λ∈R\{0}

‖Aλ‖ΨΣm
ρ,λ,N

<∞, (6.57)

then (6.56) holds for every α1, α2 ∈ Nn
0 .

Proceeding as for Corollary 6.4.20, we obtain

Corollary 6.4.28. We assume that ρ ∈ (0, 1]. Let Aλ : S(Rn)→ S ′(Rn), λ ∈ R\{0},
be a family of linear continuous operators.

The family of operators {Aλ, λ ∈ R\{0}} is uniformly in ΨΣm
ρ,λ(R

n) in the
sense of (6.57) if and only if there exists γo ∈ R such that for each α1, α2 ∈ Nn

0 ,

sup
λ∈R\{0}

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (Qγo (R

n),Q−m+ρ(|α1|+|α2|)+γo )
<∞.

In this case this property is also true for every γ ∈ R. Moreover, for any
γ ∈ R and � ∈ N, there exist a constant C and an integer �′, both independent of
{Aλ′} and λ, such that

‖Aλ‖ΨΣm
ρ,λ,�

≤ C
∑

|α|+|α2|≤�′
|λ|−

|α1|+|α2
2 ‖(adu)α1(ad∂u)

α2Aλ‖L (Qγ(Rn),Q−m+ρ(|α1|+|α2|)+γ).
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6.5 Quantization and symbol classes Sm
ρ,δ on the Heisen-

berg group

We recall that in Section 5.2.2 we have introduced symbol classes Sm
ρ,δ(G) for

general graded Lie groups G. In particular, this yields symbol classes Sm
ρ,δ(Hn)

for the particular case of G = Hn. In this section, working with Schrödinger
representations πλ, we obtain a characterisation of these symbol classes Sm

ρ,δ(Hn)
in terms of scalar-valued symbols which will depend on the parameter λ ∈ R\{0};
these symbols will be called λ-symbols. The dependence on λ will be of crucial
importance here.

We start by adapting the notation of the general construction described in
Chapter 5 to the case of the Heisenberg group Hn. It will be convenient to change
slightly the notation with respect to the general case. Firstly we want to keep
the letter x for denoting part of the coordinates of the Heisenberg group and we
choose to denote the general element of the Heisenberg group by, e.g.,

g = (x, y, t) ∈ Hn.

Secondly we may define a symbol as parametrised by

σ(g, λ) := σ(g, πλ), (g, λ) ∈ Hn × R\{0}.

Thirdly we modify the indices α ∈ N2n+1
0 in order to write them as

α = (α1, α2, α3),

with

α1 = (α1,1, . . . , α1,n) ∈ Nn
0 , α2 = (α2,1, . . . , α2,n) ∈ Nn

0 , α3 ∈ N0.

The homogeneous degree of α is then

[α] = |α1|+ |α2|+ 2α3.

6.5.1 Quantization on the Heisenberg group

Here we summarise the quantization formula of Section 5.1.3 and its consequences
in the particular setting of the Heisenberg group Hn.

As introduced in Definition 5.1.33, a symbol is given by a field of operators

σ = {σ(g, λ) : S(Rn)→ L2(Rn), (g, λ) ∈ Hn × (R\{0})},

satisfying (quite weak) properties so that the quantization makes sense. More
rigorously, we require that, for each β ∈ N2n+1

0 , the map g �−→ ∂β
g σ(g, λ) is

continuous from Hn to some L∞
a,b(Ĥn).
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Recall now, that on the Heisenberg group Hn, the Plancherel measure is
given by cn|λ|ndλ (see Proposition 6.2.7). By Theorem 5.1.39, the quantization of
a symbol σ as above is the operator

A = Op(σ)

given by

Aφ(g) = cn

∫
R\{0}

Tr
(
πλ(g) σ(g, λ) φ̂(πλ)

)
|λ|ndλ, (6.58)

for any φ ∈ S(Hn) and g = (x, y, t) ∈ Hn.

Note that, by (1.5), we have

ϕ̂(πλ)πλ(g) = FHn(ϕ(g ·))(πλ),

thus the properties of the trace imply that

Tr
(
πλ(g)σ(g, λ)φ̂(πλ)

)
= Tr (σ(g, λ) FHn(ϕ(g ·))(πλ)) . (6.59)

Furthermore, by (6.20), we have

FHn
(ϕ(g ·))(πλ) = (2π)

2n+1
2 OpW

[
FR2n+1(ϕ(g ·))(

√
|λ| ·,

√
λ ·, λ)

]
. (6.60)

This formula shows that the Weyl quantization is playing an important role in the
quantization (6.58) due to its close relation to the group Fourier transform on the
Heiseneberg group.

Now, for each (g, λ) ∈ Hn×(R\{0}), each operator σ(g, λ) : S(Rn)→ L2(Rn)
in the symbol σ can also be written as the Weyl quantization of some symbol on
the Euclidean space Rn, depending on (g, λ). In other words, we can think of the
symbol σ as

σ(g, λ) = OpW (ag,λ) , (6.61)

where a = {a(g, λ, ξ, u) = ag,λ(ξ, u)} is a function on Hn×R\{0}×Rn×Rn. This
scalar-valued symbol a will be called the λ-symbol of the operator A in (6.58).

In other words, the symbol of the operator A acting on the Heisenberg group
is σ, related to A by the quantization formula (6.58). For each (g, λ), the symbol
σg,λ is itself an operator mapping the Schwartz space S(Rn) to L2(Rn). So, the
λ-symbol a of the operator A is given by the collection of the Weyl symbols ag,λ
of σ(g, λ).

Note that if A ∈ Ψm
ρ,δ, then its symbol acts on smooth vectors so σg,λ is itself

an operator mapping the Schwartz space S(Rn) to itself, for each (g, λ).


