
Chapter 4

Rockland operators and Sobolev
spaces

In this chapter, we study a special type of operators: the (homogeneous) Rockland
operators. These operators can be viewed as a generalisation of sub-Laplacians to
the non-stratified but still homogeneous (graded) setting. The terminology comes
from a property conjectured by Rockland and eventually proved by Helffer and
Nourrigat in [HN79], see Section 4.1.3.

First, we discuss these operators in general. Subsequently, we concentrate on
positive Rockland operators and study the heat semi-group, the Bessel and Riesz
potentials and the Sobolev spaces naturally associated with a positive Rockland
operator. Most results concerning the heat semi-group are known [FS82, ch.3.B].
To the authors’ knowledge, however, this chapter is the first systematic presenta-
tion of the fractional powers and the homogeneous and inhomogeneous Sobolev
spaces associated with a positive Rockland operator on a graded Lie group.

In fact, this appears to be the greatest generality for such constructions, since
the existence of a Rockland (differential) operator on a homogeneous Lie group
implies that the group must admit a graded structure, see Proposition 4.1.3. In
the case of stratified Lie groups, Sobolev spaces have been developed by Folland
[Fol75] for 1 < p <∞, for the Rockland operator being a sub-Laplacian (see also
[Sak79]). Since sub-Laplacians are not always available on graded Lie groups, our
constructions are based on general positive Rockland operators. In particular, this
allows one to still cover the case of stratified Lie groups, but permitting taking
Rockland operators other than a canonical sub-Laplacian.

Although we define Sobolev spaces using a fixed Rockland operator, The-
orem 4.4.20 shows that these spaces are actually independent of the choice of a
homogeneous positive Rockland operator.
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172 Chapter 4. Rockland operators and Sobolev spaces

4.1 Rockland operators

We start with the discussion of general Rockland operators, giving definitions,
examples, and then relating them to the hypoellipticity questions.

4.1.1 Definition of Rockland operators

The first definition of a Rockland operator uses the representations of the group.
We use the notation which has become quite conventional nowadays in this part
of the theory of group representations and which is explained in Section 1.7. In
particular, Ĝ denotes the unitary dual of G and H∞

π the smooth vectors of a

representation π ∈ Ĝ, see Definition 1.7.2. For a left-invariant differential operator
T we will denote π(T ) := dπ(T ), see Definition 1.7.4.

Definition 4.1.1. Let T be a left-invariant differential operator on a Lie group G.
Then T satisfies the Rockland condition when

(R) for each representation π ∈ Ĝ, except for the trivial representation,
the operator π(T ) is injective on H∞

π , that is,

∀v ∈ H∞
π π(T )v = 0 =⇒ v = 0.

There is a similar definition of the Rockland condition for right-invariant
differential operators, and also for left or right-invariant L2(G)-bounded operators
(for the latter, see G�lowacki [G�lo89, G�lo91]). See also Section 4.4.8.

Definition 4.1.2. Let G be a homogeneous Lie group. A Rockland operator R on
G is a left-invariant differential operator which is homogeneous of positive degree
and satisfies the Rockland condition.

Some other authors may define non-homogeneous Rockland operators as op-
erators of the form R =

∑
[α]≤ν cαX

α with the ‘main’ term
∑

[α]=ν cαX
α satis-

fying the Rockland property given in (R). Here we have chosen to assume that a
Rockland operator is homogeneous to study directly the main term.

We will give examples of Rockland operators in Section 4.1.2. Before this,
we show that their existence on a homogeneous Lie group implies that the group
is graded and that the weights could be chosen in N. This property influences
the examples we can produce, and the subsequent development of the theory of
pseudo-differential operators.

Proposition 4.1.3. Let G be a homogeneous Lie group. If there exists a Rockland
operator on G then the group G is graded.

Furthermore, the dilations’ weights υ1, . . . , υn satisfy

a1υ1 = . . . = anυn

for some integers a1, . . . , an.
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This property was shown by Miller in [Mil80], with a small gap in the proof
later corrected by ter Elst and Robinson (see [tER97]).

Proof of Proposition 4.1.3. Let G be a homogeneous Lie group. Its Lie algebra g is
endowed with the dilations Dr = Exp(ln rA). Let the number n′ and {X1, . . . , Xn}
be the basis described in Lemma 3.1.14. We assume that there exists a ν-homo-
geneous Rockland operator R which we can write as

R =
∑
[α]=ν

cαX
α.

We fix an integer j ≤ n′. Let φ : g → R be the linear functional such that
φ(Xk) = δj,k, that is, φ(Xj) = 1 while φ(Xk) = 0 for any k �= j. Since Xj /∈ [g, g],
φ is identically zero on [g, g]. We set for any X ∈ g:

π(expG X) := exp (iφ(X)) .

This defines a one-dimensional representation π of G. Indeed, if x, y ∈ G, we can
write x = expG X and y = expG Y and we have

xy = expG X expG Y = expG(X + Y + Z)

with Z ∈ [g, g] by the Baker-Campbell-Hausdorff formula (see Theorem 1.3.2).
Thus, φ(Z) = 0 and we obtain

π(xy) = exp (iφ(X + Y + Z)) = exp (iφ(X) + iφ(Y ))

= exp (iφ(X)) exp (iφ(Y )) = π(x)π(y).

So π is a one-dimensional representation of G and we see that

π(Xk) = ∂t=0π(e
tXk) = ∂t=0 exp (iφ(tXk)) = ∂t=0 exp (itφ(Xk)) = iδj,k.

As π is a non-trivial one-dimensional representation of G and R satisfies the
Rockland condition,

π(R) =
∑
[α]=ν

cαπ(X
α)

must be non-zero. We see that π(Xα) is always zero unless α is of the form aej for
a ∈ N where ej is the multi-index with 1 in the j-th place and zeros elsewhere; in
this case [α] = υja. So ν must be of the form ν = υja for some integer a = aj ∈ N
which may depend on j. And this is true for any j = 1, . . . , n′.

Since X1, . . . , Xn′ generate the Lie algebra g, the other weights are linear
combinations with coefficients in N0 of the υj ’s, j ≤ n′. This shows that the oper-
ators D′

r = Exp( ln r
ν A) are dilations over g with rational weights. By Lemma 3.1.9,

the group G is graded. �
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Remark 4.1.4. Proposition 4.1.3 and Remark 3.1.8 imply that the natural context
for the study of Rockland operators is a graded Lie group endowed with a family
of dilations with integer weights.

One may further assume that the weights have no common divisor other than
1 but we do not assume so unless we specify it.

From the proof of Proposition 4.1.3, we see:

Corollary 4.1.5. Let G be a graded Lie group and let {X1, . . . , Xn} be the basis
described in Lemma 3.1.14. We keep the notation of the lemma.

The homogeneous degree of any Rockland operator is a multiple of υ1, . . . , υn′ .
If R is a Rockland operator satisfying Rt = R then its homogeneous degree

is even.

4.1.2 Examples of Rockland operators

On (Rn,+), it is easy to see that Rockland differential operators are exactly the op-
erators P (−i∂1, . . . ,−i∂n) where P is a polynomial which is homogeneous (for the
standard dilations) and does not vanish except at zero. For instance homogeneous
elliptic operators on Rn with constant coefficients are Rockland operators. More
generally, let us prove that sub-Laplacians on a stratified Lie group are Rockland
operators. First let us recall their definition.

Definition 4.1.6. If G is a stratified Lie group with a given basis Z1, . . . , Zp for the
first stratum of its Lie algebra, then the left-invariant differential operator on G
given by

Z2
1 + . . .+ Z2

p

is called a sub-Laplacian.

For example, the canonical sub-Laplacian of the Heisenberg group Hno is

X2
1 + Y 2

1 + . . .+X2
no

+ Y 2
no
,

see Examples 1.6.4, 3.1.2 and 3.1.3 for our notation regarding the Heisenberg
group.

Lemma 4.1.7. Any sub-Laplacian on a stratified Lie group is a Rockland operator
of homogeneous degree 2.

This could be seen as a consequence of famous powerful theorems, namely
from combining Hörmander’s sums of squares and Helffer-Nourrigat (see Theo-
rems A.1.2 and 4.1.12 in the sequel) but we prefer to give a direct and easy proof.

Proof. Let
R = Z2

1 + . . .+ Z2
p

be a sub-Laplacian on the stratified Lie group G, where Z1, . . . , Zp is a given basis
for the first stratum V1 of the Lie algebra of G.
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Clearly R is a homogeneous left-invariant differential operator of degree 2.
Let π ∈ Ĝ\{1} and v ∈ H∞

π be such that π(R)v = 0. Then

0 = (π(R)v, v)Hπ = (π(Z1)
2v, v)Hπ + . . .+ (π(Zp)

2v, v)Hπ

= −(π(Z1)v, π(Z1)v)Hπ − . . .− (π(Zp)v, π(Zp)v)Hπ

= −‖π(Z1)v‖2Hπ
− . . .− ‖π(Zp)v‖2Hπ

,

and hence

π(Z1)v = . . . = π(Zp)v = 0.

Since {Z1, . . . , Zp} generates linearly the first stratum V1 of g and V1 generates
g as a Lie algebra, we see that π(X)v = 0 for any vector X ∈ g. But since π is
non-trivial and irreducible, this forces v to be zero. �

Looking at the proof of Lemma 4.1.7, it is not difficult to construct the
‘classical’ Rockland differential operators on graded Lie groups G:

Lemma 4.1.8. Let G be a graded Lie group of dimension n, i.e. G ∼ Rn. We denote
by {Dr}r>0 the natural family of dilations on its Lie algebra g, and by υ1, . . . , υn
its weights. We fix a basis {X1, . . . , Xn} of g satisfying

DrXj = rυjXj , j = 1, . . . , n, r > 0.

If νo is any common multiple of υ1, . . . , υn, the operator

n∑
j=1

(−1)
νo
υj cjX

2 νo
υj

j with cj > 0, (4.1)

is a Rockland operator of homogeneous degree 2νo.

Proof. The operator R given in (4.1) is clearly a homogeneous left-invariant dif-

ferential operator of homogeneous degree 2νo. Let π ∈ Ĝ\{1} and v ∈ H∞
π be such

that π(R)v = 0. Then

0 = (π(R)v, v)Hπ
=

n∑
j=1

(−1)
νo
υj cj(π(Xj)

2 νo
υj v, v)Hπ

=

n∑
j=1

cj‖π(Xj)
νo
υj v‖Hπ

,

and hence π(Xj)
νo
υj v = 0 for j = 1, . . . , n.

Let us observe the following simple fact regarding any positive integer p and
any Z ∈ U(g): the hypothesis π(Z)pv = 0 implies that

• if p is odd then π(Z)p+1v = π(Z)π(Z)pv = 0,
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• whereas if p is even then

0 = (π(Z)pv, v)Hπ = (−1)p/2(π(Z)
p
2 v, π(Z)

p
2 v)Hπ = (−1)p/2‖π(Z)

p
2 v‖2Hπ

,

and hence π(Z)
p
2 v = 0.

Applying this argument inductively on Z = Xj and p = νo/υj , νo/2υj , . . . ,
we obtain that π(Xj)v = 0 for each j. Hence v = 0. �
Remark 4.1.9. By Proposition 4.1.3 and its proof, if a homogeneous Lie group G
admits a Rockland operator, then, up to rescaling the dilations (cf. Remark 3.1.8),
we may assume that the group G is graded and endowed with its natural family
of dilations {Dr}r>0. Lemma 4.1.8 gives the converse: on such a group, we can
always find a Rockland operator.

The proof of Lemma 4.1.8 can easily be modified using an adapted basis
constructed in Lemma 3.1.14 to obtain

Corollary 4.1.10. Let G be a graded Lie group endowed with a family of dilations
{Dr}r>0. Let {X1, . . . , Xn} be a basis of g as in Lemma 3.1.14. In particular, the
vectors X1, . . . , Xn′ generate the Lie algebra g.

If νo is any common multiple of υ1, . . . , υn′ , the operator

n′∑
j=1

(−1)
νo
υj X

2 νo
υj

j , (4.2)

is a Rockland operator of homogeneous degree 2νo.

If the group G is stratified, the vectors X1, . . . , Xn′ span linearly the first
stratum and we obtain the sub-Laplacian if we choose νo = υ1.

From one Rockland operator, we can construct many since powers of a Rock-
land operator or its complex conjugate operator are Rockland:

Lemma 4.1.11. Let R be a Rockland operator on a graded Lie group G endowed
with a family of dilations with integer weights. Then the operators Rk for any
k ∈ N and R̄ are also Rockland operators.

The operator R̄ as an element of U(g) was defined in (1.8).

Proof. It is clear that R̄ and Rk are left-invariant homogeneous differential oper-
ators on G.

Let π ∈ Ĝ\{1}. We have

π(R̄) = π(R).

This holds in fact for any left-invariant differential operator viewed as an element
of U(g). Therefore, R̄ is Rockland. For the case of Rk, let v ∈ H∞

π be such
that π(Rk)v = 0. Applying recursively the simple fact explained in the proof of
Lemma 4.1.8, we obtain π(R)v = 0 and this implies v = 0 because R is Rockland.
Therefore, Rk is also Rockland. �
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4.1.3 Hypoellipticity and functional calculus

The analysis of left-invariant homogeneous operators on a nilpotent graded Lie
group has played a very important role in the understanding of hypoellipticity.
We refer the interested reader on this subject to the lecture notes by Helffer and
Nier [HN05]. For the definition of hypoellipticity, see Section A.1.

In [Roc78], Rockland showed that if T is a homogeneous left-invariant dif-
ferential operators on the Heisenberg group Hno

, then the hypoellipticity of T
and T t is equivalent to the Rockland condition (see Definition 4.1.1). He also
asked whether this equivalence would be true for more general homogeneous Lie
groups. Just afterwards, Beals showed [Bea77b] that the hypoellipticity of a homo-
geneous left-invariant differential operator on any homogeneous Lie group implies
the Rockland condition. At the same time he also showed that the converse holds
in some step-two cases. Eventually in [HN79], Helffer and Nourrigat settled what
has become Rockland’s conjecture by proving the following equivalence:

Theorem 4.1.12. Let R be a left-invariant and homogeneous differential opera-
tor on a homogeneous Lie group G. The hypoellipticity of R is equivalent to R
satisfying the Rockland condition.

In this case, any operator of the form

R+
∑
[α]<ν

cαX
α,

where ν is the degree of homogeneity of R and cα any complex number, is also
hypoelliptic.

The proof of Theorem 4.1.12 relies on the description of Ĝ via Kirillov’s orbit
method.

Remark 4.1.13. 1. The hypotheses of Theorem 4.1.12 with the existence of a
Rockland operator imply that the family of dilations of the group may be
rescaled to have integer weights and consequently that the group may be
viewed as graded, see Proposition 4.1.3. When describing properties of a
Rockland operatorR on a homogeneous Lie group G, unless stated otherwise,
we will always assume that the group G is graded in such a way that the
operator R is homogeneous for the natural family of dilations (with integer
weights).

2. Combining the theorems of Hellfer-Nourrigat and of Hörmander (see Theo-
rems 4.1.12 and A.1.2) gives another proof that the sub-Laplacians are Rock-
land operators, see Lemma 4.1.7.

3. If R is a Rockland operator formally self-adjoint, i.e. R∗ = R as elements of
U(g), then Rt = R̄ must also be Rockland by Lemma 4.1.11. Hence Theorem
4.1.12 implies that any formally self-adjoint Rockland operator satisfies the
hypothesis of Theorem 3.2.40 and thus admits fundamental solutions. It also
satisfies the hypothesis of the Liouville theorem as in Theorem 3.2.45.
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4. Let us also mention an alternative reformulation of the Hellfer-Nourrigat
theorem given by Rothschild [Rot83]: a left-invariant homogeneous operator
R on a graded Lie group G is hypoelliptic if and only if there is no non-
constant bounded function f on G such that Rf = 0 on G. The proof of
this relies on the Liouville theorem from Section 3.2.8. Essentially, in one
direction this is Beals’ result as above, while in the other it will follow from
Corollary 4.3.4.

Along the proof of Theorem 4.1.12 (see [HN79, Estimate (6.1)]), Helffer and
Nourrigat also showed the following property which will be used in the sequel.

Corollary 4.1.14. Let G be a graded Lie group endowed with a family of dilations
with integer weights. Let R be a Rockland operator G of homogeneous degree ν.
Then there exists C > 0 such that

∀φ ∈ S(G)
∑
[α]=ν

‖Xαφ‖2L2(G) ≤ C
(
‖Rφ‖2L2(G) + ‖φ‖2L2(G)

)
.

After developing the Sobolev spaces on G, we will be actually able to prove
its Lp-version, see Lemma 4.4.19.

The following property of Rockland differential operators is technically im-
portant and relies on hypoellipticity.

Proposition 4.1.15. Let R be a Rockland operator on a graded Lie group G. We
assume that R is formally self-adjoint. Let π be a strongly continuous unitary
representation of G.

Then the operators R and π(R) densely defined on D(G) ⊂ L2(G) and H∞
π ⊂

Hπ, respectively, are essentially self-adjoint.

That R is formally self-adjoint means that R∗ = R as elements of the uni-
versal enveloping algebra U(g), see (1.9).

Before we prove it, let us point out its consequences:

Corollary 4.1.16 (Functional calculus of Rockland operators and their Fourier
transform). Let R be a Rockland operator on a graded Lie group G. We as-
sume that R is formally self-adjoint as an element of U(g). Then R is essentially
self-adjoint on L2(G) and we denote by R2 its self-adjoint extension on L2(G).
Moreover, for each strongly continuous unitary representation π of G, π(R) is
essentially self-adjoint on Hπ and we keep the same notation for its self-adjoint
extension. Let E, Eπ be the spectral measures of R2 and π(R):

R2 =

∫
R

λdE(λ) and π(R) =
∫
R

λdEπ(λ).

For any Borel subset B ⊂ R, the orthogonal projection E(B) is left-invariant
hence E(B) ∈ LL(L

2(G)). The group Fourier transform of its convolution kernel
E(B)δ0 ∈ K(G) is

FG(E(B)δ0)(π) = Eπ(B).
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If φ is a measurable function on R, the spectral multiplier operator φ(R2) is
defined by

φ(R2) :=

∫
R

φ(λ)dE(λ),

and its domain Dom(φ(R2)) is the space of function f ∈ L2(G) such that the
integral

∫
R
|φ(λ)|2d(E(λ)f, f) is finite. It satisfies for all f ∈ Dom(φ(R2)) and

r > 0:

f(r ·) ∈ Dom(φ(r−νR2)) and φ(R2)f = φ(r−νR2) (f(r ·)) (r−1 ·). (4.3)

If π1 is another strongly continuous representation such that π1 ∼T π, that
is, T is a unitary operator satisfying Tπ1 = πT , then TEπ1 = EπT and we have
for any measurable function φ the equality

Tφ(π1(R)) = φ(π(R))T. (4.4)

Let φ ∈ L∞(R) be any measurable bounded function. Then the spectral mul-
tiplier operator φ(R2) is in LL(L

2(G)), that is, it is bounded on L2(G) and left-
invariant. Its convolution kernel denoted by φ(R2)δo is the unique tempered dis-
tribution φ(R2)δo ∈ S ′(G) such that

∀f ∈ S(G) φ(R2)f = f ∗ φ(R2)δo.

In fact φ(R2)δo ∈ K(G) and its group Fourier transform is

F{φ(R2)δo}(π) = φ(π(R)) =
∫
R

φ(λ)dEπ(λ). (4.5)

Consequently, for any f ∈ L2(G),

F{φ(R2)f}(π) = φ(π(R))f̂(π). (4.6)

We have for any r > 0 and x ∈ G:

φ(rνR2)δo(x) = r−Qφ(R2)δo(r
−1x). (4.7)

For any φ ∈ L∞(R),

{φ(R2)δ0}∗ = φ̄(R)δ0, where {φ(R2)δ0}∗(x) = φ(R2)δ0(x). (4.8)

If φ is also real-valued, then φ(R2) is a self-adjoint operator and its kernel satisfies
φ(R2)δo = (φ(R2)δo)

∗, that is, in the sense of distributions,

φ(R2)δo(x) = φ(R2)δo(x
−1).

If φ is real-valued and furthermore if Rt = R, then φ(R2)δo is real-valued
(as a distribution).
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Remark 4.1.17. For any measurable function φ : R → C such that for every
π1 ∈ RepG, the domain of φ(π1(R)) contains H∞

π1
, the corresponding Ĝ-field of

operators {φ(π(R)) : H∞
π → Hπ} is well defined in the sense of Definition 1.8.13

because of (4.4). This is the case for instance if φ is bounded since in this case
φ(π1(R)) is a bounded and therefore defined on the whole space Hπ1 .

The rest of this section is devoted to the proof of Proposition 4.1.15 and
Corollary 4.1.16; it may be skipped at first reading. Proposition 4.1.15 follows
from a Theorem by Nelson and Stinespring [NS59, Theorem 2.2] regarding elliptic
operators on Lie groups as well as the adaptation of its proof due to Folland and
Stein [FS82, ch.3.B] to our case. Let us sketch briefly the ideas for the sake of
completeness. Nelson and Stinespring’s Theorem can be reformulated here as the
following:

Proposition 4.1.18. Let R be a Rockland operator on a graded Lie group G. We
assume that R is formally self-adjoint as an element of U(g).

If π is a strongly continuous unitary representation of G, then the closure of
π(R∗) is the adjoint of π(R).
Proof of Proposition 4.1.18. Let v ∈ Hπ be orthogonal to the range of π(R) + I.
Then for all φ ∈ D(G),

0 = ((π(R) + I)π(φ)v, v)Hπ
=

∫
G

(R+ I)φ(x) (π(x)∗v, v)Hπ
dx.

In other words, the continuous function fπ defined by

fπ(x) := (π(x)∗v, v)Hπ
= (v, π(x)v)Hπ

, x ∈ G,

is a solution in the sense of distributions of the partial differential equation (R+
I)f = 0. By Theorem 4.1.12, the operator R+I is hypoelliptic. Hence fπ is smooth
on G and the equation (R + I)fπ = 0 holds in the ordinary pointwise sense. We
observe that for any X ∈ U(g) identified with a left-invariant vector field we have

Xfπ(x) = ∂t=0

{(
v, π(xetX)v

)
Hπ

}
= (v, π(x)π(X)v)Hπ

.

Thus,
(R+ I)fπ(x) = (v, π(x)π(R)v)Hπ

+ (v, π(x)v)Hπ
.

Therefore, (R+ I)fπ(0) = 0 implies

(v, π(R)v)Hπ
= −(v, v)Hπ = −‖v‖2Hπ

.

If R can be written as S∗S for some non-constant S ∈ U(g), then the left-hand
side is equal to ‖π(S)v‖2 so v = 0. In the general case, we apply the argument
above to R∗R = R2 which is also a Rockland operator by Lemma 4.1.11, and we
obtain the desired conclusion thanks to the following lemma applied to T = π(R),
T ′ = π(R∗) and D = H∞

π . �
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Lemma 4.1.19. Let D be a dense vector subspace of a Hilbert space H. Let T and
T ′ be two linear operators on H, whose domains are D and whose ranges are
contained in D such that T ′ is contained in the adjoint of T . If T ′T is essentially
self-adjoint then the closure of T ′ is the adjoint of T .

Proof of Lemma 4.1.19. We denote by T∗ the adjoint of T . Let (u, v) be an element
of the graph of T∗ which is orthogonal to the graph of T ′. This means

v = T∗u and ∀w ∈ D (u,w)H + (v, T ′w)H = 0.

In particular, for w = Tx with x ∈ D, we obtain

0 = (u, Tx)H + (v, T ′Tx)H = (v, x)H + (v, T ′Tx)H, x ∈ D.

But it is not difficult to see that I + T ′T has a dense range. Consequently v = 0.
So (u,w)H = 0 for all w ∈ D and therefore u = 0. This shows that the graph of
T∗ contains no non-zero element orthogonal to the graph of T ′; hence the closure
of T ′ is T∗. �
Proof of Proposition 4.1.15. We apply Proposition 4.1.18 to the left regular action
on L2(G) and the strongly continuous unitary representation π of G. �
Proof of Corollary 4.1.16. Applying the spectral theorem to the self-adjoint op-
erators R2 and π(R) (see, e.g., Rudin [Rud91, Part III]) we obtain the spectral
measures E and Eπ together with the definition of the spectral multipliers.

For each xo ∈ G and r > 0 we set for any Borel set B ⊂ R and any function
f ∈ L2(G),

E(xo)(B)f := (E(B)) (f(xo ·)) (x−1
o ·),

E(r)(B)f :=
(
E(r−νB)

)
(f(r ·)) (r−1 ·),

where the dilation of a subset of R is defined in the usual sense. It is not difficult
to check that this defines new spectral measures E(xo) and E(r) and, that for any
function f ∈ S(G),∫

R

λdE(xo)(λ)f =

∫
R

λd (E(λ)) (f(xo ·)) (x−1
o ·) = R2 (f(xo ·)) (x−1

o ·)

= R (f(xo ·)) (x−1
o ·) = Rf = R2f,∫

R

λdE(r)(λ)f =

∫
R

(r−νλ)d (E(λ)) (f(r ·)) (r−1 ·) = r−νR2 (f(r ·)) (r−1 ·)

= r−νR (f(r ·)) (r−1 ·) = Rf = R2f,

since R is left-invariant and ν-homogeneous. By density of S(G) in L2(G), we have
obtained for any f ∈ L2(G) that∫

R

λdE(xo)(λ)f = R2f and

∫
R

λdE(r)(λ)f = R2f.
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By uniqueness of the spectral measure of R2, the spectral measures E(xo), E(r)

and E coincide. For E(r) this implies (4.3).

For E(xo) this means that for each Borel subset B ⊂ R, the projection E(B)
is a left-invariant operator on L2(G). By the Plancherel theorem (see Section 1.8.2)
the group Fourier transform of its convolution kernel E(B)δ0 ∈ K(G) satisfies

∀f ∈ L2(G) π(E(B)f) = π(E(B)δ0)π(f). (4.9)

It is not difficult, using the uniqueness of the group Fourier transform, to check
that

F : B �−→ π(E(B)δ0) =: F (B),

is a spectral measure on Hπ. Equality (4.9) can be rewritten for any f ∈ L2(G) as

FG

(∫
R

φ(λ)dE(λ)f

)
(π) =

(∫
R

φ(λ)dF (λ)

)
f̂(π), (4.10)

with φ = 1B , that is, the characteristic function of a Borel subset B ⊂ R. Hence
Equality (4.10) also holds for a finite linear combination of characteristic functions,
and then, passing through the limit carefully, for any φ ∈ L∞(R) with f ∈ L2(G)
and φ(λ) = λ for f ∈ S(G). The latter yields(∫

R

λdF (λ)

)
f̂(π) = FG

(∫
R

λdE(λ)f

)
(π)

= FG(R2f)(π) = π(R)f̂(π).

Since the space H∞
π of smooth vectors is linearly spanned by elements of the form

f̂(π)v, f ∈ S(G), v ∈ Hπ (see Theorem 1.7.8), we have on H∞
π∫

R

λdF (λ) = π(R).

The uniqueness of the spectral measure Eπ shows that

Eπ(B) = F (B) = π(E(B)δ0).

Equality (4.5) follows from (4.10) for φ ∈ L∞(R).

If π1 ∼T π, then we set E
(T )
π := TEπ1

T−1, where Eπ1
denotes the spectral

measure of π1(R). We check easily that E
(T )
π is a spectral measure on Hπ and that∫

R

λdE(T )
π = T

∫
R

λdEπ1
T−1 = Tπ1(R)T−1 = Tπ1T

−1(R) = π(R).

The property of the spectral measure Eπ, that is, its uniqueness and the functional

calculus, shows that E
(T )
π = Eπ and that (4.4) holds.

The rest of the statement follows from the Schwartz kernel theorem (see
Corollary 3.2.1) and basic properties of the convolution. �
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4.2 Positive Rockland operators

In this section we concentrate on positive Rockland operators, i.e. Rockland oper-
ators which are positive in the operator sense. Positive Rockland operators always
exist on a graded Lie group, see Remark 4.2.4 below. Among Rockland operators,
positive ones enjoy a number of additional useful properties. In particular, in this
section, we analyse the heat semi-group associated to a positive Rockland operator
and the corresponding heat kernel.

4.2.1 First properties

We shall be interested in Rockland differential operators which are positive in the
sense of operators:

Definition 4.2.1. An operator T on a Hilbert space H is positive when for any
vectors v, v1, v2 ∈ H in the domain of T , we have

(Tv1, v2)H = (v1, T v2)H and (Tv, v)H ≥ 0.

In the case of left-invariant differential operator, this is easily equivalent to

Proposition 4.2.2. Let T be a left-invariant differential operator on a Lie group G.
Then T is positive on L2(G) when T is formally self-adjoint, that is, T ∗ = T in
U(g), and satisfies

∀f ∈ D(G)

∫
G

Tf(x)f(x) dx ≥ 0.

For the definition of T ∗, see (1.9).

The following properties of positive operators are easy to prove:

Lemma 4.2.3. 1. A linear combination with non-negative coefficients of positive
operators is a positive operator.

2. If X is a left-invariant vector field and p ∈ 2N0, then the operator (−1) p
2Xp

is positive on G.

3. If T is a positive differential operator on G then for any k ∈ N the differential
operator T k is also positive.

Proof. The first property is clear.
The second is true since each invariant vector field is essentially skew-sym-

metric, see Section 1.3.
Let us prove the third property. Let T be a positive differential operator and

k ∈ N. Clearly T k is also formally self-adjoint and we obtain recursively if k = 2�:∫
G

T kf(x)f(x)dx =

∫
G

T �f(x)T �f(x)dx =

∫
G

∣∣T �f(x)
∣∣2 dx,
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which is necessarily non-negative, whereas if k = 2�+ 1,∫
G

T kf(x)f(x)dx =

∫
G

T (T �f(x)) T �f(x)dx,

which is non-negative since T is positive. �

We observe that the signs of the coefficients of a positive differential operator
can not be guessed, as the example −(∂1 ± ∂2)

2 on R2 shows.

Remark 4.2.4. By Lemma 4.2.3, Parts 1 and 2, we see that the examples in Section
4.1.2 yield positive Rockland operators. For instance, on stratified Lie groups,
the sub-Laplacians give operators −R with R positive and Rockland. Also, the
operators in (4.1) and (4.2) give positive Rockland operators. In particular, this
shows that any graded Lie group admits a positive Rockland operator.

We may obtain other positive Rockland operators as powers of those since a
direct consequence of Lemma 4.1.11 and Lemma 4.2.3, Part 3, is the following

Lemma 4.2.5. Let R be a positive Rockland operator on a graded Lie group G.
Then Rk for every k ∈ N and R̄ = Rt are also positive Rockland operators.

We fix a positive Rockland operator R. By Proposition 4.2.2, R is essentially
self-adjoint and we may adopt the same notation as in Corollary 4.1.16. Since R
is positive, the spectrum of R2 is included in [0,∞) and we have

R2 =

∫ ∞

0

λdE(λ).

Proposition 4.2.6. Let R be a positive Rockland operator on a graded Lie group G.
If π ∈ Ĝ, then the operator π(R) is positive. Furthermore, if π is non-trivial and

(π(R)v, v)Hπ
= 0

then v = 0.

Proof. By Proposition 4.1.15, π(E(B)) = Eπ(B). Since E is supported in [0,∞)
then so is Eπ and the operator π(R) is positive:

∀v ∈ H∞
π (π(R)v, v)Hπ =

∫ ∞

0

λd(Eπ(λ)v, v)Hπ ≥ 0.

If (π(R)v, v)Hπ
= 0 then the (real non-negative) measure (Eπ(λ)v, v)Hπ

is con-
centrated on {λ = 0} and this means that v = Eπ(0)v is in the nullspace of π(R).
Thus v = 0 since R satisfies the Rockland condition and π is non-trivial. �
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4.2.2 The heat semi-group and the heat kernel

In this section, we fix a positive Rockland operator R which is homogeneous of
degree ν ∈ N.

By the functional calculus (see Corollary 4.1.16), we define the multipliers

e−tR2 :=

∫ ∞

0

e−tλdE(λ), t > 0.

We then have

‖e−tR2‖L (L2(G)) ≤ sup
λ≥0
|e−tλ| = 1 and e−tR2e−sR2 = e−(t+s)R2 ,

since e−sλe−tλ = e−(t+s)λ. Thus {e−tR2}t>0 is a contraction semi-group of oper-
ators on L2(G) (see Section A.2). This semi-group is often called the heat semi-
group. The corresponding convolution kernels ht ∈ S ′(G), t > 0, are called heat
kernels. We summarise its main properties in the following theorem:

Theorem 4.2.7. Let R be a positive Rockland operator on a graded Lie group G.
Then the heat kernels ht associated with R satisfy the following properties.
Each function ht is Schwartz and we have

∀s, t > 0 ht ∗ hs = ht+s, (4.11)

∀x ∈ G, t, r > 0 hrνt(rx) = r−Qht(x), (4.12)

∀x ∈ G ht(x) = ht(x−1), (4.13)∫
G

ht(x)dx = 1. (4.14)

The function h : G× R→ C defined by

h(x, t) :=

{
ht(x) if t > 0 and x ∈ G,
0 if t ≤ 0 and x ∈ G,

is smooth on (G× R)\{(0, 0)} and satisfies

(R+ ∂t)h = δ0,0,

where δ0,0 is the delta-distribution at (0, 0) ∈ G× R.
Having fixed a homogeneous norm | · | on G, we have for any N ∈ N0, α ∈ Nn

0

and � ∈ N0, that

∃C = Cα,N,� > 0 ∀t ∈ (0, 1] sup
|x|=1

|∂�
tX

αht(x)| ≤ Cα,N tN . (4.15)

The proof of Theorem 4.2.7 is given in the next section. We finish this section
with some comments and some corollaries of this theorem.
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Remark 4.2.8. 1. If the group is stratified and R = −L where L is a sub-
Laplacian, then R is of order two and the proof relies on Hunt’s theorem
[Hun56], cf. [FS82, ch1.G]. In this case, the heat kernel is real-valued and
moreover non-negative. The heat semi-group is then a semi-group of contrac-
tion which preserves positivity.

2. The behaviour of the heat kernel in the general case is quite well understood.
For instance, it can be extended to the complex right-half plane. Then the
heat kernel hz with z ∈ C, Re z > 0 decays exponentially. See [Dzi93, DHZ94,
AtER94].

3. Since R2 is a positive operator, only the values of φ ∈ L∞(R) on [0,∞) are
taken into account for the multipliers φ(R2). But in fact, the value at 0 can
be neglected too, as a consequence of the property of the heat kernel. Indeed,
from ht ∈ S(G) and (4.12), it is not difficult to show

‖f ∗ ht‖L2(G) −→
t→∞ 0,

first for f ∈ D(G) and then by density for any f ∈ L2. This shows

‖e−tR2f‖L2(G) −→
t→∞ 0,

and therefore we have

‖
∫ ε

0

dE(λ)‖L2(G) −→
ε→0

0.

4. Another consequence of the heat kernel being Schwartz, proved in [HJL85],

is that the spectrum of π(R) is discrete and lies in (0,∞) for any π ∈ Ĝ\{1}.
Indeed, it is easy to see that π(R) is the infinitesimal generator of the semi-
group {π(e−tR)}t>0 in Hπ and that π(e−tR) = π(ht) is a compact operator
since ht ∈ S(G) (for this last property, see [CG90, Theorem 4.2.1]).

Moreover, strong properties of the eigenvalue distributions of π(R) are
known, see [tER97].

Theorem 4.2.7 shows that the functions ht provide a commutative approx-
imation of the identity, see Remark 3.1.60. We already know that {e−tR2}t>0 is
a strongly continuous contraction semi-group. Moreover, we have the following
properties for any p:

Corollary 4.2.9. The operators

f �→ f ∗ ht, t > 0,

form a strongly continuous semi-group on Lp(G) for any p ∈ [1,∞) and on Co(G).
Furthermore, for any f ∈ D(G) and any p ∈ [1,∞] (finite or infinite), we have
the convergence ∥∥∥∥1t (f ∗ ht − f)−Rf

∥∥∥∥
p

−→t→0 0. (4.16)
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Finally, we formulate a simple but useful corollary of Theorem 4.2.7.

Corollary 4.2.10. Setting r = t−
1
ν in (4.12), we get

∀x ∈ G, t > 0 ht(x) = t−
Q
ν h1(t

− 1
ν x) (4.17)

and

for x ∈ G\{0} fixed, Xα
x h(x, t) =

{
O(t−

Q+[α]
ν ) as t→∞,

O(tN ) for all N ∈ N0 as t→ 0.
(4.18)

Inequalities (4.18) are also valid for any x in a fixed compact subset of G\{0}.

4.2.3 Proof of the heat kernel theorem and its corollaries

This section is entirely devoted to the proofs of Theorem 4.2.7 and Corollaries 4.2.9
and 4.2.10. This may be skipped at first reading. The proofs essentially follow the
arguments of Folland and Stein [FS82, Ch. 4. B].

Since ht is the convolution kernel of the R2-multiplier operator, Corollary
4.1.16 yield that ht ∈ S ′(G) is a distribution which satisfies Properties (4.12) and
(4.13) for each t > 0 fixed. Note that (4.12) easily yields (4.17).

By the Schwartz kernel theorem (see Corollary 3.2.1), since (0,∞) � t �→
e−tR2 ∈ L (L2(G)) is a strongly continuous mapping, the function (0,∞) � t �→
ht ∈ S ′(G) is continuous. Consequently the mapping (t, x) �→ ht(x) is a distribu-
tion on (0,∞)×G.

By the properties of semi-groups (cf. Proposition A.2.3 (4)), we have

∀φ ∈ D(G), t > 0, ∂t(e
−tR2φ) = −R2(e

−tR2φ) = −R(e−tR2φ).

Taking this equation at 0G shows that (t, x) �→ ht(x) is a solution in the sense of
distributions of the equation (∂t +R)f = 0 on (0,∞)×G.

The next lemma is independent of the rest of the proof and shows that ∂t+R
can be turned into a Rockland operator:

Lemma 4.2.11. Let R be a positive Rockland operator on a graded Lie group G.
We equip the group H := G× R (which is the direct product of the groups G and
(R,+)) with the dilations

Dr(x, t) := (rx, rνt), x ∈ G, t ∈ R.

The group H has become a homogeneous Lie group and the operators R+ ∂t
and R− ∂t are Rockland operators on H.

Proof of Lemma 4.2.11. The dual of H is easily seen to be isomorphic to Ĝ× R:

• if π ∈ Ĝ and λ ∈ R, we can construct the representation ρ = ρπ,λ of H on
Hρ = Hπ by ρ(x, t) := eiλtπ(x);
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• conversely, any representation ρ ∈ Ĥ can be realised into a representation of
the form ρπ,λ.

Let ρ = ρπ,λ ∈ Ĥ. We observe thatH∞
ρ = H∞

π , ρ(R) = π(R), and ρ(∂t) = iλ.
If v ∈ H∞

ρ is such that ρ(R+ ∂t)v = 0 then

0 = (ρ(R± ∂t)v, v)Hρ
= (π(R)v, v)Hπ

± iλ(v, v)Hπ
= (π(R)v, v)Hπ

± iλ‖v‖2Hπ
.

Since, by Proposition 4.2.6, (π(R)v, v)Hπ
≥ 0, the real part of the previous equal-

ities is (π(R)v, v)Hπ
= 0. Again by Proposition 4.2.6, necessarily v = 0. �

Remark 4.2.12. A similar proof implies that R± ∂k
t for k ∈ N odd is a Rockland

operator on the group G× R endowed with the dilations Dr(x, t) = (rx, rν/kt).

Corollary 4.2.13. The distribution (t, x) �→ ht(x) is smooth on (0,∞) × G and
satisfies the equation

(∂t +R)f = 0.

Furthermore, for any t > 0, ht ∈ L2(G) and∫
G

|ht(x)|2dx = t−
Q
ν

∫
G

|h1(x)|2dx <∞. (4.19)

Proof. The operator ∂t + R is Rockland on G × R by Lemma 4.2.11, therefore
hypoelliptic by the Hellfer-Nourrigat theorem (see Theorem 4.1.12). Since the
distribution (t, x) �→ ht(x) is a solution of the equation (∂t+R)f = 0 on (0,∞)×G,
it is in fact smooth.

Since R is a positive Rockland operator, Rt is also a positive Rockland
operator (see Lemma 4.2.5) and we can apply Lemma 4.2.11 to both. Therefore,
R + ∂t and its transpose are Rockland and thus hypoelliptic on G × R. By the
Schwartz-Treves theorem (see Theorem A.1.6), the distribution topology on G ×
(0,∞) and the C∞-topology agree on the the nullspace of R+ ∂t

N = {f ∈ D′(G× (0,∞)) : (R+ ∂t)f = 0}.

Since (0,∞) � t �→ ht ∈ S ′(G) is continuous and (t, x) �→ ht(x) is smooth on
(0,∞)×G, the mapping T defined via

Tφ(x, t) = (e−tR2φ)(x) =

∫
G

ht(x)φ(x)dx, φ ∈ L2(G), x ∈ G, t > 0,

is continuous from L2(G) to D′(G × (0,∞)). Furthermore, the semi-group prop-
erties imply that the range of T lies in N . Therefore, the mapping

L2(G) � φ �−→ Tφ(0, 1) =

∫
G

φ(x)h1(x)dx,

is a continuous functional. Hence h1 must be square integrable.
By homogeneity (see (4.17)), for any t > 0, we see that ht ∈ L2(G) as a

consequence of Corollary 4.2.10 and (4.19) must hold. �
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We now define the function h : G × R → C as in the statement of Theorem
4.2.7 by

h(x, t) :=

{
ht(x) if t > 0 and x ∈ G,
0 if t ≤ 0 and x ∈ G.

By Corollary 4.2.13, the function h is smooth on G × (R\{0}) and satisfies the
equation (R + ∂t)h = 0 on G × (R\{0}). However, it is not obvious that it is a
distribution on G × R. Our next goal is to prove that it is indeed a distribution
and that it satisfies the equation (R+ ∂t)h = 0 on G× R.

It is easy to prove that h is a distribution under the assumption ν > Q/2
since it is then locally integrable:

Lemma 4.2.14. If ν > Q/2, then h is locally integrable on G× R.

Proof of Lemma 4.2.14. We assume ν > Q/2. We see that for any ε > 0 and
R > 0, using the homogeneity property given in (4.19),

∫ ε

0

∫
|x|<R

|h(x, t)|dxdt ≤
∫ ε

0

(∫
|x|<R

|ht(x)|2dx
) 1

2
(∫

|x|<R

1dx

) 1
2

dt

≤ |B(0, 1)| 12RQ/2

(∫
G

|h1(x)|2dx
) 1

2
∫ ε

0

t−
Q
2ν dt

= CRQ/2ε1−
Q
2ν ,

since we assumed ν > Q/2. This shows that h is locally integrable on G× R and
hence defines a distribution. �

If we know that h is a distribution, being a solution of (R + ∂t)h = δ0,0 is
almost granted:

Lemma 4.2.15. Let us assume that h ∈ D′(G× R) is a distribution and that

• either h1 ∈ L2(G) and ν > Q/2,

• or h1 ∈ L1(G) (without restriction on ν > Q/2).

Then h satisfies the equation

(R+ ∂t)h = δ0,0

as a distribution.

The proof of Lemma 4.2.15 will require the following technical property which
is independent of the rest of the proof:

Lemma 4.2.16. Let R be a positive Rockland operator on a graded Lie group G ∼
Rn with homogeneous degree ν. If mν ≥ �n2 	, the functions in the domain of Rm

are continuous on Ω, i.e.
Dom(Rm) ⊂ C(Ω),
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where C(Ω) denotes the space of continuous functions on Ω. Furthermore, for any
compact subset Ω of G, there exists a constant C = CΩ,R,G,m such that

∀φ ∈ Dom(Rm) sup
x∈Ω
|φ(x)| ≤ C (‖φ‖L2 + ‖Rmφ‖L2) .

This is a (very) weak form of Sobolev embeddings. We will later on obtain
stronger results in Theorem 4.4.25. The proof below uses Corollary 4.1.14 showed
by Helffer and Nourrigat during their proof of Theorem 4.1.12.

Proof of Lemma 4.2.16. By the classical Sobolev embedding theorem on Rn, see
e.g. [Ste70a, p.124], if φ ∈ L2(Rn) together with ∂α

xφ ∈ L2(Rn) for any multi-index
α satisfying |α| ≤ �n2 	, then φ may be modified on a set of zero measure so that
the resulting function, still denoted by φ, is continuous.

Furthermore, for any compact subset Ω of G, we may choose a closed ball
B(0, R) strictly containing Ω, and there exists a constant C = CΩ,R independent
of φ such that

sup
Ω
|φ| ≤ C

∑
|α|≤�n

2 �
‖∂α

xφ‖L2(B(0,R)).

As the abelian derivatives may be expressed as linear combination of left-
invariant ones, see Section 3.1.5, there exists another constant C = CR such that∑

|α|≤�n
2 �
‖∂α

xψ‖L2(B(0,R)) ≤ C
∑

|α|≤�n
2 �
‖Xαψ‖L2(B(0,R))

for any ψ such that the right-hand side makes sense. By the corollary of the Helffer-
Nourrigat theorem applied to Rm (see Corollary 4.1.14, see also Lemma 4.2.5),
there exists C = CR,m > 0 such that

∀ψ ∈ S(G)
∑

[α]≤mν

‖Xαψ‖L2(G) ≤ C
(
‖Rmψ‖L2(G) + ‖ψ‖L2(G)

)
.

The last two properties yield easily∑
|α|≤�n

2 �
‖∂α

xψ‖L2(B(0,R)) ≤ C
(
‖Rmψ‖L2(G) + ‖ψ‖L2(G)

)
,

for any function ψ ∈ L2(G) for which the right-hand side makes sense, for some
constant C = CR,R,m independent of ψ, as long as mν ≥ �n2 	. Together with
the embedding property recalled at the beginning of the proof, this shows Lemma
4.2.16. �

We can now go back to the proof of the heat kernel theorem, and more
precisely, the proof of Lemma 4.2.15.
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Proof of Lemma 4.2.15. If we set for each ε > 0 and (x, t) ∈ G× R,

h(ε)(x, t) :=

{
h(x, t) if t > ε,
0 if t ≤ ε,

it is clear that this defines a distribution h(ε) ∈ D′(G×R) and that {h(ε)} converges
to h in D′(G× R) as ε tends to 0. To prove that

(R+ ∂t)h = δ0,0,

it suffices to show that (R + ∂t)h
(ε) converges to δ0,0 in D′(G × R) as ε tends to

0; this means:

∀φ ∈ D(G× R) 〈h(ε), (Rt − ∂t)φ〉 = 〈(R+ ∂t)h
(ε), φ〉 D′

−→
ε→0

φ(0).

Using the translation of the group H = G× R which is the direct product of the
groups G and (R,+), this is equivalent to the pointwise convergence in H:

∀φ ∈ D(H), (x, t) ∈ H (R+ ∂t)(φ ∗ h(ε))(x, t) −→
ε→0

φ(x, t), (4.20)

since

(R+ ∂t)(φ ∗ h(ε))(x, t) = φ ∗ ((R+ ∂t)h
(ε))(x, t) = 〈(R+ ∂t)h

(ε), φ((x, t) ·−1)〉.

The above convolution is in H, given by

(φ ∗ h(ε)) (x, t) =

∫
G

∫
R

φ(y, u)h(ε)((y, u)−1(x, t))dydu

=

∫
G

∫ t−ε

u=−∞
φ(y, u)h(y−1x,−u+ t)dydu.

We see that

(R+ ∂t)(φ ∗ h(ε))(x, t) =

∫
G

∫ t−ε

u=−∞
φ(y, u) (Rx + ∂t)h(y

−1x,−u+ t)dydu

+

∫
G

φ(y, t− ε)h(y−1x, ε)dy,

and the first term of the right hand side is zero since (R+ ∂t)h = 0 on G× (0,∞)
and R+ ∂t is left-invariant on H. Hence

(R+ ∂t)(φ ∗ h(ε))(x, t) = φ(·, t− ε) ∗ hε(x), (4.21)

using the convolution in H and G for the left and right hand sides respectively.

We now fix t and set φε(y) := φ(y, t− ε). Then

φ(·, t− ε) ∗ hε = φε ∗ hε,
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and we can write

φε ∗ hε − φ0 = (φε − φ0) ∗ hε − (φ0 ∗ hε − φ0). (4.22)

For the first term in the right-hand side of (4.22), we need to separate the case
h1 ∈ L2(G) with ν > Q/2 from the case h1 ∈ L1(G). Indeed if h1 ∈ L2(G) with
ν > Q/2, then by (4.19),

‖hε‖2 = ε−
Q
2ν ‖h1‖2

and the Cauchy-Schwartz inequality yields

‖(φε − φ0) ∗ hε‖∞ ≤ ‖φε − φ0‖2‖hε‖2.

We easily obtain ‖φε − φ0‖2 ≤ Cε as φ ∈ D(G× R). Thus

‖(φε − φ0) ∗ hε‖∞ ≤ C ′ε1−
Q
2ν −→ε→0 0,

since we assumed ν > Q/2. If h1 ∈ L1(G), then by (4.19), ‖hε‖1 = ‖h1‖1 and the
Hölder inequality yields

‖(φε − φ0) ∗ hε‖∞ ≤ ‖φε − φ0‖∞‖hε‖1 = ‖h1‖1‖φε − φ0‖∞.

Again ‖φε − φ0‖2 ≤ Cε as φ ∈ D(G× R) thus

‖(φε − φ0) ∗ hε‖∞ ≤ C ′ε −→ε→0 0.

For the second term in the right-hand side of (4.22), the functional calculus
of R2 yields the convergence in L2(G)

φ0 ∗ hε = e−εR2φ0 −→ε→0 φ0.

AsR2 commutes with theR2-multiplier e−εR2 and since φ0 ∈ D(G),R2φ0 = Rφ0,
we know that φ0 ∗ hε = e−εR2φ0 ∈ Dom(R2) and moreover

(Rφ0) ∗ hε = (R2φ0) ∗ hε = e−εR2R2φ0 = R2e
−εR2φ0

L2(G)−→ ε→0 R2φ0.

More generally, for any m ∈ N, φ0 ∗ hε = e−εR2φ0 ∈ Dom(Rm
2 ) and

Rm
2 e−εR2φ0

L2(G)−→ ε→0 Rm
2 φ0.

By Lemma 4.2.16, this implies that φ0 ∗ hε− φ0 is continuous on G. Furthermore,
for any compact subset Ω of G ∼ Rn and any m ∈ N with mν > 
n2 �, we have

sup
Ω
|φ0 ∗ hε − φ0| ≤ C (‖φ0 ∗ hε − φ0‖2 + ‖Rm(φ0 ∗ hε − φ0)‖2) −→ε→0 0.

Hence we have obtained that both terms on the right-hand side of (4.22)
go to zero for the supremum norm on any compact subset of G. Therefore, the
expression in (4.21) tends to

(R+ ∂t)(φ ∗ h(ε))(x, t) −→ε→0 φ(·, t− ε) ∗ hε(x),

for t fixed, locally in x. This is even stronger than the pointwise convergence in H
we wanted in (4.20) and concludes the proof of Lemma 4.2.15. �
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Corollary 4.2.17. Under the hypothesis of Lemma 4.2.15, h is smooth on (G ×
R)\{(0, 0)} and satisfies (4.15) and (4.18). Moreover, each function ht is Schwartz
on G and ∫

G

ht(x)dx = 1.

Proof of Corollary 4.2.17. By Lemma 4.2.15, the distribution h annihilates the
hypoelliptic operator R+∂t on (G×R)\{0}, and thus h is smooth on (G×R)\{0}.
Since h(x, t) = 0 for t ≤ 0, this implies that h(x, t) vanish to infinite order as t→ 0:

∀x ∈ G\{0}, N ∈ N0 ∃ε > 0, C > 0 ∀t ∈ (0, ε) |h(x, t)| ≤ CtN .

We can choose ε = 1 since h is smooth on G×(0,∞). In fact this estimate remains
true for any x-derivatives ( ∂

∂x )
αh(x, t). It is also uniform in x when x runs over a

fixed compact set which does not contain 0. Choosing this compact set to be the
unit sphere of a given quasi-norm | · |, we have

∀N ∈ N0 ∃C > 0 ∀t ∈ (0, 1] sup
|x|=1

∣∣∣∣( ∂

∂x

)α

h(x, t)

∣∣∣∣ ≤ CtN .

We may replace the abelian derivatives ( ∂
∂x )

α by the left-invariant ones, see Section
3.1.5. This implies (4.15).

Using the homogeneity of h (see Property (4.12) which was already proven
and Proposition 3.1.23), we have

∀x ∈ G, r > 0 Xαh(x, t) = rQ−[α]Xαhrνt(rx),

and so, in particular, if |x| ≥ 1 then we obtain, because of (4.15), that

|Xαh1(x)| = |x|−Q+[α]|Xαh|x|−ν (|x|−1x)| ≤ Cα,N |x|−Q+[α]−νN .

Since h1 is smooth on G, this shows that h1 is Schwartz. This is also the case for
ht by homogeneity, see (4.17). Note that the same homogeneity property together
with (4.15) implies (4.18).

Since each function ht satisfies the homogeneity property given in (4.17) and
is integrable, the functions ht form a commutative approximation of the identity,
see Remark 3.1.60. In particular,

φ ∗ ht −→t→0 cφ in L2(G),

with c =
∫
G
h1(x)dx. Since we know

φ ∗ ht = e−tR2φ −→ε→0 φ in L2(G),

this constant c must be equal to 1. By homogeneity,

∀t > 0

∫
G

ht(x)dx =

∫
G

h1(x)dx = c = 1.

�
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Lemmata 4.2.14 and 4.2.15 imply Theorem 4.2.7 and Corollary 4.2.10 under
the assumption ν > Q/2. We now need to remove this assumption. For this, we will
use the following formula which is a consequence of the principle of subordination:

Lemma 4.2.18. For any γ > 0, we have

e−γ =

∫ ∞

0

e−s

√
πs

e−
γ2

4s ds. (4.23)

Sketch of the proof of Lemma 4.2.18. We follow [Ste70a, p.61]. We start from the
well known identity

πe−γ =

∫ ∞

−∞

eiγx

1 + x2
dx, (4.24)

which is an application of the Residue theorem to the function

z �→ eiγz

z2 + 1
.

In (4.24) we replace 1 + x2 using

1

1 + x2
=

∫ ∞

0

e−(1+x2)udu,

and we obtain the double integral

πe−γ =

∫ ∞

−∞
eiγx

∫ ∞

0

e−(1+x2)udu dx.

One can show that it is possible to invert the order of integration:

πe−γ =

∫ ∞

0

e−u

∫ ∞

−∞
eiγxe−x2udx du.

It is well known that the inner integral in dx is equal to

e−
γ2

4u

√
πu

.

And this shows (4.23). �
We can now finish the proofs of Theorem 4.2.7 and Corollary 4.2.10.

End of the proofs of Theorem 4.2.7 and Corollary 4.2.10. Since the case ν > Q/2
is already proven, we may assume ν ≤ Q/2.

For any m ∈ N0, R2m is a positive Rockland operator (see Lemma 4.2.5),
with homogeneous degree 2mν. We denote by Km the function on G × R giving

its heat kernel in the sense that if t > 0, Km(·, t) ∈ S ′(G) is the kernel of e−tR2m

2
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and if t ≤ 0 then Km(x, t) = 0 for any x ∈ G. This is possible since, by Corollary
4.2.13, Km is smooth on G× (0,∞). By homogeneity, it will always satisfy

∀x ∈ G, t > 0 Km(x, t) = t−
Q

ν2m Km(t−
1

ν2m x, 1). (4.25)

In (4.23), replacing γ by tλ2m−1

, one finds that

e−tλ2m−1

=

∫ ∞

0

e−s

√
πs

e−
t2λ2m

4s ds.

Using the functional calculus on R, that is, integrating against the spectral mea-
sure dE(λ) of R2, we obtain formally that for any non-negative integer m ∈ N0

and t > 0,

e−tR2m−1

2 =

∫ ∞

0

e−s

√
πs

e−
t2

4sR2m

2 ds, (4.26)

and for the kernels of these operators,

Km−1(x, t) =

∫ ∞

0

e−s

√
πs

Km(x,
t2

4s
)ds. (4.27)

It is not difficult to see that Formulae (4.26) and (4.27) hold as operators and con-
tinuous integrable functions respectively when, for instance, Km(·, t) is integrable
on G for each t > 0 and∫ ∞

0

e−s

√
πs
‖Km(·, t

2

4s
)‖L1(G)ds <∞.

Indeed under this hypothesis, Km−1(·, t) is integrable on G for any fixed t > 0 and

‖Km−1(·, t)‖L1(G) ≤
∫ ∞

0

e−s

√
πs
‖Km(·, t

2

4s
)‖L1(G)ds <∞. (4.28)

It is then a standard procedure to make sense of (4.26) by first integrating λ over
[0, N ] and then letting N tend to infinity.

We first assume that 2mν > Q/2, so that the conclusion of Theorem 4.2.7
holds for Km. In particular, Km(·, 1) ∈ S(G) and by homogeneity, the L1-norm of
Km(·, t) is ∫

G

|Km(x, t)|dx =

∫
G

|Km(x, 1)|dx,

is finite and independent of t. Therefore∫ ∞

0

e−s

√
πs

∫
G

|Km(x,
t2

4s
)|dxds =

∫
G

|Km(x, 1)|dx
∫ ∞

0

e−s

√
πs

ds,

is finite. Consequently Formula (4.27) holds and by (4.28),

‖Km−1(t, ·)‖L1(G) ≤
∫
G

|Km(x, 1)|dx
∫ ∞

0

e−s

√
πs

ds <∞.
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By homogeneity,
∫
G
|Km−1(x, t)|dx must also be independent of t > 0, while it is

identically zero if t ≤ 0. This implies that Km−1 is locally integrable on G × R
and that Km−1(·, 1) ∈ L1(G). By Lemmata 4.2.14 and 4.2.15, Km−1 satisfy the
properties of the heat kernel described in Theorem 4.2.7 and Corollary 4.2.10.

Now we can repeat the same reasoning with m replaced successively by m−
1,m − 2, . . . , 2, 1. Since K0 = h, this concludes the proofs of Theorem 4.2.7 and
Corollary 4.2.10. �

We still have to show Corollary 4.2.9.

Proof of Corollary 4.2.9. Since the heat kernels ht, t > 0, form a commutative
approximation of the identity (see Theorem 4.2.7 and Remark 3.1.60 in Section
3.1.10), the operators f �→ f ∗ ht, t > 0, form a strongly continuous semi-group
on Lp(G) for any p ∈ [1,∞) and on Co(G), see Lemma 3.1.58. It is naturally
equibounded by ‖h1‖ since

‖f ∗ ht‖p ≤ ‖f‖p‖ht‖1 and ‖ht‖1 = ‖h1‖.

Let us prove the convergence in (4.16) for p =∞. Let f ∈ D(G). By Lemma
4.2.16, for any compact subset Ω ⊂ G,

sup
Ω

∣∣∣∣1t (f ∗ ht − f)−Rf
∣∣∣∣

≤ C

(∥∥∥∥1t (f ∗ ht − f)−Rf
∥∥∥∥
2

+

∥∥∥∥1tRm (f ∗ ht − f)−Rm+1f

∥∥∥∥
2

)
,

where m is an integer such that mν ≥ �n2 	. Since D(G) ⊂ Dom(R) and

e−tR2f = f ∗ ht,

we have for any integer m′ ∈ N0 that

1

t
Rm′

(f ∗ ht − f)−Rm′+1f =
1

t
Rm′

2

(
e−tR2f − f

)
−Rm′+1

2 f

=
1

t

(
e−tR2Rm′

2 f −Rm′
2 f

)
−Rm′+1

2 f =
1

t

(
(Rm′

f) ∗ ht −Rm′
f
)
−Rm′+1f

−→t→0 0 in L2(G).

Therefore,

sup
Ω

∣∣∣∣1t (f ∗ ht − f)−Rf
∣∣∣∣ −→t→0 0.

We fix a quasi-norm | · |. By Part 2 of Remark 3.2.16 and the existence of a
homogeneous norm (Theorem 3.1.39), without loss of generality, we may assume
| · | to be also a norm, that is, the triangular inequality is satisfied with constant 1;
although we could give a proof without this hypothesis, it simplifies the constants
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below. Let B̄R be a closed ball about 0 of radius R which contains the support of
f . We choose Ω = B̄2R the closed ball about 0 and with radius 2R. If x �∈ Ω, then
since f is supported in B̄R ⊂ Ω,(

1

t
(f ∗ ht − f)−Rf

)
(x) =

1

t
f ∗ ht(x) =

1

t

∫
|y|≤R

f(y)ht(y
−1x)dy,

hence∣∣∣∣1t f ∗ ht(x)

∣∣∣∣ ≤ ‖f‖∞t
∫
|y|≤R

|ht(y
−1x)|dy =

‖f‖∞
t

∫
|xt 1

ν z−1|≤R

|h1(z)|dz,

as ht satisfies (4.17). Note that {z : |xt 1
ν z−1| ≤ R} ⊂ {z : |t 1

ν z| > R/2} since

|t 1
ν z| ≤ R/2 =⇒ |xt 1

ν z−1| ≥ |x| − |t 1
ν z−1| ≥ 3

2
R.

Therefore ∫
|xt 1

ν z−1|≤R

|h1(z)|dz ≤
∫
|z|>t−

1
ν R/2

|h1(z)|dz.

Since h1 is Schwartz, we must have

∃C ∀z ∈ G\{0} |h1(z)| ≤ C|z|−a,

for a = Q + 2ν for instance. This together with the polar change of variable (cf.
Proposition 3.1.42) yield∫

|z|>t−
1
ν R/2

|h1(z)|dz ≤ C

∫ ∞

r=t−
1
ν R/2

r−a−Q−1dr = C ′t2.

Consequently, denoting by Ωc the complement of Ω in G, we have

sup
Ωc

∣∣∣∣1t (f ∗ ht − f)−Rf
∣∣∣∣ ≤ C ′t −→t→0 0.

This shows the convergence in (4.16) for p =∞.

We proceed in a similar way to prove the convergence in (4.16) for p finite.
As above we fix f ∈ D(G) supported in B̄R. We decompose

‖1
t
(f ∗ ht − f)−Rf‖p

≤ ‖1
t
(f ∗ ht − f)−Rf‖Lp(B̄2R) + ‖

1

t
(f ∗ ht − f)−Rf‖Lp(Bc

2R).

For the first term,

‖1
t
(f ∗ ht − f)−Rf‖Lp(B̄2R) ≤ |B̄2R|

1
p ‖1

t
(f ∗ ht − f)−Rf‖∞ −→

t→0
0,
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as we have already proved the convergence in (4.16) for p = ∞. For the second
term, we obtain for the reasons explained in the case p =∞ that

‖1
t
(f ∗ ht − f)−Rf‖Lp(Bc

2R) =
1

t
‖f ∗ ht‖Lp(Bc

2R)

=
1

t

(∫
|x|>2R

∣∣∣∣∣
∫
|y|<R

f(y) ht(y
−1x)dy

∣∣∣∣∣
p

dx

) 1
p

≤ C

t

(∫
|x|>2R

(∫
|y|<R

|f(y)| t−
Q
ν |t− 1

ν (y−1x)|−ady

)p

dx

) 1
p

≤ Ct−1+p(−Q
ν + a

ν )‖f‖L1

(∫
|x|>2R

(|x| −R)−apdx

) 1
p

,

where we have used that the reverse triangle inequality

|y−1x| ≥ |x| − |y| ≥ |x| −R.

Consequently we obtain the convergence in (4.16) for p finite if we choose a large
enough. �

4.3 Fractional powers of positive Rockland operators

In this section we aim at defining fractional powers of positive Rockland operators.
We will carry out the construction on the scale of Lp-spaces for 1 ≤ p ≤ ∞,
with L∞(G) substituted by the space Co(G) of continuous functions vanishing at
infinity. The extension of a positive Rockland operator R to Lp(G) will be denoted
by Rp, and first we discuss the essential properties of such an extension. Then we
define its complex powers. Before studying the corresponding Riesz and Bessel
potentials, we will show that imaginary powers are continuous operators on Lp,
p ∈ (1,∞).

4.3.1 Positive Rockland operators on Lp

We start by defining the analogue Rp of the operator R on Lp(G).

Definition 4.3.1. Let R be a positive Rockland operator on a graded Lie group G.
For p ∈ [1,∞), we denote by Rp the operator such that −Rp is the infinites-

imal generator of the semi-group of operators f �→ f ∗ ht, t > 0, on Lp(G).
We also denote by R∞o

the operator such that −R∞o
is the infinitesimal

generator of the semi-group of operators f �→ f ∗ ht, t > 0, on Co(G).

For the moment it seems that R2 denotes the self-adjoint extension of R on
L2(G) and minus the generator of f �→ f ∗ ht, t > 0, on L2(G). In the sequel, in
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fact in Theorem 4.3.3 below, we show that the two operators coincide and there
is no conflict of notation.

The case p =∞ is somewhat irrelevant and will be often replaced by p =∞o,
especially when using duality. The next lemma aims at clarifying this point.

Lemma 4.3.2. • If p ∈ (1,∞), any bounded linear functional on Lp(G) can be
realised by integration against a function in Lp′

(G), where p′ is the conjugate
exponent of p, that is, 1

p + 1
p′ = 1. Consequently, the dual Lp(G)′ of Lp(G)

may be identified with Lp′
(G) and the corresponding norms coincide.

• If p = 1, any bounded linear functional on L1(G) can be realised by inte-
gration against a bounded function on G. Consequently, the dual L1(G)′ of
L1(G) may be identified with L∞(G) and the corresponding norms coincide.
In particular, L1(G)′ contains Co(G).

• If p = ∞o, any bounded linear functional on Co(G) can be realised by in-
tegration against a regular complex measure. Consequently, the dual Co(G)′

of Co(G) may be identified with the Banach space M(G) of regular complex
measures endowed with the total mass ‖ · ‖M(G) as its norm, and the cor-
responding norms coincide. With this identification, Co(G)′ contains L1(G)
and the corresponding norms coincide.

Proof. See, e.g., Rudin [Rud87, ch.6]. �
We can now describe the properties of Rp.

Theorem 4.3.3. Let R be a positive Rockland operator on a graded Lie group G.
In this statement, p ∈ [1,∞) ∪ {∞o}.
(i) The semi-group {f �→ f ∗ ht}t>0 is strongly continuous and equicontinuous

on Lp(G) if p ∈ [1,∞) or on Co(G) if p =∞o:

∀t > 0, ∀f ∈ Lp(G) or Co(G) ‖f ∗ ht‖p ≤ ‖h1‖1‖f‖p.

Consequently, the operator Rp is closed. The domain of Rp contains D(G),
and for f ∈ D(G) we have Rpf = Rf .

(ii) The operator R̄p is the infinitesimal generator of the strongly continuous
semi-group {f �→ f ∗ h̄t}t>0 on Lp(G).

(iii) We use the identifications of Lemma 4.3.2. If p ∈ (1,∞) then the dual of Rp

is R̄p′ . The dual of R∞o
restricted to L1(G) is R̄1. The dual of R1 restricted

to Co(G) ⊂ L∞(G) is R̄∞o .

(iv) If p ∈ [1,∞), the operator Rp is the maximal restriction of R to Lp(G), that
is, the domain of Rp consists of all the functions f ∈ Lp(G) such that the
distributional derivative Rf is in Lp(G) and Rpf = Rf .

The operator R∞o
is the maximal restriction of R to Co(G), that is,

the domain of R∞o
consists of all the functions f ∈ Co(G) such that the

distributional derivative Rf is in Co(G) and Rpf = Rf .
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(v) If p ∈ [1,∞), the operator Rp is the smallest closed extension of R|D(G) on
Lp(G). For p = 2, R2 is the self-adjoint extension of R on L2(G).

Proof. Part (i) is a consequence of Corollary 4.2.9, see also Section A.2.
Part (i) implies, intertwining with the complex conjugate, that {f �→ f ∗

h̄t}t>0 is also a strongly continuous semi-group on Lp(G). On D(G), its infinites-
imal operator coincide with R̄ = Rt which is a positive Rockland operator (see
Lemma 4.2.5) and it is easy to see that

∀φ ∈ D(G), t > 0 e−tR̄2φ = e−tR2 φ̄ = φ̄ ∗ ht = φ ∗ h̄t.

This shows Part (ii).

For Part (iii), we observe that using (1.14) and (4.13), we have

∀f1, f2 ∈ D(G) 〈f1 ∗ ht, f2〉 = 〈f1, f2 ∗ h̄t〉. (4.29)

Thus we have for any f, g ∈ D(G) and p ∈ [1,∞) ∪ {∞o}

〈1
t
(e−tRpf − f), g〉 = 1

t
〈f ∗ ht − f, g〉 = 1

t
〈f, g ∗ h̄t − g〉 = 1

t
〈f, e−tR̄p′ g − g〉.

Here the brackets refer to the duality in the sense of distributions or, equivalently,
to the duality explained in Lemma 4.3.2. Taking the limit as t→ 0 of the first and
last expressions proves Part (iii).

We now prove Part (iv) for any p ∈ [1,∞) ∪ {∞o}. Let f ∈ Dom(Rp) and
φ ∈ D(G). Since R is formally self-adjoint, we know that Rt = R̄, and by Part
(i), we have Rqφ = Rφ for any q ∈ [1,∞) ∪ {∞o}. Thus by Part (iii) we have

〈Rpf, φ〉 = 〈f, R̄p′φ〉 = 〈f,Rtφ〉 = 〈Rf, φ〉,

and Rpf = Rf in the sense of distributions. Thus

Dom(Rp) ⊂ {f ∈ Lp(G) : Rf ∈ Lp(G)}.

We now prove the reverse inclusion. Let f ∈ Lp(G) such that Rf ∈ Lp(G).
Let also φ ∈ D(G). The following computations are justified by the properties of
R and ht (see Theorem 4.2.7), Fubini’s Theorem, and (4.29):

〈f ∗ ht − f, φ〉 = 〈f, φ ∗ h̄t − φ〉 = 〈f,
∫ t

0

∂s(φ ∗ h̄s)ds〉

= 〈f,
∫ t

0

−R̄(φ ∗ h̄s)ds〉 = −〈f, R̄
∫ t

0

(φ ∗ h̄s)ds〉

= −〈Rf,
∫ t

0

φ ∗ h̄sds〉 = −
∫ t

0

〈Rf, φ ∗ h̄s〉ds

= −
∫ t

0

〈(Rf) ∗ hs, φ〉ds = −〈
∫ t

0

(Rf) ∗ hsds, φ〉.
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Therefore,

f ∗ ht − f = −
∫ t

0

(Rf) ∗ hsds.

Let us recall the following general property: if t �→ xt is a continuous mapping
from [0,∞) to a Banach space X , then 1

t

∫ t

0
xsds converges to x0 in the strong

topology of X as t→ 0. We apply this property to X = Lp(G) and t �→ (Rf) ∗ht;
the hypotheses are indeed satisfied because of the properties of the heat kernel,
see Theorem 4.2.7. Hence we have the following convergence in Lp(G):

1

t
(f ∗ ht − f) = −1

t

∫ t

0

(Rf) ∗ hsds −→
t→0
−Rf.

This shows f ∈ Dom(Rp) and concludes the proof of (iv).
Part (v) follows from (iv). This also shows that the self-adjoint extension

of R coincides with R2 as defined in Definition 4.3.1 and concludes the proof of
Theorem 4.3.3. �

Theorem 4.3.3 has the following couple of corollaries which will enable us to
define the fractional powers of Rp.

Corollary 4.3.4. We keep the same setting and notation as in Theorem 4.3.3.

(i) The operator Rp is injective on Lp(G) for p ∈ [1,∞) and R∞o
is injective

on Co(G), namely,

for p ∈ [1,∞) ∪ {∞o} : ∀f ∈ Dom(Rp) Rpf = 0 =⇒ f = 0.

(ii) If p ∈ (1,∞) then the operator Rp has dense range in Lp(G). The operator
R∞o

has dense range in Co(G). The closure of the range of R1 is the closed
subspace {φ ∈ L1(G) :

∫
G
φ = 0} of L1(G).

Proof. Let f ∈ Dom(Rp) be such that Rpf = 0 for p ∈ [1,∞) ∪ {∞o}. By
Theorem 4.3.3 (iv), f ∈ S ′(G) and Rf = 0. In Remark 4.1.13 (3), we noticed that
any positive Rockland operator satisfies the hypotheses of Liouville’s Theorem for
homogeneous Lie groups, that is, Theorem 3.2.45. Consequently f is a polynomial.
Since f is also in Lp(G) for p ∈ [1,∞) or in Co(G) for p =∞o, f must be identically
zero. This proves (i).

For (ii), let Ψ be a bounded linear functional on Lp(G) if p ∈ [1,∞) or on
Co(G) if p = ∞o such that Ψ vanishes identically on Range(Rp). Then Ψ can be

realised as the integration against a function f ∈ Lp′
(G) if p ∈ [1,∞) or a measure

also denoted by f ∈ M(G) if p = ∞o, see Lemma 4.3.2. Using the distributional
notation, we have

Ψ(φ) = 〈f, φ〉 ∀φ ∈ Lp(G) or ∀φ ∈ Co(G).
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Then for any φ ∈ D(G), we know that φ ∈ Dom(Rp) and Rpφ = Rφ by Theo-
rem 4.3.3 (i) thus

0 = Ψ(Rp(φ)) = 〈f,R(φ)〉 = 〈R̄f, φ〉,

since Rt = R̄. This shows that R̄f = 0. Applying again Liouville’s Theorem, this
time to the positive Rockland operator R̄ (see Lemma 4.2.5), this shows that f is
a polynomial. For p ∈ (1,∞), f being also a function in Lp′

(G), this implies that
f ≡ 0. For p =∞o, f ∈M(G), this shows that f is an integrable polynomial on G
hence f ≡ 0. For p = 1, f being a measurable bounded function and a polynomial,
f must be constant, i.e. f ≡ c for some c ∈ C. This shows that if p ∈ (1,∞)∪{∞o}
then Ψ = 0 and Range(Rp) is dense in Lp(G) or Co(G), whereas if p = 1 then
Ψ : L1(G) � φ �→ c

∫
G
φ. This shows (ii) for p ∈ (1,∞) ∪ {∞o}.

Let us study more precisely the case p = 1. It is easy to see that∫
G

Xφ(x)dx = −
∫
G

φ(x) (X1)(x)dx = 0

holds for any φ ∈ L1(G) such that Xφ ∈ L1(G). Consequently, for any φ ∈
Dom(R1), we know that φ and Rφ are in L1(G) thus

∫
G
R1φ = 0. So the range

of R1 is included in

S :=

{
φ ∈ L1(G) :

∫
G

φ = 0

}
⊃ Range(R1).

Moreover, if Ψ1 a bounded linear functional on S such that Ψ1 is identically 0
on Range(R1), by the Hahn-Banach Theorem (see, e.g. [Rud87, Theorem 5.16]),
it can be extended into a bounded linear function Ψ on L1(G). As Ψ vanishes
identically on Range(R1) ⊂ S, we have already proven that Ψ must be of the form

Ψ : L1(G) � φ �→ c

∫
G

φ

for some constant c ∈ C and its restriction to S is Ψ1 ≡ 0. This concludes the
proof of Part (ii). �

Eventually, let us prove that the operator Rp is Komatsu-non-negative, see
hypothesis (iii) in Section A.3:

Corollary 4.3.5. For p ∈ [1,∞) ∪ {∞o}, and any μ > 0, the operator μI +Rp is
invertible on Lp(G), p ∈ [1,∞), and Co(G) for p =∞o, and the operator norm of
(μI +Rp)

−1 is
‖(μI +Rp)

−1‖ ≤ ‖h1‖μ−1.

Proof. Integrating the formula

(μ+ λ)−1 =

∫ ∞

0

e−t(μ+λ)dt,
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against the spectral measure dE(λ) of R2, we have formally

(μI +R2)
−1 =

∫ ∞

0

e−t(μI+R2)dt, (4.30)

and the convolution kernel of the operator on the right-hand side is (still formally)
given by

κμ(x) :=

∫ ∞

0

e−tμht(x)dt.

From the properties of the heat kernel ht (see Theorem 4.2.7 and Corollary
4.2.10), we see that the function κμ defined just above is continuous on G and
that

‖κμ‖1 ≤
∫ ∞

0

e−tμ‖ht‖1dt = ‖h1‖
∫ ∞

0

e−tμdt =
‖h1‖
μ

<∞.

As κμ ∈ L1(G), it is a routine exercise to show that the operator∫ ∞

0

e−t(μI+R2)dt

is bounded on L2(G) with convolution kernel κμ (it suffices to consider integration
over [0, N ] with N →∞). Moreover, Formula (4.30) holds in L (L2(G)).

For any φ ∈ D(G) and p ∈ [1,∞) ∪ {∞o}, Theorem 4.3.3 (iv) implies

(μI +Rp)φ = (μI +R)φ = (μI +R2)φ ∈ D(G),

thus

((μI +Rp)φ) ∗ κμ = ((μI +R2)φ) ∗ κμ = φ.

This yields that the operator (μI + Rp)
−1 : φ �→ φ ∗ κμ is bounded on Lp(G) if

p ∈ [1,∞) and on Co(G) if p =∞o. Furthermore, its operator norm is

‖(μI +Rp)
−1‖ ≤ ‖κμ‖1 ≤ ‖h1‖μ−1,

completing the proof. �

4.3.2 Fractional powers of operators Rp

We now apply the general theory of fractional powers outlined in Section A.3 to
the operators Rp and I +Rp.

Theorem 4.3.6. Let R be a positive Rockland operator on a graded Lie group G.
We consider the operators Rp defined in Definition 4.3.1. Let p ∈ [1,∞) ∪ {∞o}.

1. Let A denote either R or I +R.



204 Chapter 4. Rockland operators and Sobolev spaces

(a) For every a ∈ C, the operator Aa
p is closed and injective with (Aa

p)
−1 =

A−a
p . We have A0

p = I, and for any N ∈ N, AN
p coincides with the usual

powers of differential operators on S(G) and Dom(AN ) ∩ Range(AN )
is dense in Range(Ap).

(b) For any a, b ∈ C, in the sense of operator graph, we have Aa
pAb

p ⊂ Aa+b
p .

If Range(Ap) is dense then the closure of Aa
pAb

p is Aa+b
p .

(c) Let ao ∈ C+.
• If φ ∈ Range(Aao

p ) then φ ∈ Dom(Aa
p) for all a ∈ C with 0 <

−Re a < Re ao and the function a �→ Aa
pφ is holomorphic in {a ∈

C : −Re ao < Re a < 0}.
• If φ ∈ Dom(Aao

p ) then φ ∈ Dom(Aa
p) for all a ∈ C with 0 < Re a <

Re ao and the function a �→ Aa
pφ is holomorphic in {a ∈ C : 0 <

Re a < Re ao}.
(d) For every a ∈ C, the operator Aa

p is invariant under left translations.

(e) If p ∈ (1,∞) then the dual of Ap is Āp′ . The dual of A∞o restricted to
L1(G) is Ā1. The dual of A1 restricted to Co(G) ⊂ L∞(G) is Ā∞o

.

(f) If a, b ∈ C+ with Re b > Re a, then

∃C = Ca,b > 0 ∀φ ∈ Dom(Ab
p) ‖Aa

pφ‖ ≤ C‖φ‖1−Re a
Re b ‖Ab

pφ‖
Re a
Re b .

(g) For any a ∈ C+, Dom(Aa
p) contains S(G).

(h) If f ∈ Dom(Aa
p)∩Lq(G) for some q ∈ [1,∞)∪{∞o}, then f ∈ Dom(Aa

q )
if and only if Aa

pf ∈ Lq(G), in which case Aa
pf = Aa

qf .

2. For each a ∈ C+, the operators (I +Rp)
a and Ra

p are unbounded and their
domains satisfy for all ε > 0,

Dom [(I +Rp)
a] = Dom(Ra

p) = Dom [(Rp + εI)a] .

3. If 0 < Re a < 1 and φ ∈ Range(Rp) then

R−a
p φ =

1

Γ(a)

∫ ∞

0

ta−1e−tRpφ dt,

in the sense that limN→∞
∫ N

0
converges in the norm of Lp(G) or Co(G).

4. If a ∈ C+, then the operator (I +Rp)
−a is bounded and for any φ ∈ X with

X = Lp(G) or Co(G), we have

(I +Rp)
−aφ =

1

Γ(a)

∫ ∞

0

ta−1e−t(I+Rp)φ dt,

in the sense of absolute convergence:∫ ∞

0

ta−1‖e−t(I+Rp)φ‖Xdt <∞.
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5. For any a, b ∈ C, the two (possibly unbounded) operators Ra
p and (I +Rp)

b

commute.

6. For any a ∈ C, the operator Ra
p is homogeneous of degree νa.

Recall (see Definition A.3.2) that the two (possibly unbounded) operators A
and B commute when

x ∈ Dom(AB) ∩Dom(BA) =⇒ ABx = BAx,

and that the domain of the product AB of two (possibly unbounded) operators A
and B on the same Banach space X is formed by the elements x ∈ X such that
x ∈ Dom(B) and Bx ∈ Dom(A).

Proof. The operator Rp is closed and densely defined by Theorem 4.3.3 (i), it is
injective by Corollary 4.3.4 and Komatsu-non-negative in the sense of Section A.3
(iii) by Corollary 4.3.5. Therefore, Rp satisfies the hypotheses of Theorem A.3.4.
Moreover, I +Rp also satisfies these hypotheses by Remark A.3.3, and −(I +Rp)
generates an exponentially stable semi-group:

‖e−t(I+Rp)‖ ≤ e−t‖e−tRp‖ ≤ ‖h1‖1e−t.

Most of the statements then follow from the general properties of fractional
powers constructed via the Balakrishnan formulae recalled in Section A.3. More
precisely, from the Balakrishnan formula, for any N ∈ N, AN

p coincides with the
usual powers of differential operators on S(G) and Part (1a) follows from Theorem
A.3.4 (1) and (2) and Remark A.3.1.

The duality properties explained in Part (1e) for p ∈ (1,∞) hold for the
Balakrishnan operators hence they hold for their maximal closure. The cases of
p = 1,∞o are similar and this proves Part (1e). The properties in Parts (1d), (5)
and (6) hold for the Balakrishnan operators hence they hold for their maximal
closure and these parts are proved.

Part (1b) follows from Theorem A.3.4 (4).

Part (1c) follows from Theorem A.3.4 (5).

Part (1f) follows from Theorem A.3.4 (6).

Part (1g) follows from Parts (1a) and (1c).

Part (1h) is certainly true for any f ∈ S(G) and Re a > 0 via the Balakrish-
nan formulae. By analyticity (see Part (1c)) it is true for any a ∈ C. The density
of D(G) in Lp(G) (or Co(G) if p = ∞o) together with the maximality of Aa

p and
the uniqueness of distributional convergence imply the result.

Part (2) follow from Theorem A.3.4 (8).

Parts (3) and (4) follows from Theorem A.3.4 (10).

This concludes the proof of Theorem 4.3.6. �
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4.3.3 Imaginary powers of Rp and I +Rp

In this section, we show that imaginary powers of a positive Rockland operator
R as well as I + R are bounded operators on Lp(G), p ∈ (1,∞). We prove this
as a consequence of the theorem of singular integrals on homogeneous groups, see
Section 3.2.3.

We start by showing that if R is a positive Rockland operator, then the
imaginary powers of I +Rp are bounded on Lp(G):

Proposition 4.3.7. Let R be a positive Rockland operator on a graded Lie group G.
For any τ ∈ R and p ∈ (1,∞), the operator (I +Rp)

iτ is bounded on Lp(G). For
any p ∈ (1,∞), there exists C = Cp,R > 0 and θ > 0 such that

∀τ ∈ R ‖(I +Rp)
iτ‖L (Lp(G)) ≤ Ceθ|τ |.

For any p ∈ (1,∞) and a ∈ C, Dom((I +Rp)
a) = Dom((I +Rp)

Re a).

The following technical result will be useful in the proof of Proposition 4.3.7
and in other proofs (see Sections 4.3.4 and 4.4.4).

Lemma 4.3.8. Let R be a positive Rockland operator on a graded Lie group G. Let
ht be its heat kernel as in Section 4.2.2.

1. For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn
0 , and any real

number a with 0 < a < Q+[α]
ν , there exists a constant C > 0 such that∫ ∞

0

ta−1|Xαht(x)|dt ≤ C|x|−Q−[α]+νa.

For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn
0 , there

exists a constant C > 0 such that∫ ∞

0

|Xαht(x)|e−tdt ≤ C|x|−Q−[α].

2. For any homogeneous quasi-norm |·|, any multi-index α ∈ Nn
0 , and any t > 0,

we have ∫
|x|≥1/2

|Xαht(x)|dx ≤ t−
[α]
ν ‖Xαh1‖L1 .

3. For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn
0 , any N ∈ N

and any t ∈ (0, 1), there exists a constant C > 0 such that∫
|x|≥1/2

|Xαht(x)|dx ≤ CtN .
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Proof of Lemma 4.3.8 . Let us prove Part 1. We write∫ ∞

0

ta−1|Xαht(x)|dt =
∫ |x|ν

0

+

∫ ∞

|x|ν
.

For the second integral, we use the property of homogeneity of ht (see (4.12) or
(4.17)) ∫ ∞

|x|ν
=

∫ ∞

|x|ν
ta−1−Q+[α]

ν |Xαh1(t
− 1

ν x)|dt

≤ (
Q+ [α]

ν
− a)−1‖Xαh1‖∞|x|ν(a−

Q+[α]
ν ).

As h1 ∈ S(G), ‖Xαh1‖∞ is finite. For the first integral, we use again (4.12) to
obtain ∫ |x|ν

0

=

∫ |x|ν

0

ta−1|x|−(Q+[α])

∣∣∣∣Xαh|x|−νt

(
x

|x|

)∣∣∣∣ dt
≤ C1a

−1|x|ν(a−
Q+[α]

ν ).

where C1 := sup|y|=1,0≤t1≤1 |Xαht1(y)| is finite by (4.15). Combining the two
estimates above shows the estimates for the first integral in Part 1. We proceed in
the same way for the second one:∫ ∞

0

|Xαht(x)|e−tdt =

∫ |x|ν

0

+

∫ ∞

|x|ν
.

We have (with C1 as above)∫ |x|ν

0

≤ C1|x|ν(a−
Q+[α]

ν )

∫ |x|ν

0

e−tdt = C1|x|ν(a−
Q+[α]

ν )(1− e−|x|ν )

≤ C1|x|ν(a−
Q+[α]

ν ),

whereas∫ ∞

|x|ν
≤ ‖Xαh1‖∞(|x|ν)−

Q+[α]
ν

∫ ∞

|x|ν
e−tdt = ‖Xαh1‖∞|x|−(Q+[α])e−|x|ν

≤ ‖Xαh1‖∞|x|−(Q+[α]).

We conclude in the same way as above and Part 1 is proved.

Let us prove Part 2. The property of homogeneity of ht (see (4.17)) together
with h1 ∈ S(G) imply∫

|x|≥1/2

|Xαht(x)|dx =

∫
|x|≥1/2

|Xαh1(t
− 1

ν x)|t−
[α]+Q

ν dx

= t−
[α]
ν

∫
t
1
ν |x′|≥1/2

|Xαh1(x
′)|dx′ ≤ t−

[α]
ν

∫
G

|Xαh1|,
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having used the change of variable x′ = t−
1
ν x. This shows Part 2.

Let us prove Part 3. The properties of the heat kernel, especially (4.12) and
(4.15), imply

|Xαht(x)| = |x|−[α]−Q|Xαh|x|−νt(|x|−1x)| ≤ C|x|−[α]−Q(|x|−νt)N ,

if |x| ≥ 1/2 and t ∈ (0, 1) where C = sup|x′|=1,0<t′<1 t
′−N |Xαht′(x

′)| is finite.
Hence ∫

|x|≥1/2

|Xαht(x)|dx ≤ CtN
∫
|x|≥1/2

|x|−[α]−Q−νNdx.

This shows Part 3 and concludes the proof of Lemma 4.3.8. �

Proof of Proposition 4.3.7. By Theorem 4.3.6 (1), to show that (I + Rp)
iτ is

bounded on Lp(G) for some p ∈ (1,∞) and τ ∈ R, it suffices to show that (I+R2)
iτ

can be extended to an Lp-bounded operator. To do this, we will show that Corol-
lary 3.2.21 can be applied to (I +R2)

iτ .
By functional calculus, (I + R2)

iτ is bounded on L2(G). Part 1 of Lemma
4.3.8 together with the formula

∀λ > 0 λiτ =
λ

Γ(1− iτ)

∫ ∞

0

t−iτe−λtdt,

and the functional calculus of R2 imply that the right convolution kernel of (I +
R2)

iτ is the tempered distribution κ which coincides with the smooth function
away from 0 given via

κ(x) =
1

Γ(1− iτ)

∫ ∞

0

t−iτ (I +R)ht(x)e
−tdt, x �= 0. (4.31)

Using this formula, we have∫
|x|≥1/2

|κ(x)|dx ≤ |Γ(1− iτ)|−1

∫ ∞

t=0

∫
|x|≥1/2

(|ht(x)|+ |Rht(x)|)e−tdxdt.

By Part 2 of Lemma 4.3.8, (and h1 being Schwartz), the integrals∫ ∞

t=0

∫
|x|≥1/2

|ht(x)|e−tdxdt and

∫ ∞

t=1

∫
|x|≥1/2

|Rht(x)|e−tdxdt,

are finite. By Part 3 of Lemma 4.3.8, the integral∫ 1

t=0

∫
|x|≥1/2

|Rht(x)|e−tdxdt ≤ C

∫ 1

t=0

t0dt = C,

is finite. This shows that
∫
|x|≥1/2

|κ(x)|dx is finite.
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Using (4.31), we also obtain easily that

sup
0<|x|<1

|x|Q+[α]|Xακ(x)| ≤ |Γ(1− iτ)|−1 sup
0<|x|<1

|x|Q+[α]

∫ ∞

0

|Xαht(x)|+ |XαRht(x)|dt,

and the right-hand side is finite by Lemma 4.3.8. Note that if we denote by κ =
κτ,R the kernel of (I +R2)

iτ , then we have

κτ,R(x−1) = κ−τ,R̄(x),

using the formula in (4.31) and

((I +R)ht) (x
−1) = ((I− ∂t)ht) (x

−1) =
(
(I− ∂t)h̄t

)
(x)

= ((I− ∂t)ht) (x) = ((I +R)ht) (x),

where we have used (4.13). Hence we also have that each quantity

sup
0<|x|<1

|x|Q+[α]|X̃ακ(x)| = sup
0<|x|<1

|x|Q+[α]|Xακ−τ,R̄(x)|

is finite.
The estimates above show that κ satisfies the hypotheses of Corollary 3.2.21

and therefore the operator (I+R2)
iτ is bounded on Lp(G), p ∈ (1,∞). The prop-

erties of the semi-group (see Theorem A.3.4 (3)) imply the rest of the statement
in Proposition 4.3.7. �

Let us now prove the homogeneous case, that is, that the imaginary powers
of a positive Rockland operator are bounded on Lp(G):

Proposition 4.3.9. Let R be a positive Rockland operator on a graded Lie group
G. For any τ ∈ R and p ∈ (1,∞), the operator Riτ

p is bounded on Lp(G). For any
p ∈ (1,∞), there exists C = Cp,R > 0 and θ > 0 such that

∀τ ∈ R ‖Riτ
p ‖L (Lp(G)) ≤ Ceθ|τ |.

For any p ∈ (1,∞) and a ∈ C, Dom(Ra
p) = Dom(RRe a

p ).

Proof of Proposition 4.3.9. Let p ∈ (1,∞) and τ ∈ R. Let us denote by Rp,iτ the
(possibly unbounded) operator given as the strong limit in Lp(G) of (ε +Rp)

iτφ
as ε → 0, for φ ∈ Dom((ε +Rp)

iτ ) for any ε ∈ (0, ε0) for some small ε0 > 0 and
such that this strong limit exists. The domain of Rp,iτ is naturally the space of
all those functions φ. Note that the homogeneity of R implies

(ε+Rp)
iτφ = εiτ (I + ε−1Rp)

iτφ = εiτ (I +Rp)
iτ{φ(ε−1/ν ·)}(ε1/ν ·),

for any ε > 0 and any φ ∈ Lp(G) such that

φ(ε−1/ν ·) ∈ Dom((I +Rp)
iτ ).
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By Proposition 4.3.7, Dom((I + Rp)
iτ ) = Lp(G) and the operator (I + Rp)

iτ is
bounded. Therefore for all φ ∈ Lp(G) and ε > 0, φ is in Dom((ε+Rp)

iτ ) and we
have

‖(ε+Rp)
iτφ‖Lp(G) = ‖(I +Rp)

iτ{φ(ε−1/ν ·)}(ε1/ν ·)‖Lp(G)

= ε−
Q
pν ‖(I +Rp)

iτ{φ(ε−1/ν ·)}‖Lp(G)

≤ ε−
Q
pν ‖(I +Rp)

iτ‖L (Lp(G))‖φ(ε−1/ν ·)‖Lp(G)

= ‖(I +Rp)
iτ‖L (Lp(G))‖φ‖Lp(G).

Consequently, Rp,iτ extends to a bounded operator on Lp(G). By Theorem
A.3.4 (9), this implies that Riτ

p is also a bounded operator on Lp(G) as Rp has
dense range and domain by Corollary 4.3.4. As in the inhomogeneous case, the
properties of the semi-group (see Theorem A.3.4 (3)) imply the rest of the state-
ment in Proposition 4.3.9. �

Given the proof of Proposition 4.3.7, one would be tempted to study the
convolution kernel of the operator Riτ

2 in order to show the Lp-boundedness in
the proof of Proposition 4.3.9. Indeed, following the same arguments as in the
proof of Proposition 4.3.7, one shows that the kernel of Riτ

2 coincides away from
the origin with the smooth function

G\{0} � x �→ 1

Γ(1− iτ)

∫ ∞

0

t−iτRht(x)dt.

However, this function can not be in general a kernel of type iτ : already for the
usual Laplacian on (Rn,+) it is not the case. Indeed, in the Euclidean case, this
function is radial and non-zero and its average on the sphere can therefore not
vanish.

In the stratified case, Folland proved the Lp-boundedness of imaginary powers
of the sub-Laplacian −L and I+ (−L) using general properties of semigroups pre-
serving positivity together with the Laplace transform see [Fol75, Proposition 3.14
and Lemma 3.13]. More precisely, the boundedness follows from the Littlewood-
Paley theory and the study of square functions associated with the semi-group.
Note that in the case of a sub-Laplacian, the proof in [Fol75] yields a bound of
the operator norm by |Γ(1− iτ)|−1 up to a constant of p.

In our case, we applied a consequence of the theorem of Singular Integrals via
Corollary 3.2.20 to obtain the Lp-boundedness of the imaginary powers of I +R
and we have shown

‖Riτ
p ‖L (Lp(G)) ≤ ‖(I +Rp)

iτ‖L (Lp(G)), p ∈ (1,∞),

in the proof of Proposition 4.3.9. We can follow the constants in the proof of the
theorem of Singular Integrals (see Remark A.4.5 (2)) as well as in our application
to show that ‖(I +Rp)

iτ‖L (Lp(G)) is bounded up to a constant of p, by

(1 + |Γ(1− iτ)|−1)2|
1
p− 1

2 |.
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However, we do not need these precise bounds as the bounds obtained from
the general theory of semigroups as stated in Propositions 4.3.7 and 4.3.9 will
be sufficient for our purpose in the proofs of interpolation properties for Sobolev
spaces in Theorem 4.4.9 and Proposition 4.4.15.

4.3.4 Riesz and Bessel potentials

We mimic the usual terminology in the Euclidean setting, to define the Riesz and
Bessel potentials associated with a positive Rockland operator.

Definition 4.3.10. Let R be a positive Rockland operator of homogeneous degree
ν. We call the operators R−a/ν for {a ∈ C, 0 < Re a < Q} and (I +R)−a/ν for
a ∈ C+, the Riesz potential and the Bessel potential, respectively.

In the sequel we will denote their kernels by Ia and Ba, respectively, as
defined in the following:

Corollary 4.3.11. We keep the setting and notation of Theorem 4.3.3.

(i) Let a ∈ C with 0 < Re a < Q. The integral

Ia(x) :=
1

Γ(aν )

∫ ∞

0

t
a
ν −1ht(x)dt

converges absolutely for every x �= 0. This defines a distribution Ia which is
smooth away from the origin and (a−Q)-homogeneous.

For any p ∈ (1,∞), if φ ∈ S(G) or, more generally, if φ ∈ Lq(G)∩Lp(G)
where q ∈ [1,∞) is given by 1

q −
1
p = Re a

Q , then

φ ∈ Dom(R− a
ν

p ) and R− a
ν

p φ = φ ∗ Ia ∈ Lp(G).

Consequently,

∀φ ∈ S(G) R
a
ν
p φ ∈ Lp(G) and φ = (R

a
ν
p φ) ∗ Ia.

(ii) Let a ∈ C+. The integral

Ba(x) :=
1

Γ(aν )

∫ ∞

0

t
a
ν −1e−tht(x)dt

converges absolutely for every x �= 0 and defines an integrable function Ba on
G. The function Ba is always smooth away from 0.

If Re a > Q, Ba is also smooth at 0.

If Re a > Q/2, then Ba is square integrable: Ba ∈ L2(G).
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All the operators (I +Rp)
−a/ν , p ∈ [1,∞) ∪ {∞o}, are bounded convo-

lution operators with the same (right convolution) kernel Ba.
If a, b ∈ C+, then as integrable functions, we have

Ba ∗ Bb = Ba+b.

Remark 4.3.12. In other words for Part (i), Ia is a kernel of type a and

R−a/ν
p δ0 = Ia.

This shows that if ν < Q, I1 is a fundamental solution of R, in fact, the unique
homogeneous fundamental solution (cf. Theorem 3.2.40).

Note that we will show in Lemma 4.5.9 that more generally XαBa ∈ L2(G)
whenever Re a > [α] +Q/2, as well as other L1-estimates.

Proof of Corollary 4.3.11. The absolute convergence and the smoothness of Ia
and Ba follow from Lemma 4.3.8.

For the homogeneity of Ia, we use (4.12) and the change of variable s = r−νt,
to get

Ia(rx) =
1

Γ(a/ν)

∫ ∞

0

t
a
ν −1ht(rx)dt

=
1

Γ(a/ν)

∫ ∞

0

(rνs)
a
ν −1r−Qhs(x)r

νds = ra−QIa(x).

Hence Ia is a kernel of type a with 0 < Re a < Q (see Definition 3.2.9).
By Lemma 3.2.7, the operator S(G) � φ �→ φ ∗ Ia is homogeneous of degree

−a, and by Proposition 3.2.8, it admits a bounded extension Lq(G) → Lp(G)

when 1
p −

1
q = Re (a)

Q .

Let φ ∈ RQ(S(G)). By Theorem 4.3.6, the function a �→ R− a
ν

p φ is analytic
on the strip {z ∈ C, 0 < Re z < Q} and coincides there with

a �→ 1

Γ(aν )

∫ ∞

0

t
a
ν −1φ ∗ htdt.

But since the integral defining Ia(x) is absolutely convergent for all x ∈ G\{0},
we have

∀a ∈ C, Re a ∈ (0, Q),
1

Γ(aν )

∫ ∞

0

t
a
ν −1φ ∗ htdt = φ ∗ Ia,

and a �→ φ ∗ Ia is analytic on the strip {0 < Re a < Q}.
Hence we have obtained that

R− a
ν

p φ = φ ∗ Ia
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holds for Re a ∈ (0, Q) and for any φ ∈ RQ(S(G)). Note that RQ(S(G)) is dense
in any Lr(G), r ∈ (1,∞) as it suffices to apply Corollary 4.3.4 (ii) to the positive
Rockland operator RQ. Then Corollary 3.2.32 concludes the proof of Part (i).

By Theorem 4.2.7, ∫
G

|ht| =
∫
G

|h1| <∞

for all t > 0, so∫
G

|Ba(x)|dx ≤
1

|Γ(aν )|

∫ ∞

0

t
Re a
ν −1e−t

∫
G

|ht(x)|dx dt =
Γ(Re a

ν )

|Γ(aν )|
‖h1‖L1 , (4.32)

and Ba is integrable.
By Theorem 4.3.6 Part (4), the integrable function Ba is the convolution

kernel of (I +Rp)
−a/ν .

Let us show the square integrability of Ba. We compute for any R > 0:

|Γ(a/ν)|2
∫
|x|<R

|Ba(x)|2dx =

∫
|x|<R

Γ(a/ν)Ba(x)Γ(a/ν)Ba(x)dx

=

∫
|x|<R

∫ ∞

0

t
a
ν −1e−tht(x)dt

∫ ∞

0

s
ā
ν −1e−sh̄s(x)ds dx

=

∫ ∞

0

∫ ∞

0

s
a
ν −1t

ā
ν −1e−(t+s)

∫
|x|<R

ht(x)h̄s(x)dx dtds.

From the properties of the heat kernel (see (4.13) and (4.11)) we see that∫
|x|<R

ht(x)h̄s(x)dx =

∫
|x|<R

ht(x)hs(x
−1)dx −→

R→∞
ht ∗ hs(0),

and ht ∗ hs(0) = ht+s(0) = (t+ s)−
Q
ν h1(0).

Therefore,∫
G

|Ba(x)|2dx =
h1(0)

|Γ(a/ν)|2
∫ ∞

0

∫ ∞

0

s
a
ν −1t

ā
ν −1e−(t+s)(t+ s)−

Q
ν dtds

=
h1(0)

|Γ(a/ν)|2
∫ 1

s′=0

s′
a
ν −1

(1− s′)
ā
ν −1ds′

∫ ∞

u=0

e−uu2(Re a
ν −1)−Q

ν +1du, (4.33)

after the change of variables u = s + t and s′ = s/u. The integrals over s′ and u
converge when Re a > Q/2. Thus Ba is square integrable under this condition.

The rest of the proof of Corollary 4.3.11 follows easily from the properties of
the fractional powers of I +R. �

The proof of Corollary 4.3.11 implies:

Corollary 4.3.13. We keep the notation of Corollary 4.3.11 and h1 denotes the
heat kernel at time t = 1 of R.
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1. For any a ∈ C+, the operator norm of (I +Rp)
− a

ν on Lp(G) if p ∈ [1,∞) or
on Co(G) if p =∞o is bounded by ‖Ba‖1 and we have

‖Ba‖L1(G) ≤
Γ(Re a

ν )

|Γ
(
a
ν

)
|
‖h1‖L1(G).

2. If Re a > Q/2,

‖Ba‖L2(G) =

(
h1(0)

Γ( 2Re a−Q
ν )

Γ( 2Re a
ν )

)1/2

.

3. If p ∈ (1, 2) and a > Q(1− 1
p ) then Ba ∈ Lp(G).

Proof. The first statement follows from (4.32).
For the second part, Estimate (4.33) yields

‖Ba‖22 = h1(0)Ca,

where

Ca = |Γ(a/ν)|−2

∫ 1

s′=0

s′
a
ν −1

(1− s′)
ā
ν −1ds′

∫ ∞

u=0

e−uu2Re a
ν −Q

ν −1du

= |Γ
(a
ν

)
|−2Γ(

a
ν )Γ(

ā
ν )

Γ(aν + ā
ν )

Γ
(2Re a−Q

ν

)
,

thanks to the properties of the Gamma function (see equality (A.4)). We notice
that

Γ
(a
ν

)
Γ
( ā
ν

)
= Γ

(a
ν

)
Γ
(a
ν

)
= |Γ

(a
ν

)
|2.

Thus the constant Ca simplifies into

Ca =
Γ( 2Re a−Q

ν )

Γ(aν + ā
ν )

.

This shows the second part.
The third part is obtained by complex interpolation between Parts 1 and 2.

More precisely, we fix a > 0 and b > Q/2 and we consider the linear functional
defined on simple functions in L1(G) via

Tzφ =

∫
G

Baz+b(1−z)(x)φ(x)

for any z ∈ C, Re z ∈ [0, 1]. We have

|Tzφ| ≤ ‖Baz+b(1−z)‖1‖φ‖∞.
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Before applying Part 1 to ‖Baz+b(1−z)‖1, let us mention that the Stirling
formula (A.3) implies that for any w ∈ C+,

Γ(Rew)

|Γ(w)| �
√
|w|
Rew

(Rew
e )Rew

|(we )w|

�
(
Rew

|w|

)Rew− 1
2

|ww−Rew|

�
(
Rew

|w|

)Rew− 1
2

exp
(
|Imw| ln |w|

)
.

This together with Part 1 then yield

ln |Tzφ| ≤ ln(‖Baz+b(1−z)‖1‖φ‖∞) � (1 + |Im z|) ln(1 + |Im z|),

thus {Tz} is an admissible family of operator (in the sense of Section A.6). The
same arguments also show that

|T1+iyφ| � (1 + |y|)− a
ν + 1

2 exp (c|y| ln(1 + |y|)) ‖φ‖∞,

where c is a constant of a, b, ν.
The Cauchy-Schwartz estimate and Part 2 yield

|Tiyφ| ≤ ‖Baiy+b(1−iy)‖2‖φ‖2,

and Part 2 implies that the quantity

‖Baiy+b(1−iy)‖2 =

(
h1(0)

Γ( 2b−Q
ν )

Γ( 2bν )

)1/2

,

is independent of y. Hence we can apply Theorem A.6.1 to {Tz}: Tt extends to an
Lqt -bounded operator where t ∈ (0, 1) and 1

qt
= 1−t

2 . Therefore Bat+b(1−t) ∈ Lq′t

where q′t is the dual exponent to qt, i.e.
1
qt

+ 1
q′t

= 1. This shows Part 3 and

concludes the proof of Corollary 4.3.13. �

We finish this section with some technical properties which will be useful in
the sequel. The first one is easy to check.

Lemma 4.3.14. If R is a positive Rockland operator with Ba being the kernel of the
Bessel potential as given in Corollary 4.3.11, then R̄ is also a positive Rockland
operator and B̄a is the kernel of the Bessel potential associated to R̄.

Lemma 4.3.15. We keep the notation of Corollary 4.3.11. If a ∈ C+, then the
function

x �→ |x|NBa(x)
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is integrable on G, where | · | denotes any homogeneous quasi-norm on G and N
is any positive integer. Consequently, for any φ ∈ S(G), the function φ ∗ Ba is
Schwartz and

φ �→ φ ∗ Ba
acts continuously from S(G) to itself.

Note that we will show in Lemma 4.5.9 that, more generally,

|x|bXαBa ∈ L1(G) for Re a+ b > [α],

and that
XαBa ∈ L2(G) for Re a > [α] +Q/2.

Proof of Lemma 4.3.15. Let | · | be a homogeneous quasi-norm on G and N ∈ N.
We see that∫

G

|x|N |Ba(x)|dx ≤
1

|Γ(aν )|

∫ ∞

0

t
Re a
ν −1e−t

∫
G

|x|N |ht(x)|dx dt,

and using the homogeneity of the heat kernel (see (4.17)) and the change of vari-

ables y = t−
1
ν x, we get∫

G

|x|N |ht(x)|dx =

∫
G

|t 1
ν y|N |h1(y)|dy = cN t

N
ν ,

where cN = ‖|y|Nh1(y)‖L1(dy) is a finite constant since h1 ∈ S(G). Thus,∫
G

|x|N |Ba(x)|dx ≤
cN
|Γ(aν )|

∫ ∞

0

t
Re a
ν −1+N

ν e−tdt <∞,

and x �→ |x|NBa(x) is integrable.

Let Co ≥ 1 denote the constant in the triangle inequality for | · | (see Proposi-
tion 3.1.38 and also Inequality (3.43)). Let also φ ∈ S(G). We have for any N ∈ N
and α ∈ Nn

0 :

(1 + |x|)N
∣∣∣X̃α [φ ∗ Ba] (x)

∣∣∣ = (1 + |x|)N
∣∣∣X̃αφ ∗ Ba(x)

∣∣∣
≤ (1 + |x|)N

∣∣∣X̃αφ
∣∣∣ ∗ |Ba| (x)

≤ CN
o

∣∣∣(1 + | · |)N X̃αφ
∣∣∣ ∗ ∣∣(1 + | · |)NBa(x)∣∣ (x)

≤ CN
o

∥∥∥(1 + | · |)N X̃αφ
∥∥∥
∞

∥∥(1 + | · |)NBa∥∥L1(G)
.

This shows that that φ ∗ Ba ∈ S(G) and that φ �→ φ ∗ Ba is continuous as a map
of S(G) to itself (for a description of the Schwartz class, see Section 3.1.9). �
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Corollary 4.3.16. We keep the notation of Corollary 4.3.11.
For any a ∈ C and p ∈ [1,∞)∪{∞o}, Dom(I+Rp)

a ⊃ S(G) and, moreover,

(I +Rp)
a(S(G)) = S(G). (4.34)

Furthermore on S(G), (I +Rp)
a does not depend on p ∈ [1,∞) ∪ {∞o} and acts

continuously on S(G).
If a ∈ C+, we have

(I +Rp)
a (φ ∗ Baν) = ((I +Rp)

aφ) ∗ Baν = φ (p ∈ [1,∞) ∪ {∞o}). (4.35)

Proof. Formula (4.35) holds for each p ∈ [1,∞) ∪ {∞o} by Theorem 4.3.6 and
Corollary 4.3.11.

Let us show (4.34) in the case of a = N ∈ N. By Theorem 4.3.6 (1a), we have
the equality (I + Rp)

Nφ = (I + R)Nφ for any φ ∈ S(G) and p ∈ (1,∞). Hence
(I + Rp)

N (S(G)) = (I + R)N (S(G)). The inclusion (I + R)N (S(G)) ⊂ S(G) is
immediate. The converse follows easily from Lemma 4.3.15 together with (4.35).
This proves (4.34) for a = N ∈ N. This implies that for any N ∈ N, S(G) is
included in

Dom
[
(I +Rp)

N
]
∩ Range

[
(I +Rp)

N
]

and we can apply the analyticity results (Part (1c)) of Theorem 4.3.6: fixing φ ∈
S(G), the function a �→ (I +Rp)

aφ is holomorphic in {a ∈ C : −N < Re a < N}.
We observe that by Corollary 4.3.11 (ii), if −N < Re a < 0, all the functions
(I +Rp)

aφ coincide with φ ∗ Baν for any p ∈ [1,∞) ∪ {∞o}. This shows that for
each a ∈ C fixed, (I + Rp)

aφ is independent of p. Furthermore, it is Schwartz.
Indeed if Re a < 0 this follow from Lemma 4.3.15. If Re a ≥ 0, we write a = ao+a′

with ao ∈ N and Re a′ < 0 and we have in the sense of operators

(I +R)a′
(I +R)ao ⊂ (I +R)a.

The operator (I +R)ao is a differential operator, hence maps S(G) to itself, and
the operator (I + R)a′

maps S(G) to itself by Lemma 4.3.15. Thus in any case
(I +Rp)

aφ ∈ S(G) and is independent of p.

We have obtained that (I+Rp)
a(S(G)) ⊂ S(G) for any p ∈ (1,∞), a ∈ C. As

{(I+Rp)
a}−1 = (I+Rp)

−a by Theorem 4.3.6 (1a), this proves the equality in (4.34)
for any a ∈ C. Lemma 4.3.15 says that this action is continuous if Re a < 0. This
is also the case for Re a ≥ 0 since we can proceed as above and write a = ao + a′

with ao ∈ N and Re a′ < 0, the action of (I+R)ao being continuous on S(G). This
concludes the proof of Corollary 4.3.16. �

Corollary 4.3.16 implies that the following definition makes sense.

Definition 4.3.17. Let R be a positive Rockland operator of homogeneous degree ν
and let s ∈ R. For any tempered distribution f ∈ S ′(G), we denote by (I+R)s/νf
the tempered distribution defined by

〈(I +R)s/νf, φ〉 = 〈f, (I + R̄)s/νφ〉, φ ∈ S(G).
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4.4 Sobolev spaces on graded Lie groups

In this section we define the (homogeneous and inhomogeneous) Sobolev spaces
associated to a positive Rockland operator R and show that they satisfy similar
properties to the Euclidean Sobolev spaces and to the Sobolev spaces defined
and studied by Folland [Fol75] on stratified Lie groups. In Section 4.4.5, we show
that the constructed spaces are actually independent of the choice of a positive
Rockland operator R on a graded Lie group with which we start our construction.
In Section 4.4.7, we list the main properties of our Sobolev spaces.

4.4.1 (Inhomogeneous) Sobolev spaces

We first need the following lemma:

Lemma 4.4.1. We keep the notation of Theorem 4.3.6. For any s ∈ R and p ∈
[1,∞)∪ {∞o}, the domain of the operator (I +Rp)

s
ν contains S(G), and the map

f �−→ ‖(I +Rp)
s
ν f‖Lp(G)

defines a norm on S(G). We denote it by

‖f‖Lp
s(G) := ‖(I +Rp)

s
ν f‖Lp(G).

Moreover, any sequence in S(G) which is Cauchy for ‖ · ‖Lp
s(G) is convergent in

S ′(G).

We have allowed ourselves to write ‖ ·‖L∞(G) = ‖ ·‖L∞o (G) for the supremum
norm. We may also write ‖ · ‖∞ or ‖ · ‖∞o

.

Proof. By Corollary 4.3.16, the domain of (I + Rp)
s
ν contains S(G). Since the

operator (I +Rp)
s
ν is linear, it is easy to check that the map f �→ ‖(I +Rp)

s
ν f‖p

is non-negative and satisfies the triangle inequality. Since (I +Rp)
s/ν is injective

by Theorem 4.3.6, Part (1), we have that ‖f‖Lp
s(G) = 0 implies f = 0.

Clearly ‖ · ‖Lp
0(G) = ‖ · ‖p, so in the case of s = 0 a Cauchy sequence of

Schwartz functions converges in Lp-norm, thus also in S ′(G).
Let us assume s > 0. By Corollary 4.3.11 (ii), the operator (I + Rp)

− s
ν is

bounded on Lp(G). Hence we have

‖ · ‖Lp(G) ≤ C‖ · ‖Lp
s(G)

on S(G). Consequently a ‖·‖Lp
s(G)-Cauchy sequence of Schwartz functions converge

in Lp-norm thus in S ′(G).
Now let us assume s < 0. Let {f�}�∈N be a sequence of Schwartz functions

which is Cauchy for the norm ‖ · ‖Lp
s(G). By (4.35) we have

f� =
(
(I +Rp)

s
ν f�

)
∗ Bs.



4.4. Sobolev spaces on graded Lie groups 219

Furthermore, if φ ∈ S(G) then using (1.14) and (4.13), we have∫
G

f�(x)φ(x)dx =

∫
G

(
(I +Rp)

s
ν f�

)
(x) (φ ∗ Bs) (x) dx. (4.36)

By assumption the sequence {(I+Rp)
s
ν f�}�∈N is ‖·‖Lp(G)-Cauchy thus convergent

in Lp(G). By Lemma 4.3.15, φ ∗ Bs ∈ S(G). Therefore, the right-hand side of
(4.36) is convergent as �→∞. Hence the scalar sequence 〈f�, φ〉 converges for any
φ ∈ S(G). This shows that the sequence {f�} converges in S ′(G). �

Lemma 4.4.1 allows us to define the (inhomogeneous) Sobolev spaces:

Definition 4.4.2. Let R be a positive Rockland operator on a graded Lie group
G. We consider its Lp-analogue Rp and the powers of (I + Rp)

a as defined in
Theorems 4.3.3 and 4.3.6. Let s ∈ R.

If p ∈ [1,∞), the Sobolev space Lp
s,R(G) is the subspace of S ′(G) obtained

by completion of S(G) with respect to the Sobolev norm

‖f‖Lp
s,R(G) := ‖(I +Rp)

s
ν f‖Lp(G), f ∈ S(G).

If p = ∞o, the Sobolev space L∞o

s,R(G) is the subspace of S ′(G) obtained by
completion of S(G) with respect to the Sobolev norm

‖f‖L∞o
s,R(G) := ‖(I +R∞o

)
s
ν f‖L∞(G), f ∈ S(G).

When the Rockland operator R is fixed, we may allow ourselves to drop the
index R in Lp

s,R(G) = Lp
s(G) to simplify the notation.

We will see later that the Sobolev spaces actually do not depend on the
Rockland operator R, see Theorem 4.4.20.

By construction the Sobolev space Lp
s(G) endowed with the Sobolev norm is

a Banach space which contains S(G) as a dense subspace and is included in S ′(G).
The Sobolev spaces share many properties with their Euclidean counterparts.

Theorem 4.4.3. Let R be a positive Rockland operator of homogeneous degree ν
on a graded Lie group G. We consider the associated Sobolev spaces Lp

s(G) for
p ∈ [1,∞) ∪ {∞o} and s ∈ R.

1. If s = 0, then Lp
0(G) = Lp(G) for p ∈ [1,∞) with ‖ · ‖Lp

0(G) = ‖ · ‖Lp(G), and
L∞o
0 (G) = Co(G) with ‖ · ‖L∞o

0 (G) = ‖ · ‖L∞(G).

2. If s > 0, then for any a ∈ C with Re a = s, we have

Lp
s(G) = Dom

[
(I +Rp)

a
ν

]
= Dom(R

a
ν
p ) � Lp(G),

and the following norms are equivalent to ‖ · ‖Lp
s(G):

f �−→ ‖f‖Lp(G) + ‖(I +Rp)
s
ν f‖Lp(G), f �−→ ‖f‖Lp(G) + ‖R

s
ν
p f‖Lp(G).
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3. Let s ∈ R and f ∈ S ′(G).

• Given p ∈ (1,∞), we have f ∈ Lp
s(G) if and only if the tempered dis-

tribution (I +Rp)
s/νf defined in Definition 4.3.17 is in Lp(G), in the

sense that the linear mapping

S(G) � φ �→ 〈(I +R)s/νf, φ〉 = 〈f, (I + R̄p′)s/νφ〉

extends to a bounded functional on Lp′
(G) where p′ is the conjugate

exponent of p.

• f ∈ L1
s(G) if and only if (I + R1)

s/νf ∈ L1(G) in the sense that the
linear mapping

S(G) � φ �→ 〈(I +R)s/νf, φ〉 = 〈f, (I + R̄∞o
)s/νφ〉

extends to a bounded functional on Co(G) and is realised as a measure
given by an integrable function.

• f ∈ L∞o
s (G) if and only if (I +R∞o

)s/νf ∈ Co(G) in the sense that the
linear mapping

S(G) � φ �→ 〈(I +R)s/νf, φ〉 = 〈f, (I + R̄1)
s/νφ〉

extends to a bounded functional on L1(G) and is realised as integration
against functions in Co(G).

4. If a, b ∈ R with a < b and p ∈ [1,∞) ∪ {∞o}, then the following continuous
strict inclusions hold

S(G) � Lp
b(G) � Lp

a(G) � S ′(G),

and an equivalent norm for Lp
b(G) is

Lp
b(G) � f �−→ ‖f‖Lp

a(G) + ‖R
b−a
ν

p f‖Lp
a(G).

5. For p ∈ [1,∞) ∪ {∞o} and any a, b, c ∈ R with a < c < b, there exists a
positive constant C = Ca,b,c such that for any f ∈ Lp

b , we have f ∈ Lp
c ∩ Lp

a

and
‖f‖Lp

c
≤ C‖f‖1−θ

Lp
a
‖f‖θLp

b
,

where θ := (c− a)/(b− a).

In Theorem 4.4.20, we will see that the definition of the Sobolev spaces and
their properties given in Theorem 4.4.3 hold independently of the chosen Rockland
operator R.

From now on, we will often use the notation Lp
0(G) since this allows us not to

distinguish between the cases Lp
0(G) = Lp(G) when p ∈ [1,∞) and Lp

0(G) = Co(G)
when p =∞o.

In the proof of Part (2) of Theorem 4.4.3, we will need the following exercise
in functional analysis:
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Lemma 4.4.4. Let T1 and T2 be two linear operators between two Banach spaces
X → Y. We assume that T1 and T2 are densely defined and share the same domain.
We also assume that they are both closed injective operators and that T2 is bijective
with a bounded inverse. Then the graph norms of T1 and T2 are equivalent, that
is,

∃C > 0 ∀x ∈ Dom(T1) = Dom(T2)

C−1(‖x‖+ ‖T2x‖) ≤ ‖x‖+ ‖T1x‖ ≤ C(‖x‖+ ‖T2x‖).

Sketch of the proof of Lemma 4.4.4. One can check easily that T := T1T
−1
2 de-

fines a closed linear operator T : Y → Y defined on the whole space Y. By the
closed graph theorem (see, e.g., [Rud91, Theorem 2.15] or [RS80, Thm III. 12]),
T is bounded. Furthermore, T is injective as the composition of two injective
operators. It may not have a closed range in Y but one checks easily that the
operator

(T−1
2 , T ) :

{
Y −→ X × Y
y �−→ (T−1

2 y, Ty)
,

has a closed range in X × Y. Hence the restriction of (T−1
2 , T ) onto its image is

bounded with a bounded inverse (see e.g. [RS80, Thm III. 11]). Consequently,

‖T−1
2 y‖+ ‖Ty‖  ‖y‖

for any element y ∈ Y, in particular of the form y = T2x, x ∈ Dom(T2). �

We can now prove Theorem 4.4.3.

Proof of Theorem 4.4.3. Part (1) is true since (I+Rp)
0
ν = I. Let us prove Part (2).

So let s > 0. Clearly Lp
s(G) coincides with the domain of the unbounded operator

(I +Rp)
s
ν (see Theorem 4.3.6 (2)) hence it is a proper subspace of Lp(G). As the

operator (I + Rp)
− s

ν is bounded on Lp(G), we have ‖ · ‖Lp(G) ≤ C‖ · ‖Lp
s(G) on

Lp
s(G). So ‖ · ‖Lp(G) + ‖ · ‖Lp

s(G) is a norm on Lp
s(G) which is equivalent to the

Sobolev norm. Theorem 4.3.6 implies thatR
s
ν
p and (I+Rp)

s
ν satisfy the hypotheses

of Lemma 4.4.4. This shows part (2).

Part (3) follows from Part (2) and the duality properties of the spaces Lp(G)
and Co(G) in the case s ≥ 0. We now consider the case s < 0. By Lemma 4.3.15
and Corollary 4.3.11 (and also Lemma 4.3.14), the mapping

Ts,p′,f : S(G) � φ �−→ 〈f, (I + R̄p′)s/νφ〉 = 〈f, φ ∗ B̄−s〉

is well defined for any f ∈ S ′(G). If Ts,p′,f admits a bounded extension to a

functional on Lp′
0 (G), then we denote this extension T̃s,p′,f and we have

‖T̃s,p′,f‖L (Lp′
0 ,C)

= ‖f‖Lp
s(G). (4.37)
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This is certainly so if f ∈ S(G). Furthermore a sequence {f�}�∈N of Schwartz func-
tions is convergent for the Sobolev norm ‖ · ‖Lp

s(G) if and only if {T̃s,p′,f�} is con-
vergent in Lp′

0 (G) (see Lemma 4.3.2). In the case of convergence, by Lemma 4.4.1,
{f�}�∈N converges in the sense of distributions. Denoting this limit by f ∈ S ′(G),
we have [

lim
�→∞

T̃s,p′,f�

] ∣∣∣∣
S(G)

= Ts,p′,f .

It is easy to see, by linearity of f1 �→ Ts,p′,f1 and (4.37), that Ts,p′,f extends to a

continuous functional on Lp′
0 (G).

Conversely, let us consider a distribution f ∈ S ′(G) such that Ts,p′,f extends

to a bounded functional T̃s,p′,f on Lp′
0 (G). If {f�}�∈N is a sequence of Schwartz

functions converging to f in S ′(G), then

lim
�→∞

Ts,p′,f�(φ) = Ts,p′,f (φ)

for every φ ∈ S(G), and using the density of S(G) in Lp′
0 (G) and the Banach-

Steinhaus Theorem, this shows that {T̃s,p′,f�} converges to T̃s,p′,f in the norm of

the dual of Lp′
0 (G). This shows the case s < 0 and concludes the proof of Part (3).

Let us show Part (4). Let a ≤ b and p ∈ [1,∞) ∪ {∞o}. By Theorem 4.3.6
(1), we have in the sense of operators

(I +Rp)
a
ν ⊃ (I +Rp)

a−b
ν (I +Rp)

b
ν .

Since the operator (I +Rp)
a−b
ν is bounded, we have for any f ∈ S(G)

‖f‖Lp
a(G) = ‖(I +Rp)

a
ν f‖p = ‖(I +Rp)

a−b
ν (I +Rp)

b
ν f‖p

≤ ‖(I +Rp)
a−b
ν ‖L (Lp

0)
‖(I +Rp)

b
ν f‖p = ‖(I +Rp)

a−b
ν ‖L (Lp

0)
‖f‖Lp

b
.

By density of S(G), this implies the continuous inclusion Lp
b ⊂ Lp

a. Note that we
also have if a < b

‖f‖Lp
b (G) = ‖(I +Rp)

b−a
ν (I +Rp)

a
ν f‖p = ‖(I +Rp)

a
ν f‖Lp

b−a(G)

 ‖(I +Rp)
a
ν f‖Lp(G) + ‖R

b−a
ν

p (I +Rp)
a
ν f‖Lp(G),

by Part (2) above for any f ∈ S(G). By Theorem 4.3.6 (5), we can commute

the operators R
b−a
ν

p and (I +Rp)
a
ν in this last expression. Consequently, we have

obtained for any f ∈ S(G),

‖f‖Lp
b (G)  ‖f‖Lp

a(G) + ‖R
b−a
ν

p f‖Lp
a(G).
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By density of S(G), this holds for any f ∈ Lp
b(G). Since the operator R

b−a
ν

p is
unbounded, this also implies the strict inclusions given in Part (4).

Part (5) follows from Theorem 4.3.6 (1f) for the case of a = 0. For f ∈ Lp
b ,

we then apply this to b− a, c− a instead of b and c and φ := (I +Rp)
a
ν f ∈ Lp

b−a

instead of f .
This concludes the proof of this part and of the whole theorem. �
Theorem 4.4.3 has the two following corollaries. The first one is an easy

consequence of Part (3).

Corollary 4.4.5. We keep the setting and notation of Theorem 4.4.3. Let s < 0
and p ∈ [1,∞) ∪ {∞o}. Let f ∈ S ′(G).

The tempered distribution f is in Lp
s(G) if and only if the mapping

S(G) � φ �→ 〈f, φ ∗ B̄−s〉

extends to a bounded linear functional on Lp′
0 (G) with the additional property that

• for p = 1, this functional on Co(G) is realised as a measure given by an
integrable function,

• if p =∞o, this functional on L1(G) is realised by integration against a func-
tion in Co(G).

Corollary 4.4.6. We keep the setting and notation of Theorem 4.4.3. Let s ∈ R
and p ∈ [1,∞) ∪ {∞o}. Then D(G) is dense in Lp

s(G).

Proof of Corollary 4.4.6. This is certainly true for s ≥ 0 (see the proof of Parts
(1) and (2) of Theorem 4.4.3). For s < 0, it suffices to proceed as in the last part
of the proof of Part (3) with a sequence of functions f� ∈ D(G). �

Theorem 4.4.3, especially Part (3), implies the following property regarding
duality of Sobolev spaces. This will be improved in Proposition 4.4.22 once we
show in Theorem 4.4.20 that the Sobolev spaces are indeed independent of the
considered Rockland operator.

Lemma 4.4.7. Let R be a positive Rockland operator on a graded Lie group G. We
consider the associated Sobolev spaces Lp

s,R(G). If s ∈ R and p ∈ (1,∞), the dual

space of Lp
s,R(G) is isomorphic to Lp′

−s,R̄(G) via the distributional duality, where

p′ is the conjugate exponent of p, 1
p + 1

p′ = 1.

Proof of Lemma 4.4.7. Clearly if f ∈ Lp
s,R(G) then for any φ ∈ S(G),

〈f, φ〉 = 〈f, (I + R̄p′)
s
ν (I + R̄p′)−

s
ν φ〉 = 〈(I +Rp)

s
ν f, (I + R̄p′)−

s
ν φ〉

by Theorem 4.3.6. Hence by Theorem 4.4.3 Part (3),

|〈f, φ〉| ≤ ‖(I +Rp)
s
ν f‖p‖(I + R̄p′)−

s
ν φ‖p′
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and the linear function S(G) � φ �→ 〈f, φ〉 extends to a bounded linear functional

on Lp′

−s,R̄(G). Conversely, let Ψ be a bounded linear functional on Lp′

−s,R̄(G). Then
since

(I + R̄p′)s/νS(G) = S(G) ⊂ Lp′

−s,R̄(G),

see Corollary 4.3.16 and Definition 4.4.2, the linear functional Ψ ◦ (I + R̄p′)s/ν is
well defined on S(G) and satisfies for any φ ∈ S(G),

|Ψ ◦ (I + R̄p′)s/ν(φ)| = |Ψ
(
(I + R̄p′)s/νφ

)
|

≤ C‖(I + R̄p′)s/νφ‖
Lp′

−s,R̄
= C‖φ‖

Lp′
0

.

Therefore, Ψ◦ (I+ R̄p′)s/ν extends into a bounded linear functional on Lp
0(G). �

In the next statement, we show how to produce functions and converging
sequences of Sobolev spaces using the convolution:

Proposition 4.4.8. We keep the setting and notation of Theorem 4.4.3. Here a ∈ R
and p ∈ [1,∞) ∪ {∞o}.
(i) If f ∈ Lp

0(G) and φ ∈ S(G), then f ∗ φ ∈ Lp
a for any a and p.

(ii) If f ∈ Lp
a(G) and ψ ∈ S(G), then

(I +Rp)
a
ν (ψ ∗ f) = ψ ∗

(
(I +Rp)

a
ν f

)
, (4.38)

and ψ ∗ f ∈ Lp
a(G) with

‖ψ ∗ f‖Lp
a(G) ≤ ‖ψ‖L1(G)‖f‖Lp

a(G). (4.39)

Furthermore, if
∫
ψ = 1, writing

ψε(x) := ε−Qψ(ε−1x)

for each ε > 0, then {ψε ∗ f} converges to f in Lp
a(G) as ε→ 0.

Proof of Proposition 4.4.8. Let us prove Part (i). Here f ∈ Lp
0(G). By density of

S(G) in Lp
0(G), we can find a sequence of Schwartz functions {f�} converging to

f in Lp
0-norm. Then f� ∗ φ ∈ S(G) and for any N ∈ N,

RN (f� ∗ φ) = f� ∗ RNφ −→
�→∞

f ∗ RNφ in Lp
0(G),

thus RN
p (f ∗ φ) = f ∗ RNφ ∈ Lp(G) and

‖f ∗ φ‖Lp
0(G) + ‖RN

p (f ∗ φ)‖Lp
0(G) <∞.

By Theorem 4.4.3 (4), this shows that f ∗ φ is in Lp
νN for any N ∈ N, hence in

any p-Sobolev spaces. This proves (i).
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Let us prove Part (ii). We observe that both sides of Formula (4.38) always
make sense as convolutions of a Schwartz function with a tempered distribution.

Let us first assume that f ∈ S(G). Formula (4.38) is true if a < 0 by Corollary
4.3.11 (ii) since then the (I +Rp)

a
ν is a convolution operator with an integrable

convolution kernel. Formula (4.38) is also true if a ∈ νN0 as in this case (I+Rp)
a
ν is

a left-invariant differential operator by Theorem 4.3.6 (1a). Hence Formula (4.38)
holds for any a > 0 by writing a = a0 + a′, a0 ∈ νN0, a

′ < 0, and

(I +Rp)
a
ν f = (I +Rp)

a0
ν (I +Rp)

a′
ν f.

Together with Corollary 4.3.16, this shows that Formulae (4.38) and consequently
(4.39) hold for any a ∈ R and f ∈ S(G).

By density of S(G) in Lp
s(G) and (4.39), this shows that Formulae (4.38) and

(4.39) hold for any f ∈ Lp
s(G).

Hence ψ ∗ f ∈ Lp
a(G) with Lp

a-norm ≤ ‖ψ‖1‖f‖Lp
a(G).

If
∫
G
ψ = 1, by Lemma 3.1.58 (i),

‖ψε ∗ f − f‖Lp
a(G) = ‖(I +Rp)

a
ν (ψε ∗ f − f)‖p

= ‖ψε ∗
(
(I +Rp)

a
ν f

)
− (I +Rp)

a
ν f‖p −→ε→0 0,

that is, {ψε ∗ f} converges to f in Lp
a(G) as ε→ 0. This proves (ii). �

4.4.2 Interpolation between inhomogeneous Sobolev spaces

In this section, we prove that interpolation between Sobolev spaces Lp
a(G) works

in the same way as its Euclidean counterpart.

Theorem 4.4.9. Let R and Q be two positive Rockland operators on two graded Lie
groups G and F . We consider their associated Sobolev spaces Lp

a(G) and Lq
b(F ).

Let p0, p1, q0, q1 ∈ (1,∞) and let a0, a1, b0, b1 be real numbers.
We also consider a linear mapping T from Lp0

a0
(G) + Lp1

a1
(G) to locally in-

tegrable functions on F . We assume that T maps Lp0
a0
(G) and Lp1

a1
(G) boundedly

into Lq0
b0
(F ) and Lq1

b1
(F ), respectively.

Then T extends uniquely to a bounded mapping from Lp
at
(G) to Lq

bt
(F ) for

t ∈ [0, 1] where at, bt, pt, qt are defined by(
at, bt,

1

pt
,
1

qt

)
= (1− t)

(
a0, b0,

1

p0
,
1

q0

)
+ t

(
a1, b1,

1

p1
,
1

q1

)
.

The idea of the proof is similar to the one of the Euclidean or stratified cases,
see [Fol75, Theorem 4.7]. Some arguments will be modified since our estimates
for ‖(I + R)iτ‖L (Lp) are different from the ones obtained by Folland in [Fol75].
For this, compare Corollary 4.3.13 and Proposition 4.3.7 in this monograph with
[Fol75, Proposition 4.3].
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Proof of Theorem 4.4.9. By duality (see Lemma 4.4.7) and up to a change of
notation, it suffices to prove the case

a1 ≥ a0 and b1 ≤ b0. (4.40)

This fact is left to the reader to check. The idea is to interpolate between the
operators formally given by

Tz = (I +Q)
bz
νQ T (I +R)−

az
νR , (4.41)

where νR and νQ denote the degrees of homogeneity of R and Q, respectively, and
the complex numbers az and bz are defined by

(az, bz) := z (a1, b1) + (1− z) (a0, b0) ,

for z in the strip
S := {z ∈ C : Re z ∈ [0, 1]}.

In (4.41), we have abused the notation regarding the fractional powers of I +Rp

and I +Qq and removed p and q. This is possible by Corollary 4.3.16 and density
of the Schwartz space in each Sobolev space. Hence (4.41) makes sense. We will
use complex interpolation given by Theorem A.6.1, which requires to start with
the space B of compactly supported simple functions on G (see Remark A.6.2).
To solve this technical problem we proceed as in the proof of [Fol75, Theorem 4.7]:
we will use the convolution of a function in B with a bump function χε depending
on ε at the end of the proof.

The hypotheses on T give that the operator norms

‖T‖
L (L

pj
aj

,L
qj
bj

)
= ‖(I +Q)

bj
νQ T (I +R)−

aj
νR ‖L (Lpj ,Lqj ), j = 0, 1,

are finite.
By Corollary 4.3.16, for any φ ∈ S(G) and ψ ∈ S(F ), we have

〈Tzφ, ψ〉 = 〈T (I +R)−N− az
νR (I +R)Nφ, (I + Q̄)−M+ bz

νQ (I + Q̄)Mψ〉

for any M,N ∈ Z. In particular, for M and N large enough, Theorem 4.3.6 implies
that

S � z �→ 〈Tzφ, ψ〉
is analytic. With M = N ∈ N large enough, for instance the smallest integer with
N > a1, a0, b1, b0, we get

|〈Tzφ, ψ〉| ≤ A(z) B(z) ‖T‖L (L
p1
a1

,L
q1
b1

)‖φ‖Lp1
N
‖ψ‖Lq1

N
,

where A(z) and B(z) denote the operator norms

A(z) := ‖(I +R)−N+
−az+a1

νR ‖L (Lp1 ) and B(z) := ‖(I + Q̄)−M+
bz−b1

νQ ‖L (Lq1 ).
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We can write

A(z) = ‖(I +R)−(α+βz)‖L (Lp1 ) with α = N − a1 − a0
νR

> 0, β =
a1 − a0
νR

≥ 0.

Thus

A(z) ≤ ‖(I +R)−(α+βRe z)‖L (Lp1 )‖(I +R)−βIm z‖L (Lp1 )

� ‖h1‖L1eθβ|Im z|,

by Corollary 4.3.13 and Proposition 4.3.7 using the notation of their statements.
We have a similar property for B(z). This implies easily that there exists a constant
C depending on φ, ψ, a1, a0, b1, b0 and F,G,R,Q such that we have

∀z ∈ S ln |〈Tzφ, ψ〉| ≤ C(1 + |Im z|).

We now estimate operator norms of Tz for z on the boundary of the strip,
that is, z = j + iy, j = 0, 1, y ∈ R:

‖Tz‖L (Lpj ,Lqj )

= ‖(I +Q)
bz
νQ T (I +R)−

az
νR ‖L (Lpj ,Lqj )

= ‖(I +Q)
bz−bj
νQ (I +Q)

bj
νQ T (I +R)

−aj
νR (I +R)

aj−az

νR ‖L (Lpj ,Lqj )

≤ ‖(I +Qqj )
bz−bj
νQ ‖L (Lqj )‖T‖L (L

pj
aj

,L
qj
bj

)
‖(I +Rpj )

aj−az

νR ‖L (Lpj )

= ‖(I +Qqj )
iy

b1−b0
νQ ‖L (Lqj )‖T‖L (L

pj
aj

,L
qj
bj

)
‖(I +Rpj

)
iy

a0−a1
νR ‖L (Lpj ).

Proposition 4.3.7 then implies

‖Tj+iy‖L (Lpj ,Lqj ) ≤ C‖T‖
L (L

pj
aj

,L
qj
bj

)
e
θR

a1−a0
νR |y|

e
θQ

b0−b1
νR |y|

,

where C, θR and θQ are positive constants obtained from the applications of
Proposition 4.3.7 to R and Q.

The end of the proof is now classical. We fix a non-negative function χ ∈ S(G)
with

∫
G
χ = 1 and write

χε(x) := ε−Qχ(ε−1x)

for ε > 0. If f ∈ B, then f ∗χε ∈ S(G) (see Lemma 3.1.59) and we can set for any
ε > 0, z ∈ S,

Tz,εf := Tz (f ∗ χε) .

Clearly Tz,ε satisfy the hypotheses of Theorem A.6.1 (see also Remark A.6.2).
Thus for any t ∈ [0, 1], there exists a constant Mt > 0 independent of ε such that

∀f ∈ B ‖Tt,εf‖qt ≤Mt‖f‖pt
.
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For p ∈ (1,∞), we consider the space Vp of functions φ of the form φ = f ∗χε,
with f ∈ B and ε > 0, satisfying ‖f‖p ≤ 2‖f ∗ χε‖p. By Lemma 3.1.59, the space
Vp contains S(G) and is dense in Lp(G) for p ∈ (1,∞). Going back to the proof
of Theorem 4.4.9, we have obtained for any t ∈ [0, 1] and φ = f ∗ χε ∈ Vpt , that

‖Ttφ‖qt = ‖Tt,εf‖qt ≤Mt‖f‖pt
≤ 2Mt‖φ‖pt

.

This shows that Tt extends to a bounded operator from Lpt(G) to Lqt(G). �

As a consequence of the interpolation properties, we have

Corollary 4.4.10. Let κ ∈ S ′(G) and let Tκ be its associated convolution operator

Tκ : S(G) � φ �→ φ ∗ κ.

Let also a ∈ R, p ∈ (1,∞) and let {γ�, � ∈ Z} be a sequence of real numbers which
tends to ±∞ as � → ±∞. Assume that for any � ∈ Z, the operator Tκ extends
continuously to a bounded operator Lp

γ�
(G) → Lp

a+γ�
(G). Then the operator Tκ

extends continuously to a bounded operator Lp
γ(G) → Lp

a+γ(G) for any γ ∈ R.
Furthermore, for any c ≥ 0, we have

sup
|γ|≤c

‖Tκ‖L (Lp
γ ,L

p
a+γ)
≤ Cc max

(
‖Tκ‖L (Lp

γ�
,Lp

a+γ�
), ‖Tκ‖L (Lp

γ−�
,Lp

a+γ−�
)

)
where � ∈ N0 is the smallest integer such that γ� ≥ c and −γ−� ≥ c.

4.4.3 Homogeneous Sobolev spaces

Here we define the homogeneous version of our Sobolev spaces and obtain their
first properties. Many proofs are obtained by adapting the corresponding inho-
mogeneous cases and we may therefore allow ourselves to present them more
succinctly. For technical reasons explained below, the definition of homogeneous
Sobolev spaces is restricted to the case p ∈ (1,∞).

As in the inhomogeneous case, we first need the following lemma:

Lemma 4.4.11. We keep the notation of Theorem 4.3.6.

1. For any s ∈ R and p ∈ [1,∞) ∪ {∞o}, the map f �→ ‖R
s
ν
p f‖Lp(G) defines a

norm on S(G) ∩Dom(R
s
ν
p ). We denote it by

‖f‖L̇p
s(G) := ‖R

s
ν
p f‖Lp(G).

2. For any s ≤ 0 and p∈ [1,∞)∪{∞o}, S(G)∩Dom(R
s
ν
p ) contains R�|s|ν�(S(G))

which is dense in Range(Rp) for ‖ · ‖Lp(G), and any sequence in S(G) ∩
Dom(R

s
ν
p ) which is Cauchy for ‖ · ‖L̇p

s(G) is convergent in S ′(G).
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3. If s > 0 and p ∈ (1,∞), then S(G) ⊂ Dom(R
s
ν
p ) and any sequence in S(G)

which is Cauchy for ‖ · ‖L̇p
s(G) is convergent in S ′(G).

Proof of Lemma 4.4.11. The fact that the map f �→ ‖R
s
ν
p f‖Lp(G) defines a norm

on S(G) follows easily from Theorem 4.3.6 Part (1).
In the case s = 0, ‖ · ‖L̇p

0(G) = ‖ · ‖Lp(G) and Part 2 is proved in this case.

Let s < 0 and p ∈ [1,∞) ∪ {∞o}. By Theorem 4.3.6 (especially Parts
(1a) and (1c)), for any N ∈ N with N > |s|/ν, Dom(R s

ν ) contains RN (S(G))

and RN (S(G)) is dense in Range(Rp). Consequently S(G) ∩ Dom(R
s
ν
p ) contains

RN (S(G)) and is dense in Range(Rp). Let p′ be the dual exponent of p, i.e.
1
p +

1
p′ = 1 with the usual extension. Theorem 4.3.6 (1), and the duality properties

of Lp as well as Rt = R̄ imply

|〈f, φ〉| ≤ ‖R
s
ν
p f‖Lp(G)‖R̄

− s
ν

p′ φ‖Lp′ (G),

for any f ∈ S(G) ∩ Dom(R
s
ν
p ) and φ ∈ S(G). Furthermore, as φ ∈ S(G) ⊂

Dom(R− s
ν

p′ ), Theorem 4.3.6 (1) also yields for any φ ∈ S(G)

‖R̄− s
ν

p′ φ‖Lp′ (G) ≤ max

(
‖R̄� |s|

ν �
p′ φ‖Lp′ (G), ‖R̄

� |s|
ν �

p′ φ‖Lp′ (G)

)
≤ C max

[α]=� |s|
ν �,� |s|

ν �
‖Xαφ‖Lp′ (G)

for some constant C = CN,R. We have obtained that

|〈f, φ〉| ≤ C‖R
s
ν
p f‖Lp(G) max

[α]=N,N+1
‖Xαφ‖Lp′ (G)

for any f ∈ S(G)∩Dom(R
s
ν
p ) and φ ∈ S(G). This together with the properties of

the Schwartz space (see Section 3.1.9) easily implies Part 2.

Let s > 0. By Theorem 4.3.6 (1g), S(G) ⊂ Dom(R
s
ν
p ).

Let p ∈ (1,∞). By Corollary 4.3.11 Part (i), if s ∈ (0, Q
p ), then there exists

C > 0 such that

∀f ∈ S(G) ‖f‖Lq(G) ≤ C‖R
s
ν
p f‖Lp(G) = C‖f‖L̇p

s(G),

where q ∈ (1,∞) is such that
1

p
− 1

q
=

s

Q
.

Note that q is indeed in (1,∞) as s < Q
p . Hence if {f�} ⊂ S(G) is Cauchy for

‖ · ‖L̇p
s(G), then {f�} ⊂ S(G) is Cauchy for ‖ · ‖Lq(G) thus in S ′(G). This shows

Part 3 for any s > 0, p ∈ (1,∞) satisfying ps < Q.
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If s ∈ [N Q
p , (N +1)Qp ) for some N ∈ N0, we write s = s1+s′ with s′ ∈ (0, Q

p )
and

s1 ∈ [(N − 1)
Q

p
,N

Q

p
)

and by Corollary 4.3.11 Part (i) with Theorem 4.3.6 (1), we have

∃C = Cs′,p ∀f ∈ S(G) ‖R
s1
ν
q f‖Lq ≤ C‖R

s
ν
p f‖Lp(G),

where q ∈ (1,∞) is such that
1

q
− 1

p
=

s′

Q
.

Hence if {f�} ⊂ S(G) is Cauchy for ‖ · ‖L̇p
s(G), then {f�} ⊂ S(G) is Cauchy for

‖ · ‖L̇q
s1

(G). Note that

s1 ≤
NQ

p
<

NQ

q
.

Recursively, this shows Part 3. �
The use of Corollary 4.3.11 in the proof above requires p ∈ (1,∞). Moreover,

by Corollary 4.3.4 (ii), the range of Rp is dense in Lp(G) for p ∈ (1,∞o]. As we
want to have a unified presentation for all the homogeneous spaces of any exponent
s ∈ R, we restrict the parameter p to be in (1,∞) only.

Definition 4.4.12. Let R be a Rockland operator of homogeneous degree ν on
a graded Lie group G, and let p ∈ (1,∞). We denote by L̇p

s,R(G) the space of

tempered distribution obtained by the completion of S(G) ∩ Dom(R
s
ν
p ) for the

norm
‖f‖L̇p

s(G) := ‖R
s
ν
p f‖p, f ∈ S(G) ∩Dom(Rs/ν

p ).

As in the inhomogeneous case, we will write L̇p
s(G) or L̇p

s,R but often omit
the reference to the Rockland operator R. We will see in Theorem 4.4.20 that
the homogeneous Sobolev spaces do not depend on a specific R. Adapting the
inhomogeneous case, one obtains easily:

Proposition 4.4.13. Let G be a graded Lie group of homogeneous dimension Q. Let
R be a positive Rockland operator of homogeneous degree ν on G. Let p ∈ (1,∞)
and s ∈ R.

1. We have (
S(G) ∩Dom(Rs/ν

p )
)
� L̇p

s(G) � S ′(G).

Equipped with the homogeneous Sobolev norm ‖·‖L̇p
s(G), the space L̇

p
s(G)

is a Banach space which contains S(G) ∩Dom(Rs/ν
p ) as dense subspace.

2. If s > −Q/p then S(G) ⊂ Dom(Rs/ν
p ) ⊂ L̇p

s(G). If s < 0 then S(G) ∩
Dom(R

s
ν
p ) contains R�|s|ν�(S(G)) which is dense in Lp(G).
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3. If s = 0, then L̇p
0(G) = Lp(G) for p ∈ (1,∞) with ‖ · ‖L̇p

0(G) = ‖ · ‖Lp(G).

4. Let s ∈ R, p ∈ (1,∞) and f ∈ S ′(G). If f ∈ L̇p
s(G) then Rs/ν

p f ∈ Lp(G) in
the sense that the linear mapping(

S(G) ∩Dom(R̄s/ν
p′ )

)
� φ �→ 〈f, R̄s/ν

p′ φ〉

is densely defined on Lp′
(G) and extends to a bounded functional on Lp′

(G)
where p′ is the conjugate exponent of p. The converse is also true.

5. If 1 < p < q <∞ and a, b ∈ R with

b− a = Q(
1

p
− 1

q
),

then we have the continuous inclusion

L̇p
b ⊂ L̇q

a

that is, for every f ∈ L̇p
b , we have f ∈ L̇q

a and there exists a constant C =
Ca,b,p,q,G > 0 independent of f such that

‖f‖L̇q
a
≤ C‖f‖L̇p

b
.

6. For p ∈ (1,∞) and any a, b, c ∈ R with a < c < b, there exists a positive
constant C = Ca,b,c such that we have for any f ∈ L̇p

b

‖f‖L̇p
c
≤ C‖f‖1−θ

L̇p
a
‖f‖θ

L̇p
b

where θ := (c− a)/(b− a).

Proof of Proposition 4.4.13. Parts (1), (2), and (3) follow from Lemma 4.4.11 and
its proof. Part (4) follows easily by duality and Lemma 4.4.11. Parts (5) and (6)
are an easy consequence of the property of the fractional powers of R on the Lp-

spaces (cf. Theorem 4.3.6) and the operator R−s/ν
p , s ∈ (0, Q), being of type s and

independent of p (cf. Corollary 4.3.11 (i)). �
Note that Part (2) of Proposition 4.4.13 can not be improved in general as

the inclusions S(G) ⊂ Dom(R
s
ν
p ) or S(G) ⊂ L̇s

p(G) can not hold in general for
any group G as they do not hold in the Euclidean case i.e. G = (Rn,+) with
the usual dilations. Indeed in the case of Rn, p = 2, one can construct Schwartz
functions which can not be in L̇2

s with s < −n/2. It suffices to consider a function

φ ∈ S(G) satisfying φ̂(ξ) ≡ 1 on a neighbourhood of 0 since then |ξ|sφ̂(ξ) is not
square integrable about 0 for s < −n/2.

As in the homogeneous case (see Lemma 4.4.7), Part (4) of Proposition 4.4.13
above implies the following property regarding duality of Sobolev spaces. This
will be improved in Proposition 4.4.22 once we know (see Theorem 4.4.20) that
homogeneous Sobolev spaces are indeed independent of the considered Rockland
operator.
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Lemma 4.4.14. Let R be a positive Rockland operator on a graded Lie group G.
We consider the associated homogeneous Sobolev spaces L̇p

s,R(G). If s ∈ R and p ∈
(1,∞), the dual space of L̇p

s,R(G) is isomorphic to L̇p′

−s,R̄(G) via the distributional

duality, where p′ is the conjugate exponent of p, i.e. 1
p + 1

p′ = 1.

The following interpolation property can be proved after a careful modifica-
tion of the inhomogeneous proof:

Proposition 4.4.15. Let R and Q be two positive Rockland operators on two graded
Lie groups G and F respectively. We consider their associated homogeneous Sobolev
spaces L̇p

a(G) and L̇q
b(F ). Let p0, p1, q0, q1 ∈ (1,∞) and a0, a1, b0, b1 ∈ R.

We also consider a linear mapping T from L̇p0
a0
(G) + L̇p1

a1
(G) to locally in-

tegrable functions on F . We assume that T maps L̇p0
a0
(G) and L̇p1

a1
(G) boundedly

into L̇q0
b0
(F ) and L̇q1

b1
(F ), respectively.

Then T extends uniquely to a bounded mapping from L̇p
at
(G) to L̇q

bt
(F ) for

t ∈ [0, 1], where at, bt, pt, qt are defined by(
at, bt,

1

pt
,
1

qt

)
= (1− t)

(
a0, b0,

1

p0
,
1

q0

)
+ t

(
a1, b1,

1

p1
,
1

q1

)
.

Sketch of the proof of Proposition 4.4.15. By duality (see Lemma 4.4.14) and up
to a change of notation, it suffices to prove the case a1 ≥ a0 and b1 ≤ b0. The idea
is to interpolate between the operators formally given by

Tz = Qz
b1−b0
νQ Q

b0
νQ TR− a0

νRRz
a0−a1

νR , z ∈ S, (4.42)

with the same notation for νR, νQ, az, bz and S as in the proof of Theorem 4.4.9.
In (4.42), we have abused the notation regarding the fractional powers of Rp and
Qq and removed p and q thanks to by Theorem 4.3.6 (1). Moreover, Theorem 4.3.6
implies that on S(G), each operator Tz, z ∈ S, coincides with

Tz = Q(1−z)
b0−b1
νQ Q

b1
νQTR− a1

νRR(1−z)
a1−a0

νR ,

and that for any φ ∈ S(G) and ψ ∈ S(F ), z �→ 〈Tzφ, ψ〉 is analytic on S. We also
have

|〈Tzφ, ψ〉| ≤ ‖T‖L (L̇
p1
a1

,L̇
q1
b1

)‖R
−az+a1

νR φ‖Lp1 ‖Q̄
bz−b1

νQ ψ‖Lq1 .

Note that −Re az + a1 ≥ 0 thus we have

‖R
−az+a1

νR φ‖Lp1 ≤ ‖R
−Re az+a1

νR φ‖Lp1 ‖R
−Im az

νR φ‖Lp1

� ‖φ‖1−α
Lp1 ‖RNφ‖αLp1 e

θ
|Im az |

νR ,

by Theorem 4.3.6 (1f) with N the smallest integer strictly greater than −Re az+a1
and α = (−Re az + a1)/N , and by Proposition 4.3.9 using the notation of its
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statement. We have similar bounds for ‖Q̄
bz−b1

νQ ψ‖q1 and all these estimates imply
easily that there exists a constant depending on φ, ψ, a1, a0, b1, b0 such that

∀z ∈ S ln |〈Tzφ, ψ〉| ≤ C(1 + |Im z|).

For the estimate on the boundary of the strip, that is, z = j + iy, j = 0, 1, y ∈ R,
we see as in the proof of Theorem 4.4.9:

‖Tz‖L (Lpj ,Lqj ) ≤ ‖Q
iy

b1−b0
νQ

qj ‖L (Lqj )‖T‖L (L̇
pj
aj

,L̇
qj
bj

)
‖R

iy
a0−a1

νR
pj ‖L (Lpj ).

Proposition 4.3.9 then implies

‖Tj+iy‖L (Lpj ,Lqj ) ≤ C‖T‖
L (L̇

pj
aj

,L̇
qj
bj

)
e
θR

a1−a0
νR |y|

e
θQ

b0−b1
νR |y|

,

where C, θR and θQ are positive constants obtained from the applications of
Proposition 4.3.9 to R and Q. We conclude the proof in the same way as for
Theorem 4.4.9. �

4.4.4 Operators acting on Sobolev spaces

In this section we show that left-invariant differential operators act continuously
on homogeneous and inhomogeneous Sobolev spaces. We will also show a similar
property for operators of type ν, Re ν = 0.

In the statements and in the proofs of this section, we keep the same nota-
tion for an operator defined on a dense subset of some Lp-space and its possible
bounded extensions to some Sobolev spaces in order to ease the notation.

Theorem 4.4.16. Let G be a graded Lie group.

1. Let T be a left-invariant differential operator of homogeneous degree νT . Then
for every p ∈ (1,∞) and s ∈ R, T maps continuously Lp

s+νT
(G) to Lp

s(G).
Fixing a positive Rockland operator R in order to define the Sobolev norms,
it means that

∃C = Cs,p,T > 0 ∀φ ∈ S(G) ‖Tφ‖Lp
s(G) ≤ C‖φ‖Lp

s+νT
(G).

2. Let T be a νT -homogeneous left-invariant differential operator. Then for every
p ∈ (1,∞) and s ∈ R, T maps continuously L̇p

s+νT
(G) to L̇p

s(G). Fixing a
positive Rockland operator R in order to define the Sobolev norms, it means
that

∃C = Cs,p,T > 0 ∀φ ∈ L̇p
s+νT

(G) ‖Tφ‖L̇p
s(G) ≤ C‖φ‖L̇p

s+νT
(G).

We start the proof of Theorem 4.4.16 with studying the case of T = Xj . This
uses the definition and properties of kernel of type 0, see Section 3.2.5.
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Lemma 4.4.17. Let R be a positive Rockland operator on a graded Lie group G
and Ia the kernel of its Riesz operator as in Corollary 4.3.11.

1. For any j = 1, . . . , n, XjIυj
is a kernel of type 0.

2. If κ is a kernel of type 0, then, for any j = 1, . . . , n, Xj

(
κ ∗ Iυj

)
is a kernel

of type 0 and, more generally, for any multi-index α ∈ Nn
0 , the kernel

Xα
(
κ ∗ I(∗)

α1

[υ1]
∗ . . . ∗ I(∗)

αn

[υn]

)
is of type 0.

3. If T is an operator of type 0, then, for any N ∈ N, RNTR−N
2 is an operator

of type 0 hence it is bounded on Lp(G), p ∈ (1,∞).

4. For any j = 1, . . . , n and for any N ∈ N0, RNXjR
− υj

ν −N
2 is an operator of

type 0.

In Part 2, we have used the notation

f (∗)m = f ∗ . . . ∗ f︸ ︷︷ ︸
m times

Proof of Lemma 4.4.17. We adopt the notation of the statement. By Corollary
4.3.11 (i), Iυj is a kernel of type υj ∈ (0, Q) hence, by Lemma 3.2.33, XjIυj is a
kernel of type 0. This shows Part 1.

More generally, if κ is a kernel of type 0, then κ ∗ Iυj is a kernel of type υj
by Proposition 3.2.35 (ii) hence by Lemma 3.2.33, Xj(κ ∗ Iυj

) is a kernel of type
0. Iterating this procedure shows Part 2.

Let T be an operator of type 0. We denote by κ its kernel. Let N ∈ N.
The operator RN can be written as a linear combination of Xα, α ∈ Nn

0 with
[α] = νN . Using the spectral calculus of R to define and decompose R−N

2 , this
shows that the operator RNTR−N

2 can be written as a linear combination over

[α] = νN of the operators XαTR− υ1
ν α1

2 . . .R− υn
ν αn

2 whose kernel can be written

as Xα
(
κ ∗ I(∗)

α1

[υ1]
∗ . . . ∗ I(∗)

αn

[υn]

)
. Part 2 implies that the operator RNTR−N

2 is of

type 0. By Theorem 3.2.30, it is a bounded operator on Lp(G), p ∈ (1,∞). This
shows Part 3.

Part 4 follows from combining Parts 1 and 3. �

We can now finish the proof of Theorem 4.4.16.

Proof of Theorem 4.4.16. By Lemma 4.4.17, Part 4,RNXjR
− υj

ν −N
2 is an operator

of type 0, hence bounded on Lp(G), p ∈ (1,∞). The transpose of this operator is

(RNXjR
− υj

ν −N
2 )t = −R̄− υj

ν −N
2 XjR̄N ,
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since Xt
j = −Xj and Rt = R̄. By duality, this operator is Lp′

-bounded where
1
p′ +

1
p = 1. As R̄ is also a positive Rockland operator, see Lemma 4.1.11, we

can exchange the rôle of R and R̄. Hence we have obtained that the operators

RNXjR
− υj

ν −N
2 and R− υj

ν −N
2 XjRN are bounded on Lp(G) for any p ∈ (1,∞)

and N ∈ N. This shows that Xj maps L̇p
υj+Nν to L̇p

Nν and L̇p
−Nν to L̇p

−υj−Nν

continuously. The properties of interpolation, cf. Proposition 4.4.15, imply that
Xj maps L̇p

υj+s to L̇p
s continuously for any s ∈ R, p ∈ (1,∞) and j = 1, . . . , n.

Interpreting any Xα as a composition of operators Xj shows Part (2) for any
T = Xα, α ∈ Nn

0 , with νT = [α]. As any νT -homogeneous left-invariant differential
operator is a linear combination of Xα, α ∈ Nn

0 , with νT = [α], this shows Part
(2).

Let us show Part (1). Let α ∈ Nn
0 . If s > 0, then by Theorem 4.4.3 (4) and

Part (2), we have for any φ ∈ S(G)

‖Xαφ‖Lp
s

� ‖Xαφ‖Lp + ‖Xαφ‖L̇p
s

� ‖φ‖L̇p
[α]

+ ‖φ‖L̇p
s+[α]

� ‖φ‖Lp
[α]

+ ‖φ‖Lp
s+[α]

� ‖φ‖Lp
s+[α]

.

This shows that Xα maps Lp
s+[α] to Lp

s continuously for any s > 0, p ∈ (1,∞) and

any α ∈ Nn
0 . The transpose (Xα)t of Xα is a linear combination of Xβ , [β] = [α],

and will also have the same properties. By duality, this shows that Xα maps Lp
−s

to Lp
−(s+[α]) continuously for any s > 0, p ∈ (1,∞) and any α ∈ Nn

0 . Together

with the properties of interpolation (cf. Theorem 4.4.9), this shows that Xα maps
Lp
s+[α] to Lp

s continuously for any s ∈ R, p ∈ (1,∞) and any α ∈ Nn
0 .

As any left invariant differential operator can be written as a linear combina-
tion of monomials Xα, this implies Part (1) and concludes the proof of Theorem
4.4.16. �

The ideas of the proofs above can be adapted to the proof of the following
properties for the operators of type 0:

Theorem 4.4.18. Let T be an operator of type ν ∈ C on a graded Lie group G
with Re ν = 0. Then for every p ∈ (1,∞) and s ∈ R, T maps continuously Lp

s(G)
to Lp

s(G) and L̇p
s(G) to L̇p

s(G). Fixing a positive Rockland operator R in order to
define the Sobolev norms, it means that there exists C = Cs,p,T > 0 satisfying

∀φ ∈ S(G) ‖Tφ‖Lp
s(G) ≤ C‖φ‖Lp

s(G)

and
∀φ ∈ L̇p

s ‖Tφ‖L̇p
s(G) ≤ C‖φ‖L̇p

s(G).

Proof. Let T be a operator of type νT ∈ C with Re νT = 0. Proceeding as in the
proof of Lemma 4.4.17 Part 3 yields that for any N ∈ N, the operator RNTR−N

2
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is of type νT . We can apply this to the transpose T t of T as well as the operator
T t is also of type ν. By Theorem 3.2.30, the operators RNTR−N

2 and RNT tR−N
2

are bounded on Lp(G). This shows that T maps L̇p
s to L̇p

s continuously for s = N
and s = −N , N ∈ N0. By interpolation, this holds for any s ∈ R and this shows
the statement for the homogeneous Sobolev spaces. If s > 0, then by Theorem
4.4.3 (4), using the continuity on homogeneous Sobolev spaces which has just
been proven, we have for any φ ∈ S(G)

‖Tφ‖Lp
s
� ‖Tφ‖Lp + ‖Tφ‖L̇p

s
� ‖φ‖Lp + ‖φ‖L̇p

s
� ‖φ‖Lp

s
.

This shows that T maps Lp
s to Lp

s continuously for any s > 0, p ∈ (1,∞). Applying
this to T t, by duality, we also obtain this property for s < 0. The case s = 0 follows
from Theorem 3.2.30. This concludes the proof of Theorem 4.4.18. �

Theorem 4.4.18 extends the result of Theorem 3.2.30, that is, the bounded-
ness on Lp(G) of an operator of type νT , Re νT = 0, from Lp-spaces to Sobolev
spaces. Let us comment on similar results in related contexts:

• In the case of Rn (and similarly for compact Lie groups), the continuity on
Sobolev spaces would be easy since Tκ would commute with the Laplace
operator but the homogeneous setting requires a more substantial argument.

• Theorem 4.4.18 was shown by Folland in [Fol75, Theorem 4.9] on any strat-
ified Lie group and for ν = 0. However, the proof in that context uses the
existence of a positive Rockland operator with a unique homogeneous fun-
damental solution, namely ‘the’ (any) sublaplacian. If we wanted to follow
closely the same line of arguments, we would have to assume that the group is
equipped with a Rockland operator with homogeneous degree ν with ν < Q,
see Remark 4.3.12. This is not always the case for a graded Lie group as
the example of the three dimensional Heisenberg group with gradation (3.1)
shows.

• The proof above is valid under no restriction in the graded case. Somehow
the use of the homogeneous fundamental solution in the stratified case is
replaced by the kernel of the Riesz potentials together with the properties of
the Sobolev spaces proved so far.

4.4.5 Independence in Rockland operators and integer orders

In this Section, we show that the homogeneous and inhomogeneous Sobolev spaces
do not depend on a particular choice of a Rockland operator. Consequently The-
orems 4.4.3, 4.4.9, 4.4.16, and 4.4.18, Corollaries 4.4.6 and 4.4.10, Propositions
4.4.8 and 4.4.13 and 4.4.15, hold independently of any chosen Rockland operator
R.

We will need the following property:
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Lemma 4.4.19. Let R be a Rockland operator on G of homogeneous degree ν and let
� ∈ N0, p ∈ (1,∞). Then the space Lp

ν�(G) is the collection of functions f ∈ Lp(G)
such that Xαf ∈ Lp(G) for any α ∈ Nn

0 with [α] = ν�. Moreover, the map

φ �→
∑

[α]=ν�

‖Xαφ‖p

is a norm on L̇p
ν�(G) which is equivalent to the homogeneous Sobolev norm and

the map

φ �→ ‖φ‖p +
∑

[α]=ν�

‖Xαφ‖p

is a norm on Lp
ν�(G) which is equivalent to the Sobolev norm.

Proof of Lemma 4.4.19. Writing

R� =
∑

[α]=�ν

cα,�X
α

we have on one hand,

∀φ ∈ S(G) ‖R�φ‖p ≤ max |cα,�|
∑

[α]=�ν

‖Xαφ‖p. (4.43)

On the other hand, by Theorem 4.4.16 (2), for any α ∈ Nn
0 , the operator X

α maps
continuously L̇p

[α](G) to L̇p(G), hence

∃C > 0 ∀φ ∈ S(G)
∑

[α]=�ν

‖Xαφ‖p ≤ C‖φ‖L̇p
[α]
.

This shows the property of Lemma 4.4.19 for homogeneous Sobolev spaces.
Adding ‖φ‖Lp on both sides of (4.43) implies by Theorem 4.4.3, Part (2):

∃C > 0 ∀φ ∈ S(G) ‖φ‖Lp
�ν
≤ C

⎛⎝‖φ‖Lp +
∑

[α]=�ν

‖Xαφ‖p

⎞⎠ .

On the other hand, by Theorem 4.4.16 (1), for any α ∈ Nn
0 , the operator X

α maps
continuously Lp

[α](G) to Lp(G), hence

∃C > 0 ∀φ ∈ S(G)
∑

[α]=�ν

‖Xαφ‖p ≤ C‖φ‖Lp
[α]
.

This shows the property of Lemma 4.4.19 for inhomogeneous Sobolev spaces and
concludes the proof of Lemma 4.4.19. �
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One may wonder whether Lemma 4.4.19 would be true not only for integer
exponents of the form s = ν� but for any integer s. In fact other inhomogeneous
Sobolev spaces on a graded Lie group were defined by Goodman in [Goo76, Section
III. 5.4] following this idea. More precisely the Lp Goodman-Sobolev space of order
s ∈ N0 is given via the norm

φ �−→
∑
[α]≤s

‖Xαφ‖p (4.44)

Goodman’s definition does not use Rockland operators but makes sense only for
integer exponents.

The Lp Goodman-Sobolev space of integer order s certainly contains Lp
s(G).

Indeed, proceeding almost as in the proof of Lemma 4.4.19, using Theorem 4.4.16
and Theorem 4.4.3, we have

∀s ∈ N0 ∃C = Cs > 0 ∀φ ∈ S(G)
∑
[α]≤s

‖Xαφ‖p ≤ C‖φ‖Lp
s
.

In fact, adapting the rest of the proof of Lemma 4.4.19, one could show easily
that the Lp Goodman-Sobolev space of order s ∈ N0 with s proportional to the
homogeneous degree ν of a positive Rockland operator coincides with our Sobolev
spaces Lp

s(G). Moreover, on any stratified Lie group, for any non-negative integer
s without further restriction, they would coincide as well, see [Fol75, Theorem
4.10].

However, this equality between Goodman-Sobolev spaces and our Sobolev
spaces is not true on any general graded Lie group. For instance this does not hold
on a graded Lie groups whose weights are all strictly greater than 1. Indeed the
Lp Goodman-Sobolev space of order s = 1 is Lp(G) which contains Lp

1(G) strictly
(see Theorem 4.4.3 (4)). An example of such a graded Lie group was given by the
gradation of the three dimensional Heisenberg group via (3.1).

We can now show the main result of this section, that is, that the Sobolev
spaces on graded Lie groups are independent of the chosen positive Rockland
operators.

Theorem 4.4.20. Let G be a graded Lie group and p ∈ (1,∞). The homogeneous
Lp-Sobolev spaces on G associated with any positive Rockland operators coincide.
The inhomogeneous Lp-Sobolev spaces on G associated with any positive Rockland
operators coincide. Moreover, in the homogeneous and inhomogeneous cases, the
Sobolev norms associated to two positive Rockland operators are equivalent.

Proof of Theorem 4.4.20. Positive Rockland operators always exist, see Remark
4.2.4 Let R1 and R2 be two positive Rockland operators on G of homogeneous
degrees ν1 and ν2, respectively. By Lemma 4.2.5, Rν2

1 and Rν1
2 are two positive

Rockland operators with the same homogeneous degree ν = ν1ν2. Their associated
homogeneous (respectively inhomogeneous) Sobolev spaces of exponent ν� = ν1ν2�
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for any � ∈ N0 coincide and have equivalent norms by Lemma 4.4.19. By inter-
polation (see Proposition 4.4.15, respectively Theorem 4.4.9), this is true for any
Sobolev spaces of exponent s ≥ 0, and by duality (see Lemma 4.4.14, respectively
Lemma 4.4.7) for any exponent s ∈ R. �

Corollary 4.4.21. Let R(1) and R(2) be two positive Rockland operators on a graded
Lie group G with degrees of homogeneity ν1 and ν2, respectively. Then for any s ∈
C and p ∈ (1,∞), the operators (I +R(1))

s
ν1 (I +R(2))−

s
ν2 and (R(1))

s
ν1 (R(2))−

s
ν2

extend boundedly on Lp(G).

Proof of Corollary 4.4.21. Let us prove the inhomogeneous case first. For any a ∈
R, we view the operator (I+R(2)

p )−
a
ν2 as a bounded operator from Lp(G) to Lp

a(G)

and use the norm f �→ ‖(I +R(1)
p )

a
ν1 f‖p on Lp

a(G). This shows that the operator

(I + R(1))
s
ν1 (I + R(2))−

s
ν2 is bounded on Lp(G), p ∈ (1,∞) for s = a ∈ R. The

case of s ∈ C follows from Proposition 4.3.7.
Let us prove the homogeneous case. For any a ∈ R, we view the opera-

tor (R(2)
p )−

a
ν2 as a bounded operator from Lp(G) to L̇p

a(G) and use the norm

f �→ ‖(R(1)
p )

a
ν1 f‖p on L̇p

a(G). This shows that the operator (R(1))
s
ν1 (R(2))−

s
ν2 is

bounded on Lp(G), p ∈ (1,∞) for s = a ∈ R. The case of s ∈ C follows from
Proposition 4.3.9. �

Thanks to Theorem 4.4.20, we can now improve our duality result given in
Lemmata 4.4.7 and 4.4.14:

Proposition 4.4.22. Let Lp
s(G) and L̇p

s(G), p ∈ (1,∞) and s ∈ R, be the inhomo-
geneous and homogeneous Sobolev spaces on a graded Lie group G, respectively.

For any s ∈ R and p ∈ (1,∞), the dual space of Lp
s(G) is isomorphic to

Lp′
−s(G) via the distributional duality, and the dual space of L̇p

s(G) is isomorphic

to L̇p′
−s(G) via the distributional duality. Here p′ is the conjugate exponent of p if

p ∈ (1,∞), i.e. 1
p +

1
p′ = 1. Consequently the Banach spaces Lp

s(G) and L̇p
s(G) are

reflexive.

4.4.6 Sobolev embeddings

In this section, we show local embeddings between the (inhomogeneous) Sobolev
spaces and their Euclidean counterparts, and global embeddings in the form of an
analogue of the classical fractional integration theorems of Hardy-Littlewood and
Sobolev.

Local results

Recalling that G has a local topological structure of Rn, one can wonder what
is the relation between our Sobolev spaces Lp

s(G) and their Euclidean counter-
parts Lp

s(R
n). The latter can also be seen as Sobolev spaces associated by the
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described construction to the abelian group (Rn,+), with Rockland operator be-
ing the Laplacian on Rn.

By Proposition 3.1.28 the coefficients of vector fields Xj with respect to
the abelian derivatives ∂xk

are polynomials in the coordinate functions x�, and
conversely the coefficients of ∂xj

’s with respect to derivatives Xk are polynomials
in the coordinate functions x�’s. Hence, we can not expect any global embeddings
between Lp

s(G) and Lp
s(R

n).

It is convenient to define the local Sobolev spaces for s ∈ R and p ∈ (1,∞)
as

Lp
s,loc(G) := {f ∈ D′(G) : φf ∈ Lp

s(G) for all φ ∈ D(G)}. (4.45)

The following proposition shows that Lp
s,loc(G) contains Lp

s(G).

Proposition 4.4.23. For any φ ∈ D(G), p ∈ (1,∞) and s ∈ R, the operator f �→ fφ
defined for f ∈ S(G) extends continuously into a bounded map from Lp

s(G) to itself.
Consequently, we have

Lp
s(G) ⊂ Lp

s,loc(G).

Proof. The Leibniz’ rule for the Xj ’s and the continuous inclusions in Theorem
4.4.3 (4) imply easily that for any fixed α ∈ Nn

0 there exist a constant C = Cα,φ > 0
and a constant C ′ = C ′

α,φ > 0 such that

∀f ∈ D(G) ‖Xα(fφ)‖p ≤ C
∑

[β]≤[α]

‖Xβf‖p ≤ C ′‖f‖Lp
[α]

(G).

Lemma 4.4.19 yields the existence of a constant C ′′ = C ′′
α,φ > 0 such that

∀f ∈ D(G) ‖fφ‖Lp
�ν(G) ≤ C ′′‖f‖Lp

�ν(G)

for any integer � ∈ N0 and any degree of homogeneity ν of a Rockland operator.
This shows the statement for the case s = ν�. The case s > 0 follows by

interpolation (see Theorem 4.4.9), and the case s < 0 by duality (see Proposition
4.4.22). �

We can now compare locally the Sobolev spaces on graded Lie groups and
on their abelian counterpart:

Theorem 4.4.24 (Local Sobolev embeddings). For any p ∈ (1,∞) and s ∈ R,

Lp
s/υ1,loc

(Rn) ⊂ Lp
s,loc(G) ⊂ Lp

s/υn,loc
(Rn).

Above, Lp
s,loc(R

n) denotes the usual local Sobolev spaces, or equivalently the
spaces defined by (4.45) in the case of the abelian (graded) Lie group (Rn,+).
Recall that υ1 and υn are respectively the smallest and the largest weights of the
dilations. In particular, in the stratified case, υ1 = 1 and υn coincides with the
number of steps in the stratification, and with the step of the nilpotent Lie group
G. Hence in the stratified case we recover Theorem 4.16 in [Fol75].
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Proof of Theorem 4.4.24. It suffices to show that the mapping f �→ fφ defined
on D(G) extends boundedly from Lp

s/υ1
(Rn) to Lp

s(G) and from Lp
s(G) to

Lp
s/υn,loc

(Rn). By duality and interpolation (see Theorem 4.4.9 and Proposition

4.4.22), it suffices to show this for a sequence of increasing positive integers s.
For the Lp

s/υ1
(Rn) → Lp

s(G) case, we assume that s is divisible by the ho-

mogeneous degree of a positive Rockland operator. Then we use Lemma 4.4.19,
the fact that the Xα may be written as a combination of the ∂β

x with polynomial
coefficients in the x�’s and that max[β]≤s |β| = s/υ1.

For the case of Lp
s(G) → Lp

s/υn,loc
(Rn), we use the fact that the abelian

derivative ∂α
x , |α| ≤ s, may be written as a combination over the Xβ , |β| ≤ s, with

polynomial coefficients in the x�’s, that Xβ maps Lp → Lp
[β] boundedly together

with max|β|≤s[β] = sυn. �

Proceeding as in [Fol75, p.192], one can convince oneself that Theorem 4.4.24
can not be improved.

Global results

In this section, we show the analogue of the classical fractional integration theo-
rems of Hardy-Littlewood and Sobolev. The stratified case was proved by Folland
in [Fol75] (mainly Theorem 4.17 therein).

Theorem 4.4.25 (Sobolev embeddings). Let G be a graded Lie group with homo-
geneous dimension Q.

(i) If 1 < p < q <∞ and a, b ∈ R with

b− a = Q(
1

p
− 1

q
)

then we have the continuous inclusion

Lp
b ⊂ Lq

a,

that is, for every f ∈ Lp
b , we have f ∈ Lq

a and there exists a constant C =
Ca,b,p,q,G > 0 independent of f such that

‖f‖Lq
a
≤ C‖f‖Lp

b
.

(ii) If p ∈ (1,∞) and

s > Q/p

then we have the inclusion

Lp
s ⊂ (C(G) ∩ L∞(G)) ,



242 Chapter 4. Rockland operators and Sobolev spaces

in the sense that any function f ∈ Lp
s(G) admits a bounded continuous rep-

resentative on G (still denoted by f). Furthermore, there exists a constant
C = Cs,p,G > 0 independent of f such that

‖f‖∞ ≤ C‖f‖Lp
s(G).

Proof. Let us first prove Part (i). We fix a positive Rockland operatorR of homoge-
neous degree ν and we assume that b > a and p, q ∈ (1,∞) satisfy b−a = Q( 1p−

1
q ).

By Proposition 4.4.13 (5),

‖R
a
ν
q φ‖Lq ≤ C‖R

b
ν
p φ‖Lp .

We can apply this to (a, b) and to (0, b − a). Adding the two corresponding esti-
mates, we obtain

‖φ‖Lq + ‖R
a
ν
q φ‖Lq ≤ C

(
‖R

b−a
ν

p φ‖Lp + ‖R
b
ν
p φ‖Lp

)
.

Since b, a, and b−a are positive, by Theorem 4.4.3 (4), the left-hand side is equiv-
alent to ‖φ‖Lq

a
and both terms in the right-hand side are ≤ C‖φ‖Lp

b
. Therefore,

we have obtained that

∃C = Ca,b,p,q,R ∀φ ∈ S(G) ‖φ‖Lq
a
≤ C‖φ‖Lp

b
.

By density of S(G) in the Sobolev spaces, this shows Part (i).
Let us prove Part (ii). Let p ∈ (1,∞) and s > Q/p. By Corollary 4.3.13, we

know that
Bs ∈ L1(G) ∩ Lp′

(G),

where p′ is the conjugate exponent of p. For any f ∈ Lp
s(G), we have

fs := (I +Rp)
s
ν f ∈ Lp

and
f = (I +Rp)

− s
ν fs = fs ∗ Bs.

Therefore, by Hölder’s inequality,

‖f‖∞ ≤ ‖fs‖p‖Bs‖p′ = ‖Bs‖p′‖f‖Lp
s
.

Moreover, for almost every x, we have

f(x) =

∫
G

fs(y)Bs(y−1x)dy =

∫
G

fs(xz
−1)Bs(z)dz.

Thus for almost every x, x′, we have

|f(x)− f(x′)| =

∣∣∣∣∫
G

(
fs(xz

−1)− fs(x
′z−1)

)
Bs(z)dz

∣∣∣∣
≤ ‖Bs‖p′‖fs(x ·)− fs(x

′ ·)‖p.
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As the left regular representation is continuous (see Example 1.1.2) we have

‖fs(x ·)− fs(x
′ ·)‖Lp(G) −→x′→x 0,

thus almost surely

|f(x)− f(x′)| −→x′→x 0.

Hence we can modify f so that it becomes a continuous function. This concludes
the proof. �

From the Sobolev embeddings (Theorem 4.4.25 (ii)) and the description of
Sobolev spaces with integer exponent (Lemma 4.4.19) the following property fol-
lows easily:

Corollary 4.4.26. Let G be a graded Lie group, p ∈ (1,∞) and s ∈ N. We assume
that s is proportional to the homogeneous degree ν of a positive Rockland operator,
that is, s

ν ∈ N, and that s > Q/p.

Then if f is a distribution on G such that f ∈ Lp(G) and Xαf ∈ Lp(G) when
α ∈ Nn

0 satisfies [α] = s, then f admits a bounded continuous representative (still
denoted by f). Furthermore, there exists a constant C = Cs,p,G > 0 independent
of f such that

‖f‖∞ ≤ C

⎛⎝‖f‖p + ∑
[α]=s

‖Xαf‖p

⎞⎠ .

The Sobolev embeddings, especially Corollary 4.4.26, enables us to define
Schwartz seminorms not only in terms of the supremum norm, but also in terms
of any Lp-norms:

Proposition 4.4.27. Let | · | be a homogeneous norm on a graded Lie group G. For
any p ∈ [1,∞], a > 0 and k ∈ N0, the mapping

S(G) � φ �→ ‖φ‖S,a,k,p :=
∑
[α]≤k

‖(1 + | · |)aXαφ‖p

is a continuous seminorm on the Fréchet space S(G).

Moreover, let us fix p ∈ [1,∞] and two sequences {kj}j∈N, {aj}j∈N, of non-
negative integers and positive numbers, respectively, which go to infinity. Then the
family of seminorms ‖ · ‖S,aj ,kj ,p, j ∈ N, yields the usual topology on S(G).

Proof of Proposition 4.4.27. One can check easily that the property

∀1 ≤ p, q ≤ ∞, a > 0, k ∈ N0, ∃a′ > 0, k′ ∈ N0, C > 0,

‖ · ‖S,a,k,p ≤ ‖ · ‖S,a′,k′,q, (4.46)

is a consequence of the following observations (applied to Xαφ instead of φ):
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1. If p and q are finite, by Hölder’s inequality, we have

‖(1 + | · |)aφ‖p ≤ C‖(1 + | · |)a′
φ‖q

where C is a finite constant of the group G, p and q. In fact C is explicitly
given by

C = ‖(1 + | · |)−
Q+1

r ‖r =

(
|B(0, 1)|

∫ ∞

0

(1 + ρ)−(Q+1)ρQ−1dρ

) 1
r

,

with r ∈ (1,∞) such that 1
p = 1

q + 1
r .

2. If p is finite and q =∞, we also have

‖(1 + | · |)aφ‖p ≤ C‖(1 + | · |)a+Q+1φ‖∞

where C = ‖(1 + | · |)−Q−1‖p is a finite constant.

3. In the case q is finite and p =∞, let us prove that

‖(1 + | · |)aφ‖∞ ≤ Cs,p

∑
[α]≤s

‖(1 + | · |)aXαφ‖p. (4.47)

Indeed first we notice that, by equivalence of the homogeneous quasi-norms
(see Proposition 3.1.35), we may assume that the quasi-norm is smooth away
from 0. We fix a function ψ ∈ D(G) such that

ψ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2.

We have easily

‖(1 + | · |)aφ‖∞ ≤ Cψ (‖φψ‖∞ + ‖φ(1− ψ)| · |a‖∞) . (4.48)

By Corollary 4.4.26, there exist an integer s ∈ N such that

‖φψ‖∞ ≤ Cs,p

∑
[α]≤s

‖Xα(φψ)‖p.

By the Leibniz rule (which is valid for any vector field) and Hölder’s inequal-
ity, we have

‖Xα(φψ)‖p ≤ Cα

∑
[α1]+[α2]≤[α]

‖Xα1φ Xα2ψ‖p

≤ Cα,p

∑
[α1]+[α2]≤[α]

‖Xα1φ‖p‖Xα2ψ‖∞.
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Hence

‖φψ‖∞ ≤ Cs,p,ψ

∑
[α]≤s

‖Xαφ‖p. (4.49)

Following the same line of arguments, we have

‖φ(1− ψ)| · |a‖∞ ≤ Cs,p

∑
[α]≤s

‖Xα(φ(1− ψ)| · |a)‖p

≤ Cs,p

∑
[α1]+[α2]≤s

‖Xα1φ Xα2{(1− ψ)| · |a}‖p

≤ Cs,p

∑
[α1]+[α2]≤s

‖(1 + | · |)aXα1φ‖p‖(1 + | · |)−aXα2{(1− ψ)| · |a}‖∞.

All the ‖ · ‖∞-norms above are finite since Xα2{(1−ψ)| · |a}(x) = 0 if |x| ≤ 1
and for |x| ≥ 1,

|Xα2{(1− ψ)| · |a}(x)| ≤ Cα2

∑
[α3]+[α4]=[α2]

|Xα3(1− ψ)(x)| |Xα4 | · |a|(x)

≤ Cα2

∑
[α3]+[α4]=[α2]

‖Xα3(1− ψ)‖∞|x|a−[α4],

since Xα4 | · |a is a homogeneous function of degree a − [α4]. Hence we have
obtained

‖φ(1− ψ)| · |a‖∞ ≤ Cs,p,ψ

∑
[α]≤s

‖(1 + | · |)aXαφ‖p.

Together with (4.48) and (4.49), this shows (4.47).

4. If p = q is finite or infinite, (4.46) is trivial.

Hence Property (4.46) holds. We also have directly for p = q ∈ [1,∞] and
any 0 < a ≤ a′, k ≤ k′,

‖ · ‖S,a,k,p ≤ ‖ · ‖S,a′,k′,p.

Consequently we can assume a′ to be an integer in (4.46). This clearly implies that
any family of seminorms ‖·‖S,aj ,kj ,p, j ∈ N, yields the same topology as the family
of seminorms ‖ · ‖S,N,N,∞, N ∈ N. The latter is easily equivalent to the topology
given by the family of seminorms ‖ · ‖S(G),N defined in Section 3.1.9. This is the
usual topology on S(G). �

4.4.7 List of properties for the Sobolev spaces

In this section, we list the important properties of Sobolev spaces we have already
obtained and also give some easy consequences regarding the special case of p = 2.
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Theorem 4.4.28. Let G be a graded Lie group with homogeneous dimension Q.

1. Let p ∈ (1,∞) and s ∈ R. The inhomogeneous Sobolev space Lp
s(G) is a

Banach space satisfying

S(G) � Lp
s(G) ⊂ S ′(G).

The homogeneous Sobolev space L̇p
s(G) is a Banach space satisfying

(S(G) ∩Dom(Rs/ν
p )) � L̇p

s(G) � S ′(G).

Norms on the Banach spaces Lp
s(G) and L̇p

s(G) are given respectively by

φ �→ ‖(I +Rp)
s
ν φ‖Lp(G) and φ �→ ‖R

s
ν
p φ‖Lp(G),

for any positive Rockland operator R (whose homogeneous degree is denoted
by ν). All these homogeneous norms are equivalent, all these inhomogeneous
norms are equivalent.

The continuous inclusions Lp
a(G) ⊂ Lp

b(G) holds for any a ≥ b and
p ∈ (1,∞).

2. If s = 0 and p ∈ (1,∞), then L̇p
0(G) = Lp

0(G) = Lp(G) with ‖ · ‖L̇p
0(G) =

‖ · ‖Lp
0(G) = ‖ · ‖Lp(G).

3. If s > 0 and p ∈ (1,∞), then we have

Lp
s(G) = L̇p

s(G) ∩ Lp(G),

and the inhomogeneous Sobolev norm (associated with a positive Rockland
operator) is equivalent to

‖ · ‖Lp
s(G)  ‖ · ‖Lp(G) + ‖ · ‖L̇p

s(G).

4. If T is a left-invariant differential operator of homogeneous degree νT , then
T maps continuously Lp

s+νT
(G) to Lp

s(G) for every s ∈ R, p ∈ (1,∞).

If T is a νT -homogeneous left-invariant differential operator, then T
maps continuously L̇p

s+νT
(G) to L̇p

s(G) for every s ∈ R, p ∈ (1,∞).

5. If 1 < p < q < ∞ and a, b ∈ R with b − a = Q( 1p −
1
q ), then we have the

continuous inclusions

L̇p
b ⊂ L̇q

a and Lp
b ⊂ Lq

a.

If p ∈ (1,∞) and s > Q/p then we have the following inclusion:

Lp
s ⊂ (C(G) ∩ L∞(G)) ,
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in the sense that any function f ∈ Lp
s(G) admits a bounded continuous rep-

resentative on G (still denoted by f). Furthermore, there exists a constant
C = Cs,p,G > 0 independent of f such that

‖f‖∞ ≤ C‖f‖Lp
s(G).

6. For p ∈ (1,∞) and any a, b, c ∈ R with a < c < b, there exists a positive
constant C = Ca,b,c such that we have for any f ∈ L̇p

b

‖f‖L̇p
c
≤ C‖f‖1−θ

L̇p
a
‖f‖θ

L̇p
b

and for any f ∈ Lp
b

‖f‖Lp
c
≤ C‖f‖1−θ

Lp
a
‖f‖θLp

b

where θ := (c− a)/(b− a).

7. (Gagliardo-Nirenberg inequality) If q, r ∈ (1,∞) and 0 < σ < s then there
exists C > 0 such that we have

∀f ∈ Lq(G) ∩ L̇r
s(G) ‖f‖L̇p

σ
≤ C‖f‖θLq‖f‖1−θ

L̇r
s

,

where θ := 1− σ
s and p ∈ (1,∞) is given via 1

p = θ
q + 1−θ

r .

8. Let s be an integer which is proportional to the homogeneous degree of a
positive Rockland operator. Let p ∈ (1,∞). Let f ∈ S ′(G).

The membership of f in Lp
s(G) is equivalent to f ∈ Lp(G) and Xαf ∈

Lp(G), α ∈ Nn
0 , [α] = s. Furthermore

φ �→ ‖φ‖p +
∑

[α]=ν�

‖Xαφ‖p

is a norm on the Banach space Lp
s(G).

The membership of f in L̇p
s(G) is equivalent to Xαf ∈ Lp(G), α ∈ Nn

0 ,
[α] = s. Furthermore

φ �→
∑

[α]=ν�

‖Xαφ‖p

is a norm on the Banach space L̇p
s(G).

9. (Interpolation) The inhomogeneous and homogeneous Sobolev spaces satisfy
the properties of interpolation in the sense of Theorem 4.4.9 and Proposition
4.4.15 respectively.

10. (Duality) Let s ∈ R. Let p ∈ (1,∞) and p′ its conjugate exponent. The dual

space of L̇p
s(G) is isomorphic to L̇p′

−s(G) via the distributional duality, and the

dual space of Lp
s(G) is isomorphic to L̇p′

−s(G) via the distributional duality,

Consequently, the Banach spaces Lp
s(G) and L̇p

s(G) are reflexive.
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Proof. Parts (1), (2), (3), and (6) follow from Theorem 4.4.3, Proposition 4.4.13
and Theorem 4.4.20.

Part (4) follows from Theorem 4.4.16 and Proposition 4.4.13.
Part (5) follows from Theorem 4.4.25 and Proposition 4.4.13 (5).
Part (7) follows from Parts (5) and (6).
Part (8) follows from Theorem 4.4.20.
For Part (9), see Theorem 4.4.9 and Proposition 4.4.15.
Part (10) follows from Lemmata 4.4.7 and 4.4.14 together with Theorem

4.4.20. �

Properties of L2
s(G)

Here we discuss some special feature of the case Lp(G), p = 2. Indeed L2(G) is
a Hilbert space where one can use the spectral analysis of a positive Rockland
operator.

Many of the proofs in Chapter 4 could be simplified if we had restricted
the study to the case Lp with p = 2. For instance, let us consider a positive
Rockland operator R and its self-adjoint extension R2 on L2(G). One can define
the fractional powers of R2 and I + R2 by functional analysis. Then one can
obtain the properties of the kernels of the Riesz and Bessel potentials with similar
methods as in Corollary 4.3.11.

In this case, one would not need to use the general theory of fractional powers
of an operator recalled in Section A.3. Even if it is not useful, let us mention that
the proof that R2 satisfies the hypotheses of Theorem A.3.4 is easy in this case:
it follows directly from the Lumer-Phillips Theorem (see Theorem A.2.5) together
with the heat semi-group {e−tR2}t>0 being an L2(G)-contraction semi-group by
functional analysis.

The proof of the properties of the associated Sobolev spaces L2
s(G) would

be the same in this particular case, maybe slightly helped occasionally by the
Hölder inequality being replaced by the Cauchy-Schwartz inequality. A noticeable
exception is that Lemma 4.4.19 can be obtained directly in the case Lp, p = 2,
from the estimates due to Helffer and Nourrigat (see Corollary 4.1.14).

The main difference between L2 and Lp Sobolev spaces is the structure of
Hilbert spaces of L2

s(G) whereas the other Sobolev spaces Lp
s(G) are ‘only’ Banach

spaces:

Proposition 4.4.29 (Hilbert space L2
s). Let G be a graded Lie group.

For any s ∈ R, L2
s(G) is a Hilbert space with the inner product given by

(f, g)L2
s(G) :=

∫
G

(I +R2)
s
ν f(x) (I +R2)

s
ν g(x)dx,

and L̇2
s(G) is a Hilbert space with the inner product given by

(f, g)L̇2
s(G) :=

∫
G

R
s
ν
2 f(x) R

s
ν
2 g(x)dx,
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where R is a positive Rockland operator of homogeneous degree ν.
If s > 0, an equivalent inner product on L2

s(G) is

(f, g)L2
s(G) :=

∫
G

f(x) g(x)dx +

∫
G

R
s
ν
2 f(x) R

s
ν
2 g(x)dx.

If s = ν� with � ∈ N0, an equivalent inner product on L2
s(G) is

(f, g) = (f, g)L2(G) +
∑

[α]=ν�

(Xαf,Xαg)L2(G),

and an equivalent inner product on L̇2
s(G) is

(f, g) =
∑

[α]=ν�

(Xαf,Xαg)L2(G).

Proposition 4.4.29 is easily checked, using the structure of Hilbert space of
L2(G) and, for the last property, simplifying the proof of Lemma 4.4.19.

4.4.8 Right invariant Rockland operators and Sobolev spaces

We could have started with right-invariant (homogeneous) Rockland operators R̃
instead of R. We discuss here some links between the two operators and their
Sobolev spaces.

Since both left and right invariant Rockland operators are differential op-
erators, we can relate them by Formulae (1.11) for the derivatives Xα and X̃α.
Then, given our analysis of R, we can give some immediate properties of the
right-invariant operator R̃:
Proposition 4.4.30. Let R be a positive Rockland operator. For any φ ∈ S(G),

R̃φ(x) = (Rt{φ(·−1)})(x−1) = (R̄{φ(·−1)})(x−1),

because Rt = R̄. Therefore, the spectral measure Ẽ of R̃ is given by

Ẽ(φ)(x) = (Ē{φ(·−1)})(x−1), φ ∈ L2(G), x ∈ G.

Consequently, the multipliers of R̃ and R are linked by

m(R̃)(φ)(x) = (m(R̄){φ(·−1)})(x−1). (4.50)

The operators R and R̃ commute strongly, that is, their spectral measures E
and Ẽ commute. Moreover, for functions f, g ∈ S ′(G) and a ∈ C, we have

Ra(f ∗ g) = f ∗ Rag,

R̃a(f ∗ g) = (R̃af) ∗ g,
(Raf) ∗ g = f ∗ R̃ag.
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We can give a right-invariant version of Definition 4.3.17:

Definition 4.4.31. Let R be a positive Rockland operator of homogeneous degree ν
and let s ∈ R. For any tempered distribution f ∈ S ′(G), we denote by (I+ R̃)s/νf
the tempered distribution defined by

〈(I + R̃)s/νf, φ〉 := 〈f, (I + ˜̄R)s/νφ〉, φ ∈ S(G).

The Sobolev spaces that we have introduced are based on the Sobolev spaces
corresponding to left-invariant vector fields and left-invariant positive Rockland
operators. We could have considered the right Sobolev spaces L̃p

s(G) defined via
the Sobolev norms

f �→ ‖(I + R̃)s/νf‖Lp .

The relations between left and right vector fields in (1.11) easily implies that
if f ∈ Lp(G) is such that Xαf ∈ Lp(G) then f̃ : x �→ f(x−1) is in Lp(G) and
satisfies X̃αf̃ ∈ Lp(G). By Lemma 4.4.19, we see that the map f �→ f̃ must map
continuously Lp

s → L̃p
s for any p ∈ (1,∞) and s a multiple of the homogeneous

degrees of positive Rockland operators.
More generally, the spectral calculus, see (4.50), implies

(I + R̃2)
s/νf(x) = (I +R2)

s/ν f̃(x−1), f ∈ S(G),

where, again, f̃(x) = f(x−1), and thus for any p ∈ (1,∞o),

‖(I + R̃p)
s/νf‖Lp(G) = ‖(I +Rp)

s/ν f̃‖Lp(G), f ∈ S(G).

This easily implies that f �→ f̃ maps continuously Lp
s → L̃p

s for any p ∈ (1,∞)

and any real exponent s ∈ R. This is also an involution:
˜̃
f = f . Hence the map{

Lp
s(G) −→ L̃p

s(G)

f �−→ f̃

is an isomorphism of vector spaces.

Even if the left and right Sobolev spaces are isomorphic, they are not equal in
general. Note that in the commutative case of G = Rn, both left and right Sobolev
spaces coincide. It is also the case on compact Lie groups, where the Sobolev spaces
are associated with the Laplace-Beltrami operator (which is central) and coincide
with localisation of the Euclidean Sobolev spaces [RT10a]. This is no longer the
case in the nilpotent setting. Indeed, below we give an example of functions f
(necessarily not symmetric, that is, f̃ �= f), in some Lp

s(G) but not in L̃p
s(G).

Example 4.4.32. Let us consider the three dimensional Heisenberg group H1 and
the canonical basis X,Y, T of its Lie algebra (see Example 1.6.4). Then X =
∂x − y

2∂t whereas X̃ = ∂x + y
2∂t thus X̃ −X = y∂t.

The Sobolev spaces are then associated with the natural sub-Laplacian X2+
Y 2, see Example 6.1.1. Hence it is covered by the work of Folland [Fol75] on Sobolev
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spaces associated with sub-Laplacian on stratified Lie groups and consequently,
L2
1(G) is the space of functions f ∈ L2(H1) such that Xf and Y f are both in

L2(H1) [Fol75, Corollary 4.13].
One can find a smooth function φ ∈ C∞(R) such that φ, φ′ ∈ L2(R) but∫

R
|z|2|φ′(z)|2dz =∞. For instance, we consider φ = φ1 ∗ ψ where ψ is a suitable

smoothing function (i.e. ψ ∈ D(G) is valued in [0, 1] with a ‘small’ support around
0), and the graph of the function φ1 is given by isosceles triangles parametrised
by � ∈ N, with vertex at points (�, �β), and base on the horizontal axis and with
length 2/�α. We then choose α, β ∈ R with 2β ∈ (−3,−1) and 2α > 2β + 1. We
also fix a smooth function χ : R → [0, 1] supported on [1/2, 2] with χ(1) = 1. We
define f ∈ C∞(R3) via

f(x, y, t) = φ
(yx

2
+ t

)
χ(x)χ(t).

One checks easily that f , Xf and Y f are square integrable hence f ∈ L2
1(H1).

However y∂tf is not square integrable. As X̃ −X = y∂tf , this shows that (−X +
X̃)f /∈ L2(H1) and X̃f can not be in L2 thus f is not in L̃2

1(H1).

4.5 Hulanicki’s theorem

We now turn our attention to Hulanicki’s theorem which will be useful in the next
chapter when we deal with pseudo-differential operators on graded Lie groups.
An important consequence of Hulanicki’s theorem is the fact that a Schwartz
multiplier in (the L2-self-adjoint extension of) a positive Rockland operator has
a Schwartz kernel. This section is devoted to the statement and the proof of
Hulanicki’s theorem and its consequence regarding Schwartz multiplier.

From now on, we will allow ourselves to keep the same notation R for a
positive Rockland operator and its self-adjoint extension R2 on L2(G) when no
confusion is possible. In particular, when we define functions of R2 (see Corollary
4.1.16), that is, a multiplier m(R2) defined using the spectral measure of R2 where
m ∈ L∞(R+) is a function, we may often write

m(R2) = m(R),

in order to ease the notation. Furthermore, we denote the corresponding right-
convolution kernel of this operator by

m(R)δo.

4.5.1 Statement

Hulanicki proved in [Hul84] that if multipliers m satisfy Marcinkiewicz properties,
then the kernels of m(R) satisfy certain estimates:
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Theorem 4.5.1 (Hulanicki). Let R be a positive Rockland operator on a graded Lie
group G. Let |·| be a fixed homogeneous quasi-norm on G. For any M1 ∈ N,M2 ≥ 0
there exist C = CM1,M2

> 0 and k = kM1,M2
∈ N0, k

′ = k′M1,M2
∈ N0 such that

for any m ∈ Ck[0,∞), we have∑
[α]≤M1

∫
G

|Xαm(R)δo(x)| (1 + |x|)M2dx ≤ C sup
λ>0

�=0,...,k
�′=0,...,k′

(1 + λ)�
′ |∂�

λm(λ)|,

in the sense that if the right-hand side is finite then the left-hand side is also finite
and the inequality holds.

The main consequence of Theorem 4.5.1 is the following:

Corollary 4.5.2. Let R be a positive Rockland operator on a graded Lie group G.
If φ ∈ S(R) then the kernel φ(R)δo of φ(R) is Schwartz. Furthermore, the map
associating a multiplier function with its kernel

S(R) � φ �−→ φ(R)δo ∈ S(G), (4.51)

is continuous between the Schwartz spaces.

The continuity of (4.51) means that for any continuous seminorm ‖ · ‖ on
S(G) there exist C > 0 and N ∈ N such that for any m ∈ S(R) we have

‖m(R)δo‖ ≤ C sup
x∈R,�≤N

|(1 + |x|)N∂�m(x)|.

Examples of such Schwartz seminorms are ‖ · ‖S(G),N , N ∈ N, defined in Section
3.1.9, and ‖ · ‖S,a,k,p, a > 0, k ∈ N0, p ∈ [1,∞], defined in Proposition 4.4.27.

For completeness’ sake, we include the proofs of Theorem 4.5.1 and Corollary
4.5.2 below. Before this, let us notice that Corollary 4.5.2 implies that the heat
kernel of any Rockland operator is Schwartz. However, we will see that the proofs
of Theorem 4.5.1 and Corollary 4.5.2 rely on the properties of the Bessel potentials
which have been shown, in turn, using the properties of the heat kernel. Beside
the properties of the Bessel potentials, the proof uses the functional calculus of R
and the structure of G.

4.5.2 Proof of Hulanicki’s theorem

This section is devoted to the proof of Theorem 4.5.1 and can be skipped at first
reading.

We follow the essence of [Hul84], but we modify the original proof to take
into account our presentation of the properties of Rockland operators as well as to
bring some (small) simplifications. We also do not present some results obtained
in [Hul84] on groups of polynomial growth. One of these simplifications is the fact
that we fix a quasi-norm | · | which we assume to be a norm. Indeed, it is clear
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from the equivalence of quasi-norms (see Proposition 3.1.35) that it suffices to
prove Hulanicki’s theorem for one quasi-norm for it to hold for any quasi-norm.
As a homogeneous norm exists by Theorem 3.1.39, we may assume that | · | is
a norm without loss of generality. We could do without this but it simplifies the
constants in the next pages.

First step

The first step in the proof can be summarised with the following lemma:

Lemma 4.5.3. Let m : [0,+∞) → C be a function and let �o ∈ N. We define the
function F : (−∞, 1)→ C by

F (ξ) :=

{
m

(
ξ−

1
�o − 1

)
if 0 < ξ < 1,

0 if ξ ≤ 0,

and we have
∀λ ∈ [0,∞) m(λ) = F

(
(1 + λ)−�o

)
.

Furthermore, the following holds.

1. The function F extends to a continuous function on R if and only if m is
continuous on [0,∞) and limλ→+∞ m(λ) = 0.

2. The function F extends to a C1 function on R if and only if m is C1 on
[0,∞) with limλ→+∞ m(λ) = 0 and limλ→+∞(1 + λ)1+�om′(λ) = 0.

Let k ∈ N. If m ∈ Ck[0,+∞) and

lim
λ→+∞

(1 + λ)1+j+k�o |m(j)(λ)| = 0 for j = 1, . . . , k′,

then the function F extends to a function in Ck(R)

3. Let k ∈ N and m ∈ Ck[0,∞). We assume that the suprema

sup
λ≥0

(1 + λ)2+j+k�o |m(j)(λ)|, j = 0, . . . , k.

are finite. Then we can construct an extension to R, still denoted by F , such
that the function F ∈ Ck(R) is supported in [0, 2] and satisfies F̂ (0) = 0 and
for every � ∈ Z,∣∣∣F̂ (�)

∣∣∣ ≤ C(1 + |�|)−k sup
λ≥0

j=0,...,k

(1 + λ)1+j+k�o |m(j)(λ)|,

where C = Ck,�o is a positive constant independent of m. Here F̂ (�), � ∈ Z,
denotes the Fourier coefficients of F in the sense of

F̂ (�) :=

∫ π

−π

F (ξ)e−iξ� dξ

2π
.
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Proof. Part (1) is easy to prove. Part (2) in the case of k = 1 follows easily from
the following observations.

• If ξ = (1 + λ)−�0 , λ > 0 then

F (ξ)− F (0)

ξ
= (1 + λ)�om(λ).

• We can compute formally for ξ ∈ (0, 1):

F ′(ξ) =
− 1

� o

ξ
1
� o

+1
m′

(
ξ−

1
� o − 1

)
,

and in particular if ξ = (1 + λ)−�0 , λ > 0, then

F ′(ξ) = −1

� o
(1 + λ)1+�om′(λ).

The general case of Part (2) follows from the following observation: F (k′)(ξ) is a
linear combination over j = 1, . . . , k′ of

ξ−
1
�o

−(k′−j)−j( 1
�o

+1)m(j)
(
ξ−

1
� o − 1

)
= ξ−

1+j
�o

−k′
m(j)

(
ξ−

1
� o − 1

)
.

The details are left to the reader.
Let us prove Part (3). Let m ∈ Ck[0,∞). Let Pk be the Taylor expansion

of m at 0, that is, Pk is the polynomial of degree k such that we have for λ > 0
small,

m(λ) = Pk(λ) + o(|λ|k).

We fix an arbitrary smooth function χ supported in [0, 2] and satisfying χ ≡ 1 on
[0, 1]. We construct an extension of F , still denoted F , by setting

F (ξ) :=

⎧⎪⎪⎨⎪⎪⎩
0 if ξ ≤ 0,

m
(
ξ−

1
�o − 1

)
if 0 < ξ < 1,

Pk

(
ξ−

1
� o − 1

)
χ(ξ) if ξ ≥ 1.

We assume that the suprema given in the statement of Part 3 are finite. Clearly
F ∈ Ck(R) is supported in [0, 2]. The proof of Part 2 implies easily

‖F (k′)‖∞ ≤ C

k′∑
j=1

sup
λ≥0

(1 + λ)1+j+�ok
′ |m(j)(λ)|, (4.52)

where the constant C = Ck′,�o,χ > 0 is independent on m.
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The Fourier coefficient of F at 0 is

F̂ (0) =

∫ π

−π

F (ξ)
dξ

2π

=

∫ 1

0

m(ξ−
1
� o − 1)

dξ

2π
+

∫ 2

1

Pk

(
ξ−

1
� o − 1

)
χ(ξ)

dξ

2π

=

∫ ∞

0

m(λ)
−�o
2π

dλ

(1 + λ)�o+1
+

∫ 2

1

Pk

(
ξ−

1
� o − 1

)
χ(ξ)

dξ

2π
.

We can always assume that the function χ was chosen so that∫ 2

1

Pk

(
ξ−

1
� o − 1

)
χ(ξ)

dξ

2π
=

∫ ∞

0

m(λ)
�o
2π

dλ

(1 + λ)�o+1
.

Indeed, it suffices to replace χ by χ+ cχ1 where χ1 ∈ D(R) is supported in (1, 2)
and c a well chosen constant.

It is a simple exercise using integration by parts to show that the Fourier
coefficients may be estimated by

∀k′ = 0, . . . , k ∃C = Ck′ > 0 ∀� ∈ Z |F̂ (�)| ≤ C(1 + |�|)−k′‖F (k′)‖∞.

This together with (4.52) concludes the proof of Part (3). �

Second step

The second step consists in noticing that, with the notation of Lemma 4.5.3,
studying the multiplierm(R) and using the Fourier series of F leads to consider the

operator ei�(I+R)−�o
and, more precisely, the properties of its convolution kernel.

Lemma 4.5.4. Let R be a positive Rockland operator on a graded Lie group G. Let
�o ∈ N and Fo(ξ) := eiξ − 1, ξ ∈ R. Then, for any � ∈ Z, the convolution kernel
of Fo(�(I +R)−�o) is an integrable function:

Fo(�(I +R)−�o)δo ∈ L1(G).

Proof of Lemma 4.5.4. Since Fo(�ξ) =
∑∞

j=1
(i�ξ)j

j! , we have at least formally

κ� :=
{
Fo(�(I +R)−�o)

}
δo

=

∞∑
j=1

(i�)j

j!
(I +R)−j�oδ0 =

∞∑
j=1

(i�)j

j!
Bνj�o ,

where Ba is the convolution kernel of the Bessel potentials, see Section 4.3.4, and
ν is the degree of homogeneity of R. In fact, by Corollary 4.3.11, we know that

∀a ∈ C+ Ba ∈ L1(G) and Bνj�o = Bν�o ∗ . . . ∗ Bν�o := B∗jν�o .


