
Chapter 2

Quantization on compact Lie
groups

In this chapter we briefly review the global quantization of operators and sym-
bols on compact Lie groups following [RT13] and [RT10a] as well as more recent
developments of this subject in this direction. Especially the monograph [RT10a]
can serve as a companion for the material presented here, so we limit ourselves to
explaining the main ideas only. This quantization yields full (finite dimensional)
matrix-valued symbols for operators due to the fact that the unitary irreducible
representations of compact Lie groups are all finite dimensional. Here, in order
to motivate the developments on nilpotent groups, which is the main subject of
the present monograph, we briefly review key elements of this theory referring to
[RT10a] or to other sources for proofs and further details.

Technically, the machinery for such global quantization of operators on com-
pact Lie groups appears to be simpler than that on graded Lie groups that we deal
with in subsequent chapters. Indeed, since the symbols can be viewed as matri-
ces (more precisely, as linear transformations of finite dimensional representation
spaces), we do not have to worry about their domains of definitions, extensions,
and other functional analytical properties arising in the nilpotent counterpart of
the theory. Also, we have the Laplacian at our disposal, which is elliptic and bi-
invariant, simplifying the analysis compared to the analysis based on, for example,
the sub-Laplacian on the Heisenberg group, or more general Rockland operators
on graded Lie groups. On the other hand, the theory on graded Lie groups is
greatly assisted by the homogeneous structure, significantly simplifying the anal-
ysis of appearing difference operators and providing additional tools such as the
naturally defined dilations on the group.

When we will be talking about the quantization on graded Lie groups in
Chapter 5 we will be mostly concerned, at least in the first stage, about assigning
an operator to a given symbol. In fact, it will be a small challenge by itself to make
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58 Chapter 2. Quantization on compact Lie groups

rigorous sense of a notion of a symbol there, but eventually we will show that the
correspondence between symbols and operators is one-to-one. The situation on
compact Lie groups is considerably simpler in this respect. Moreover, in (2.19)
we will give a simple formula determining the symbol for a given operator. Thus,
here we may talk about quantization of both symbols and operators, with the
latter being often preferable from the point of view of applications, when we are
concerned in establishing certain properties of a given operator and use its symbol
as a tool for it.

Overall, this chapter is introductory, also serving as a motivation for the
subsequent analysis, so we only sketch the ideas and refer for a thorough treatise
with complete proofs to the monograph [RT10a] or to the papers that we point
out in relevant places.

We do not discuss here all applications of this analysis in the compact setting.
For example, we can refer to [DR14b] for applications of this analysis to Schatten
classes, r-nuclearity, and trace formulae for operators on L2(G) and Lp(G) for
compact Lie groups G. For the functional calculus of matrix symbols and operators
on G we refer to [RW14].

A related but different approach to the pseudo-differential calculus of [RT10a]
has been also recently investigated in [Fis15]; there, a different notion of difference
operators is defined intrinsically on each compact groups. This will not be discussed
here.

2.1 Fourier analysis on compact Lie groups

Throughout this chapter G is always a compact Lie group. As in Chapter 1, we
equip it with the uniquely determined probability Haar measure which is auto-
matically bi-invariant by the compactness of G. We denote it by dx. We start by
making a few remarks on the representation theory specific to compact Lie groups.

2.1.1 Characters and tensor products

An important first addition to Section 1.1 is that for a compact group G, every
continuous irreducible unitary representation of G is finite dimensional. We denote
by dπ the dimension of a finite dimensional representation π, dπ = dimHπ.

Another important property is the orthogonality of representation coefficients
as follows. Let π1, π2 ∈ Ĝ and let us choose some basis in the representation spaces

so that we can view π1, π2 as matrices π1 = ((π1)ij)
dπ1
i,j=1 and π2 = ((π2)kl)

dπ2

k,l=1.
Then:

• if π1 �= π2, then ((π1)ij , (π2)kl)L2(G) = 0 for all i, j, k, l;

• if π1 = π2 but (i, j) �= (k, l), then ((π1)ij , (π2)kl)L2(G) = 0;
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• if π1 = π2 and (i, j) = (k, l), then

((π1)ij , (π2)kl)L2(G) =
1

dπ
, with dπ = dπ1

= dπ2
.

For a finite dimensional continuous unitary representation π : G → U(Hπ) we
denote

χπ(x) := Tr(π(x)),

the character of the representation π. Characters have a number of fundamental
properties most of which follow from properties of the trace:

• χπ(e) = dπ;

• π1 ∼ π2 if and only if χπ1
= χπ2

;

• consequently, the character χπ does not depend on the choice of the basis in
the representation space Hπ;

• χ(yxy−1) = χπ(x) for any x, y ∈ G;

• χπ1⊕π2
= χπ1

+ χπ2
;

• χπ1⊗π2
= χπ1

χπ2
, with the tensor product π1 ⊗ π2 defined in (2.1);

• a finite dimensional continuous unitary representation π of G is irreducible
if and only if ‖χπ‖L2(G) = 1.

• for π1, π2 ∈ Ĝ, (χπ1
, χπ2

)L2(G) = 1 if π1 ∼ π2, and (χπ1
, χπ2

)L2(G) = 0 if
π1 �∼ π2;

• for any f ∈ L2(G), there is the decomposition

f =
∑
π∈Ĝ

dπf ∗ χπ,

given by the projections (2.7).

If we take π1 ∈ Hom(G,U(H1)) and π2 ∈ Hom(G,U(H2)) two finite dimen-
sional representations of G on H1 and H2, respectively, their tensor product π1⊗π2

is the representation on H1 ⊗H2, π1 ⊗ π2 ∈ Hom(G,U(H1 ⊗H2)), defined by

(π1 ⊗ π2)(x)(v1 ⊗ v2) := π1(x)v1 ⊗ π2(x)v2. (2.1)

Here the inner product on H1 ⊗H2 is induced from those on H1 and H2 by

(v1 ⊗ v2, w1 ⊗ w2)H1⊗H2 := (v1, w1)H1(v2, w2)H2 .

In particular, it follows that

((π1 ⊗ π2)(x)(v1 ⊗ v2), w1 ⊗ w2)H1⊗H2
= (π1(x)v1, w1)H1

(π2(x)v2, w2)H2
. (2.2)
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If π1, π2 ∈ Ĝ, the representation π1 ⊗ π2 does not have to be irreducible, and we
can decompose it into irreducible ones:

π1 ⊗ π2 =
⊕
π∈Ĝ

mππ. (2.3)

The constants mπ = mπ(π1, π2) are called the Clebsch-Gordan coefficients and
they determine the multiplicity of π in π1 ⊗ π2,

mππ ≡ ⊕mπ
1 π.

Also, we can observe that in view of the finite dimensionality only finitely many of
mπ’s are non-zero. Combining this with (2.2), we see that the product of any of the

matrix coefficients of representations π1, π2 ∈ Ĝ can be written as a finite linear
combination of matrix coefficients of the representations from (2.3) with non-zero
Clebsch-Gordan coefficients. In fact, this can be also seen on the level of characters
providing more insight into the multiplicities mπ. First, for the tensor product of
π1 and π2 we have χπ1⊗π2

= χπ1
χπ2

. Consequently, equality (2.3) implies

χπ1
χπ2

= χπ1⊗π2
=

∑
π∈Ĝ

mπχπ (2.4)

with
mπ = mπ(π1, π2) = (χπ1

χπ2
, χπ)L2(G).

This equality can be now reduced to the maximal torus of G, for which we recall

Cartan’s maximal torus theorem: Let Tl ↪→ G be an injective group homomorphism
with the largest possible l. Then two representations of G are equivalent if and
only if their restrictions to Tl are equivalent. In particular, the restriction χπ|Tl of
χπ to Tl determines the equivalence class [π].

Now, coming back to (2.4), we can conclude that we have

χπ1 |Tl χπ2 |Tl =
∑
π∈Ĝ

mπ χπ|Tl .

For a compact connected Lie group G, the maximal torus is also called the Cartan
subgroup, and its dimension is denoted by rankG, the rank of G.

Explicit formulae for representations and the Clebsch-Gordan coefficients on
a number of compact groups have been presented by Vilenkin [Vil68] or Zhelobenko
[Žel73], with further updates in [VK91, VK93] by Vilenkin and Klimyk.

2.1.2 Peter-Weyl theorem

As discussed in Section 1.3, the Casimir element of the universal enveloping algebra
U(g) can be viewed as an elliptic linear second order bi-invariant partial differential
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operator on G. If G is equipped with the uniquely determined (normalised) bi-
invariant Riemannian metric, the Casimir element can be viewed as its (negative
definite) Laplace-Beltrami operator, which we will denote by LG. Consequently,
for any D ∈ U(g) we have

DLG = LGD.

The fundamental result on compact groups is the Peter-Weyl Theorem
[PW27] giving a decomposition of L2(G) into eigenspaces of the Laplacian LG

on G, which we now sketch.

Theorem 2.1.1 (Peter-Weyl). The space L2(G) can be decomposed as the orthogonal

direct sum of bi-invariant subspaces parametrised by Ĝ,

L2(G) =
⊕
π∈Ĝ

Vπ, Vπ = {x �→ Tr(Aπ(x)) : A ∈ Cdπ×dπ},

the decomposition given by the Fourier series

f(x) =
∑
π∈Ĝ

dπ Tr
(
f̂(π)π(x)

)
. (2.5)

After a choice of the orthonormal basis in each representation space Hπ, the set

B :=
{√

dπ πij : π = (πij)
dπ
i,j=1, π ∈ Ĝ

}
(2.6)

becomes an orthonormal basis for L2(G). For f ∈ L2(G), the convergence of the
series in (2.5) holds for almost every x ∈ G, and also in L2(G).

One possible idea for the proof of the Peter-Weyl theorem is as follows. Let
us take B as in (2.6). Finite linear combinations of elements of B are called the
trigonometric polynomials on G, and we denote them by span(B). From the orthog-
onality of representations (see Section 2.1.1) we know that B is an orthonormal
set in L2(G). It follows from (2.3) and the consequent discussion that span(B) is a
subalgebra of C(G), trivial representation is its identity, and it is involutive since

π∗ ∈ Ĝ if π ∈ Ĝ. By invariance it is clear that B separates points of G. Conse-
quently, by the Stone-Weierstrass theorem span(B) is dense in C(G). Therefore,
it is also dense in L2(G), giving the basis and implying the Peter-Weyl theorem.

For f ∈ L2(G), the decomposition

f =
∑
π∈Ĝ

dπf ∗ χπ

given in Section 2.1.1 corresponds to the decomposition (2.5), the projections of
L2(G) to Vπ given by the convolution mappings

L2(G) � f �→ f ∗ χπ ∈ Vπ. (2.7)



62 Chapter 2. Quantization on compact Lie groups

The Peter-Weyl theorem can be also viewed as the decomposition of left or right
regular representations of G on L2(G) into irreducible components. Indeed, from
the homomorphism property of representations it follows that in the decomposition

L2(G) =
⊕
π∈Ĝ

dπ⊕
j=1

span{πij : 1 ≤ i ≤ dπ}, (2.8)

the spans on the right hand side are πL-invariant, and the restriction of πL to each
such space is equivalent to the representation π itself. This gives the decomposition
of πL into irreducible components as

πL ∼
⊕
π∈Ĝ

dπ⊕
1

π.

The same is true for the decomposition of L2(G) into πR-invariant subspaces
span{πij : 1 ≤ j ≤ dπ}, replacing the spans in (2.8).

It follows that the spaces Vπ are bi-invariant subspaces of L2(G) and, there-
fore, they are eigenspaces of all bi-invariant operators. In particular, they are
eigenspaces for the Laplacian LG and, by varying the basis in the representation
space Hπ, we see that Vπ corresponds to the same eigenvalue of LG, which we
denote by −λπ, i.e.

−LG|Vπ
= λπI, λπ ≥ 0. (2.9)

It is useful to introduce also the quantity corresponding to the first order elliptic
operator (I− LG)

1/2,
〈π〉 := (1 + λπ)

1/2, (2.10)

so that we also have
(I− LG)

1/2|Vπ
= 〈π〉I.

The quantity 〈π〉 and its powers become very useful in quantifying the growth/
decay of Fourier coefficients, and eventually of symbols of pseudo-differential op-
erators.

Using the Fourier series expression (2.5) and the orthogonality of matrix
coefficients of representations, one can readily show that the Plancherel identity
takes the form

(f, g)L2(G) =
∑
π∈Ĝ

dπ Tr
(
f̂(π)ĝ(π)∗

)
.

From this, it becomes natural to define the norm ‖ · ‖�2(Ĝ),

‖f̂‖�2(Ĝ) =

⎛⎝∑
π∈Ĝ

dπ‖f̂(π)‖2HS

⎞⎠1/2

, (2.11)
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with

‖f̂(π)‖HS =
√
Tr

(
f̂(π)f̂(π)∗

)
.

This norm defines the Hilbert space �2(Ĝ) with the inner product

(σ, τ)�2(Ĝ) :=
∑
π∈Ĝ

dπ Tr (σ(π)τ(π)
∗), σ, τ ∈ �2(Ĝ), (2.12)

and

‖σ‖�2(Ĝ) = (σ, σ)
1/2

�2(Ĝ)
=

⎛⎝∑
π∈Ĝ

dπ‖σ(π)‖2HS

⎞⎠1/2

, σ ∈ �2(Ĝ),

so that the Plancherel identity yields

‖f‖L2(G) = ‖f̂‖�2(Ĝ). (2.13)

We conclude the preliminary part by recording some useful relations between the
dimensions dπ and the eigenvalues 〈π〉 for representations π ∈ Ĝ: there exists
C > 0 such that

dπ ≤ C〈π〉
dimG

2 and, even stronger, dπ ≤ C〈π〉
dimG−rankG

2 . (2.14)

The first estimate follows immediately from the Weyl asymptotic formula for the
eigenvalue counting function for the first order elliptic operator (I − LG)

1/2 on
the compact manifold G recalling that d2π is the multiplicity of the eigenvalue 〈π〉,
and the second one follows with a little bit more work from the Weyl character
formula, with rankG denoting the rank of G. There is also a simple convergence
criterion ∑

π∈Ĝ

d2π〈π〉
−s

<∞ if and only if s > dimG, (2.15)

which follows from property (ii) in Section 2.1.3 applied to the delta-distribution
δe at the unit element e ∈ G.

2.1.3 Spaces of functions and distributions on G

Different spaces of functions and distributions can be characterised in terms of the
Fourier coefficients. For this, it is convenient to introduce the space of matrices
taking into account the dimensions of representations. Thus, we set

Σ :=
{
σ = (σ(π))π∈Ĝ : σ(π) ∈ L (Hπ)

}
�

{
σ = (σ(π))π∈Ĝ : σ(π) ∈ Cdπ×dπ

}
,

the second line valid after a choice of basis in Hπ, and we are interested in the
images of function spaces on G in Σ under the Fourier transform.
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As it will be pointed out in Remark 2.2.1, we should rather consider the
quotient space Σ/ ∼ as the space of Fourier coefficients, with the equivalence in Σ
induced by the equivalence of representations. However, in order to simplify the
exposition, we will keep the notation Σ as above.

The set Σ can be considered as a special case of the direct sum of Hilbert
spaces described in (1.29), with the corresponding interpretation in terms of von
Neumann algebras. However, a lot of the general machinery can be simplified in the
present setting since the Fourier coefficients allow the interpretation of matrices
indexed over the discrete set Ĝ, with the dimension of each matrix equal to the
dimension of the corresponding representation.

Distributions

For any distribution u ∈ D′(G), its matrix Fourier coefficient at π ∈ Ĝ is defined
by

û(π) := 〈u, π∗〉.
These are well-defined since π(x) are smooth (even analytic). This gives rise to
the Fourier transform of distributions on G but we will come to this after stating
a few properties of several function spaces.

The following equivalences are easy to obtain for spaces defined initially via
their localisations to coordinate charts, in terms of the quantity 〈π〉 introduced in
(2.10):

(i) as we have already seen, f ∈ L2(G) if and only if f̂ ∈ �2(Ĝ), i.e. if∑
π∈Ĝ

dπ‖f̂(π)‖2HS <∞.

(ii) For any s ∈ R, we have f ∈ Hs(G) if and only if 〈π〉sf̂ ∈ �2(Ĝ) if and only if∑
π∈Ĝ

dπ〈π〉2s‖f̂(π)‖2HS <∞.

(iii) f ∈ C∞(G) if and only if for every M > 0 there exits CM > 0 such that

‖f̂(π)‖HS ≤ CM 〈π〉−M

holds for all π ∈ Ĝ.

(iv) u ∈ D′(G) if and only if there exist M > 0 and C > 0 such that

‖û(π)‖HS ≤ C〈π〉M

holds for all π ∈ Ĝ.
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The second characterisation (ii) follows from (i) if we observe that f ∈ Hs(G)
means that (I − LG)

s/2f ∈ L2(G), and then pass to the Fourier transform side.

The third characterisation (iii) follows if we observe that f̂(π) must satisfy (ii) for
all s and use estimates (2.14), and (iv) follows from (iii) by duality. The last two

characterisations motivate to define spaces S(Ĝ),S ′(Ĝ) ⊂ Σ by

S(Ĝ) :=
{
σ ∈ Σ : ∀M > 0 ∃CM > 0 such that ‖σ(π)‖HS ≤ CM 〈π〉−M

}
and

S ′(Ĝ) :=
{
σ ∈ Σ : ∃M > 0, C > 0 such that ‖σ(π)‖HS ≤ C〈π〉M

}
,

with the seminormed topology on S(Ĝ) defined by family

pk(σ) =
∑
π∈Ĝ

dπ〈π〉k‖σ(π)‖HS,

and the dual topology on S ′(Ĝ). It follows that the Fourier inversion formula (2.5)
can be extended to the following: the Fourier transform FG in (1.2) and its inverse,
defined by

(F−1
G σ)(x) :=

∑
π∈Ĝ

dπ Tr (σ(π)π(x)), (2.16)

are continuous as FG : C∞(G)→ S(Ĝ), F−1
G : S(Ĝ)→ C∞(G), and are inverse to

each other on C∞(G) and S(Ĝ). In particular, this implies that S(Ĝ) is a nuclear

Montel space. The distributional duality between S ′(Ĝ) and S(Ĝ) is given by

〈σ1, σ2〉Ĝ =
∑
π∈Ĝ

dπ Tr (σ1(π)σ2(π)), σ1 ∈ S ′(Ĝ), σ2 ∈ S(Ĝ).

The Fourier transform can be then extended to the space of distributions D′(G).

Thus, for u ∈ D′(G), we define FGu ≡ û ∈ S ′(Ĝ) by

〈FGu, τ〉Ĝ :=
〈
u, ι ◦ F−1

G τ
〉
G
, τ ∈ S(Ĝ),

where (ι ◦ ϕ)(x) = ϕ(x−1) and 〈·, ·〉G is the distributional duality between D′(G)
and C∞(G). Analogously, its inverse is given by〈

F−1
G σ, ϕ

〉
G
:= 〈σ,FG(ι ◦ ϕ)〉Ĝ, σ ∈ S ′(Ĝ), ϕ ∈ C∞(G),

and these extended mappings are continuous between D′(G) and S ′(Ĝ) and are
inverse to each other. It can be readily checked that they agree with their re-
strictions to spaces of test functions, explaining the appearance of the inversion
mapping ι.
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Gevrey spaces and ultradistributions

Recently, Gevrey spaces of ultradifferentiable functions as well as spaces of corre-
sponding ultradistributions have been characterised as well. We say that a function
φ ∈ C∞(G) is a Gevrey-Roumieu ultradifferentiable function, φ ∈ γs(G), if in ev-
ery local coordinate chart, its local representative ψ ∈ C∞(Rn) belongs to γs(Rn),
that is, satisfies the condition that there exist constants A > 0 and C > 0 such
that

|∂αψ(x)| ≤ CA|α|(α!)s

holds for all x ∈ Rn and all multi-indices α. For s = 1 we obtain the space of
analytic functions on G. As with other spaces before, γs(G) is thus defined as
having its localisations in γs(Rn), and a question of its characterisation in terms
of its Fourier coefficients arises.

Analogously, we say that φ is a Gevrey-Beurling ultradifferentiable function,
φ ∈ γ(s)(G), if its local representatives ψ satisfy the condition that for every A > 0
there exists CA > 0 such that

|∂αψ(x)| ≤ CAA
|α|(α!)s

holds for all x ∈ Rn and all multi-indices α. For 1 ≤ s < ∞, these spaces do
not depend on the choice of local coordinates on G in the definition, and can be
characterised as follows:

Proposition 2.1.2. Let 1 ≤ s <∞.
(1) We have φ ∈ γs(G) if and only if there exist B > 0 and K > 0 such that

||φ̂(π)||HS ≤ Ke−B〈π〉1/s

holds for all π ∈ Ĝ.
(2) We have φ ∈ γ(s)(G) if and only if for every B > 0 there exists KB > 0 such
that

||φ̂(π)||HS ≤ KBe
−B〈π〉1/s

holds for all π ∈ Ĝ.

The space of continuous linear functionals on γs(G)
(
or γ(s)(G)

)
is called the

space of ultradistributions and is denoted by γ′
s(G)

(
or γ′

(s)(G)
)
, respectively.

For any v ∈ γ′
s(G)

(
or γ′

(s)(G)
)
, we note that its Fourier coefficient at π ∈ Ĝ

can be defined analogously to the case of distributions by

v̂(π) := 〈v, π∗〉 ≡ v(π∗).

These are well-defined since G is compact and hence π(x) are analytic.
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Proposition 2.1.3. Let 1 ≤ s <∞.
(1) We have v ∈ γ′

s(G) if and only if for every B > 0 there exists KB > 0 such
that

‖v̂(π)‖HS ≤ KBe
B〈π〉1/s

holds for all π ∈ Ĝ.
(2) We have v ∈ γ′

(s)(G) if and only if there exist B > 0 and K > 0 such that

‖v̂(π)‖HS ≤ KeB〈π〉1/s

holds for all π ∈ Ĝ.

Proposition 2.1.2 can be actually extended to hold for any 0 < s < ∞,
and we refer to [DR14a] for proofs and further details. This can be viewed also
from the point of view of general eigenfunction expansions of function of compact
manifolds, see [DR16] for the treatment of more general Komatsu-type classes
of ultradifferentiable functions and ultradistributions, building on an analogous
description for analytic functions by Seeley [See69].

For a review of the representation theory of compact Lie groups and further
constructions using the Littlewood-Paley decomposition based on the heat kernel
we refer to Stein’s book [Ste70b].

2.1.4 �p-spaces on the unitary dual Ĝ

For a general theory of non-commutative integration on locally compact unimodu-
lar groups we refer to Dixmier [Dix53] and Segal [Seg50, Seg53]. In this framework,
the Hausdorff-Young inequality has been established (see Kunze [Kun58]) for a ver-

sion of �p-spaces on the unitary dual Ĝ based on the Schatten classes, namely, an
inequality of the type⎛⎝∑

π∈Ĝ

dπ‖f̂(π)‖p
′

Sp′
dπ

⎞⎠1/p′

≤ ‖f‖Lp(G) for 1 < p ≤ 2,

with an obvious modification for p = 1, where 1
p +

1
p′ = 1, and Sp′

dπ
is the (dπ×dπ)-

dimensional Schatten p′-class. While the theory of the above spaces is well-known
(see e.g. Hewitt and Ross [HR70, Section 31] or Edwards [Edw72, Section 2.14]),

here we describe and develop a little further another class of �p-spaces on Ĝ which
was considered in [RT10a, Section 10.3.3], to which we refer for details and proofs
of statement that we do not prove here.

For 1 ≤ p <∞, we define the space �p(Ĝ) ⊂ Σ by the condition

‖σ‖�p(Ĝ) :=

⎛⎝∑
π∈Ĝ

d
p( 2

p− 1
2 )

π ‖σ(π)‖pHS

⎞⎠1/p

<∞.
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For p =∞, we define the space �∞(Ĝ) ⊂ Σ by

‖σ‖�∞(Ĝ) := sup
π∈Ĝ

d−1/2
π ‖σ(π)‖HS <∞.

For p = 2 we recover the space �2(Ĝ) defined in (2.11), while the �1(Ĝ)-norm
becomes

‖σ‖�1(Ĝ) :=
∑
π∈Ĝ

d3/2π ‖σ(π)‖HS.

This space and the Hausdorff-Young inequality for it become useful in, for example,
proving Proposition 2.1.2. Also, it appears naturally in questions concerning the
convergence of the Fourier series:

Remark 2.1.4. If σ ∈ �1(Ĝ), then the (Fourier) series (2.16) converges absolutely
and uniformly on G.

On the other hand, one can show that if f ∈ Ck(G) with an even k > 1
2 dimG,

then f̂ ∈ �1(Ĝ) and the Fourier series (2.5) converges uniformly. Indeed, we can
estimate

‖f̂‖�1(Ĝ) =
∑
π∈Ĝ

d
3/2
π

〈π〉k
‖π((I− LG)

k/2f)‖HS

≤

⎛⎝∑
π∈Ĝ

d2ξ〈π〉
−2k

⎞⎠1/2⎛⎝∑
π∈Ĝ

dπ‖π((I− LG)
k/2f)‖2HS

⎞⎠1/2

≤ C‖(I− LG)
k/2f‖L2(G) <∞,

in view of the Plancherel formula and (2.15), provided that 2k > dimG. In fact,
the same argument shows the implication

f ∈ Hs(G), s >
1

2
dimG =⇒ f̂ ∈ �1(Ĝ),

with the uniform convergence of the Fourier series (2.5) of f .

Regarding these �p(Ĝ)-spaces as weighted sequence spaces with weights given
by powers of dπ, a general theory of interpolation spaces [BL76, Theorem 5.5.1]
implies that they are interpolation spaces, namely, for any 1 ≤ p0, p1 < ∞, we
have (

�p0(Ĝ), �p1(Ĝ)
)
θ,p

= �p(Ĝ),

where 0 < θ < 1 and 1
p = 1−θ

p0
+ θ

p1
, see [RT10a, Proposition 10.3.40].

The Hausdorff-Young inequality holds for these spaces as well. Namely, if
1 ≤ p ≤ 2 and 1

p + 1
p′ = 1, we have
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‖f̂‖�p′ (Ĝ) ≤ ‖f‖Lp(G) (2.17)

for all f ∈ Lp(G), and
‖F−1

G σ‖Lp′ (G) ≤ ‖σ‖�p(Ĝ), (2.18)

for all σ ∈ �p(Ĝ).

We give a brief argument for these. To prove (2.18), on one hand we already
have Plancherel’s identity (2.13). On the other hand, from (2.16) we have

|(F−1
G σ)(x)| ≤

∑
π∈Ĝ

dπ‖σ(π)‖HS‖π(x)‖HS =
∑
π∈Ĝ

d3/2π ‖σ(π)‖HS = ‖σ‖�1(Ĝ).

Now the Stein-Weiss interpolation (see e.g. [BL76, Corollary 5.5.4]) implies (2.18).

From this, (2.17) follows using the duality �p(Ĝ)′ = �p
′
(Ĝ), 1 ≤ p <∞.

We remark that it is also possible to prove (2.17) directly by interpolation
as well. However, one needs to employ an �∞-version of the interpolation theory
with the change of measure, as e.g. in Lizorkin [Liz75].

Let us point out the continuous embeddings, similar to the usual ones:

Proposition 2.1.5. We have

�p(Ĝ) ↪→ �q(Ĝ) and ‖σ‖�q(Ĝ) ≤ ‖σ‖�p(Ĝ) ∀σ ∈ Σ, 1 ≤ p ≤ q ≤ ∞.

Proof. We can assume p < q. Then, in the case 1 ≤ p < ∞ and q = ∞, we can
estimate

‖σ‖p
�∞(Ĝ)

=

(
sup
π∈Ĝ

d
− 1

2
π ‖σ(π)‖HS

)p

≤
∑
π∈Ĝ

d
2− p

2
π ‖σ(π)‖pHS = ‖σ‖

p

�p(Ĝ)
.

Let now 1 ≤ p < q <∞. Denoting aπ := d
2
q− 1

2
π ‖σ(π)‖HS, we get

‖σ‖�q(Ĝ) =

⎛⎝∑
π∈Ĝ

aqπ

⎞⎠ 1
q

≤

⎛⎝∑
π∈Ĝ

apπ

⎞⎠ 1
p

=

⎛⎝∑
π∈Ĝ

d
p( 2

q− 1
2 )

π ‖σ(π)‖pHS

⎞⎠ 1
p

≤ ‖σ‖�p(Ĝ),

completing the proof. �

Finally, we establish a relation between the family �p(Ĝ) and the correspond-

ing Schatten family of �p-spaces, which we denote by �psch(Ĝ), defined by the norms

‖σ‖�psch(Ĝ) :=

⎛⎝∑
π∈Ĝ

dπ‖σ(π)‖pSp

⎞⎠1/p

, σ ∈ Σ, 1 ≤ p <∞,



70 Chapter 2. Quantization on compact Lie groups

where Sp = Sp
dπ

is the (dπ × dπ)-dimensional Schatten p-class, and

‖σ‖�∞sch(Ĝ) := sup
π∈Ĝ

‖σ(π)‖L (Hπ), σ ∈ Σ.

We have the following relations:

Proposition 2.1.6. For 1 ≤ p ≤ 2, we have continuous embeddings as well as the
estimates

�p(Ĝ) ↪→ �psch(Ĝ) and ‖σ‖�psch(Ĝ) ≤ ‖σ‖�p(Ĝ) ∀σ ∈ Σ, 1 ≤ p ≤ 2.

For 2 ≤ p ≤ ∞, we have

�psch(Ĝ) ↪→ �p(Ĝ) and ‖σ‖�p(Ĝ) ≤ ‖σ‖�psch(Ĝ) ∀σ ∈ Σ, 2 ≤ p ≤ ∞.

Proof. For p = 2, the norms coincide since S2 = HS. Let first 1 ≤ p < 2. Since
σ(π) ∈ Cdπ×dπ , denoting by sj its singular numbers, by the Hölder inequality we
have

‖σ(π)‖pSp =

dπ∑
j=1

spj ≤

⎛⎝ dπ∑
j=1

1

⎞⎠
2−p
2

⎛⎝ dπ∑
j=1

s
p 2

p

j

⎞⎠
p
2

= d
2−p
2

π ‖σ(π)‖pHS,

i.e.

‖σ(π)‖Sp ≤ d
2−p
2p

π ‖σ(π)‖HS (1 ≤ p ≤ 2).

Consequently, it follows that

‖σ‖p
�psch(Ĝ)

=
∑
π∈Ĝ

dπ‖σ(π)‖pSp ≤
∑
π∈Ĝ

d
2− p

2
π ‖σ(π)‖pHS = ‖σ‖

p

�p(Ĝ)
,

proving the first claim. Conversely, for 2 < p <∞, we can estimate

‖σ(π)‖2HS =
dπ∑
j=1

s2j ≤

⎛⎝ dπ∑
j=1

1

⎞⎠
p−2
p

⎛⎝ dπ∑
j=1

s
2 p

2
j

⎞⎠ 2
p

= d
p−2
p

π ‖σ(π)‖2Sp ,

implying

‖σ(π)‖HS ≤ d
p−2
2p

π ‖σ(π)‖Sp (2 < p <∞).

It follows that

‖σ‖p
�p(Ĝ)

=
∑
π∈Ĝ

d
2− p

2
π ‖σ(π)‖pHS ≤

∑
π∈Ĝ

dπ‖σ(π)‖pSp = ‖σ‖p
�psch(Ĝ)

,

proving the second claim for 2 < p <∞. Finally, for p =∞, the inequality

‖σ(π)‖HS ≤ d1/2π ‖σ(π)‖L (Hπ)
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implies

‖σ‖�∞(Ĝ) = sup
π∈Ĝ

d−1/2
π ‖σ(π)‖HS ≤ sup

π∈Ĝ

‖σ(π)‖L (Hπ) = ‖σ‖�∞sch(Ĝ),

completing the proof. �

2.2 Pseudo-differential operators on compact Lie groups

In this section we look at linear continuous operators A : C∞(G)→ D′(G) and a
global quantization of A yielding its full matrix-valued symbol. By the Schwartz
kernel theorem (Theorem 1.4.1) there exists a unique distribution KA ∈ D′(G×G)
such that

Af(x) =

∫
G

KA(x, y)f(y)dy,

interpreted in the distributional sense. We can rewrite this as a right-convolution
kernel operator

Af(x) =

∫
G

RA(x, y
−1x)f(y)dy,

with
RA(x, y) = KA(x, xy

−1),

so that
Af(x) = (f ∗RA(x, ·))(x).

2.2.1 Symbols and quantization

The idea for the following construction is that we define the symbol of A as the
Fourier transform of its right convolution kernel in the second variable. However,
for the presentation purposes we now take a different route and, instead, we define
the mapping σA : G× Ĝ→ Σ by

σA(x, π) := π(x)∗(Aπ)(x), (2.19)

with (Aπ)(x) ∈ L (Hπ) defined by

(Aπ(x)u, v)Hπ
:= A(π(x)u, v)Hπ

for all u, v ∈ Hπ. After choosing a basis in the representation space Hπ, we can
interpret this as a matrix σA(x, π) ∈ Cdπ×dπ and (Aπ)ij = A(πij), i.e. the operator
A acts on the matrix π(x) componentwise, so that

σA(x, π)ij =

dπ∑
k=1

πki(x)Aπkj(x).

We note that the symbol in (2.19) is well-defined since we can multiply the distri-
bution Aπ by a smooth (even analytic) matrix π.
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Remark 2.2.1. We also observe that strictly speaking, the definition (2.19) depends
on the choice of the representation π from its equivalence class [π]. Namely, if
π1 ∼ π2, so that

π2(x) = U−1π1(x)U

for some unitary U and all x ∈ G, then

f̂(π2) = U−1f̂(π1)U

and, therefore,

σA(x, π2) = U−1σA(x, π1)U. (2.20)

However, it can be readily checked that the quantization formula (2.22) below
remains unchanged due to the presence of the trace. So, denoting by RepG the
set of all strongly continuous unitary irreducible representations of G, the symbol
is well defined as a mapping

σA : G× RepG→ Σ or as σA : G× Ĝ→ Σ/ ∼

where the equivalence on Σ is given by the equivalence of representations on RepG
inducing the equivalence on Σ by conjugations, as in formula (2.20). We will disre-
gard this technicality in the current presentation to simplify the exposition, refer-
ring to [RT10a] for a more rigorous treatment. We note, however, that if π1 ∼ π2,
then

Tr
(
π1(x)σA(x, π1)f̂(π1)

)
= Tr

(
π2(x)σA(x, π2)f̂(π2)

)
. (2.21)

Using the symbol σA, it follows that the linear continuous operator A :
C∞(G)→ D′(G) can be (de-)quantized as

Af(x) =
∑
π∈Ĝ

dπ Tr
(
π(x)σA(x, π)f̂(π)

)
. (2.22)

If the operator A maps C∞(G) to itself and f ∈ C∞(G), the formula (2.22) can
be understood in the pointwise sense to hold for all x ∈ G, with the absolute
convergence of the series. It can be shown that formulae (2.19) and (2.22) imply
that σA is the Fourier transform of RA, namely, we have

σA(x, π) =

∫
G

RA(x, y)π(y)
∗dy.

If the formula (2.22) holds, we will also write A = Op(σA).

In view of (2.21), the sum in (2.22) does not depend on the choice of a
representation π from its equivalence class [π].
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Example 2.2.2. For the identity operator I we have its symbol

σI(x, π) = π(x)∗π(x) = Idπ

is the identity matrix in Cdπ×dπ , by the unitarity of π(x), so that (2.22) recovers
the Fourier inversion formula (2.5) in this case. For the Laplacian LG on G, we
have

σLG
(x, π) = π(x)∗LGπ(x) = −λπIdπ

by the unitarity of π and (2.9), where −λπ are the eigenvalues of LG corresponding
to π. Consequently, we also have

σ(I−LG)μ/2(x, π) = 〈π〉μIdπ .

Example 2.2.3. In the case of the torus G = Tn = Rn/Zn, and the representations
{πξ}ξ∈Zn fixed as in Remark 1.1.4, we see that all dπξ

= 1. Hence

σA(x, πξ) ≡ σA(x, ξ) = e−2πix·ξA(e2πix·ξ) ∈ C, (x, ξ) ∈ Tn × Zn,

with the quantization (2.22) becoming the toroidal quantization

Af(x) =
∑
ξ∈Zn

e2πix·ξ σA(x, ξ) f̂(ξ),

for a thorough analysis of which we refer to [RT10b] and [RT10a, Section 4].

Example 2.2.4. With our choices of definitions, the symbols of left-invariant op-
erators on G become independent of x. As shown in Section 1.5, if

Af = f ∗ κ

for some κ ∈ L1(G), then it is left-invariant. Consequently, the right convolution
kernel of A is RA(x, y) = κ(y) and, therefore, its Fourier transform is

σA(x, π) = κ̂(π).

On the other hand, if
Af = κ ∗ f

for some κ ∈ L1(G), then it is right-invariant. In this case its right convolution
kernel is RA(x, y) = κ(xyx−1) and, therefore, its Fourier transform in y gives

σA(x, π) = π(x)∗κ̂(π)π(x).

The notion of the symbol σA becomes already useful in stating a criterion
for the L2-boundedness for an operator A. We recall from Section 1.3 that Xα

denotes the left-invariant partial differential operators of order |α| corresponding
to a basis of left-invariant vector fields X1, · · · , Xn, n = dimG, of the Lie algebra
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g of G. As the derivatives with respect to these vector fields in general do not
commute, in principle we have to take into account their order in forming partial
differential operators of higher degrees. However, we note that the subsequent
statements remain valid if we restrict our choice to

Xα = Xα1
1 · · ·Xαn

n .

We will sometimes write Xα
x to emphasise that the derivatives are taken with

respect to the variable x.

Theorem 2.2.5. Let G be a compact Lie group and let A : C∞(G) → C∞(G) be
a linear continuous operator. Let k be an integer such that k > 1

2 dimG. Assume
that there is a constant C > 0 such that

‖Xα
x σA(x, π)‖L (Hπ) ≤ C

for all (x, π) ∈ G× Ĝ, and all |α| ≤ k. Then A extends to a bounded operator from
L2(G) to L2(G).

In this theorem and elsewhere, ‖ · ‖L (Hπ) denotes the operator norm of
σA(x, π) ∈ L (Hπ) or, after a choice of the basis, the operator norm of the matrix
multiplication by the matrix σA(x, π) ∈ Cdπ×dπ . The appearance of the operator
norm is natural since for the convolution operators we have

‖f �→ f ∗ h‖L (L2(G)) = ‖f �→ h ∗ f‖L (L2(G)) = sup
π∈Ĝ

‖ĥ(π)‖L (Hπ), (2.23)

following from f̂ ∗ h(π) = ĥ(π)f̂(π) and Plancherel’s theorem.

2.2.2 Difference operators and symbol classes

In order to describe the symbolic properties and to establish the symbolic calculus
of operators we have to replace the derivatives in frequency, used in the symbolic
calculus on Rn, by suitable operations acting on the space Σ of Fourier coefficients.
We call these operations difference operators. Roughly speaking, this corresponds
to the idea that in the Calderón-Zygmund theory, the integral kernel KA has sin-
gularities at the diagonal or, in other words, the right-convolution kernel RA(x, ·)
has singularity at the unit element e of the group only. Therefore, if we form an
operator with a new integral kernel q(·)RA(x, ·) with a smooth q ∈ C∞(G) satis-
fying q(e) = 0, the properties of this new operator should be better than those of
the original operator A.

In [RT10a], the corresponding notion of difference operators has been in-
troduced leading to the symbolic calculus of operators on G. However, we now
follow the ideas of [RTW14] with a slightly more general treatment of difference
operators.
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Definition 2.2.6. Let q ∈ C∞(G) vanish of order k ∈ N at the unit element e ∈ G,
i.e. (Dq)(e) = 0 for all left-invariant differential operators D ∈ Diffk−1(G) of order
k − 1. Then the difference operator of order k is an operator acting on the space
Σ of Fourier coefficients by the formula

(Δq f̂)(π) := q̂f(π).

We denote the set of all difference operators of order k by diffk(Ĝ).

We now define families of first order difference operators replacing derivatives
in the frequency variable in the Euclidean setting.

Definition 2.2.7. A collection of � first order difference operators Δq1 , . . . ,Δq� ∈
diff1(Ĝ) is called admissible, if the corresponding functions q1, . . . , q� ∈ C∞(G)
satisfy

qj(e) = 0, dqj(e) �= 0, j = 1, . . . , �,

and, moreover,

rank(dq1(e), . . . , dq�(e)) = dimG.

It follows, in particular, that e is an isolated common zero of the family {qj}�j=1.
We call an admissible collection strongly admissible, if it is the only common zero,
i.e. if

�⋂
j=1

{x ∈ G : qj(x) = 0} = {e}.

We note that difference operators all commute with each other. For a given
admissible collection of difference operators we use the multi-index notation

Δα
π := Δα1

q1 · · ·Δ
α�
q�

and qα(x) := q1(x)
α1 · · · q�(x)α� ,

the dimension of the multi-index α ∈ N�
0 depending on the number � of difference

operators in the collection. Consequently, there exist corresponding differential
operators X(α) ∈ Diff |α|(G) such that the Taylor expansion formula

f(x) =
∑

|α|≤N−1

1

α!
qα(x−1)X(α)f(e) +O(h(x)N ), h(x)→ 0, (2.24)

holds true for any smooth function f ∈ C∞(G) and any N , with h(x) the geodesic
distance from x to the identity element e. An explicit construction of operators
X(α) in terms of qα(x) can be found in [RT10a, Section 10.6]. Operators Xα and
X(α) can be expressed in terms of each other.

Example 2.2.8. In the case of the torus, G = Tn = Rn/Zn, let

qj(x) = e−2πixj − 1, j = 1, . . . , n.
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The collection {qj}nj=1 is strongly admissible, and the corresponding difference
operators take the form

(Δqjσ)(πξ) ≡ (Δqjσ)(ξ) = σ(ξ + ej)− σ(ξ), j = 1, . . . , n,

with πξ ∈ T̂n identified with ξ ∈ Zn, where ej is the jth unit vector in Zn. The
periodic Taylor expansion takes the following form (see [RT10a, Theorem 3.4.4]):
for any φ ∈ C∞(Tn) we have

φ(x) =
∑

|α|<N

1

α!
(e2πix − 1)αX(α)

z φ(z)|z=0 +
∑

|α|=N

φα(x)(e
2πix − 1)α,

where φα ∈ C∞(Tn) and

(e2πix − 1)α := (e2πix1 − 1)α1 · · · (e2πixn − 1)αn .

The operators X
(α)
z have the form

X(α)
z = X(α1)

z1 · · ·X(αn)
zn with X(αk)

zk
=

αk−1∏
j=0

(
1

2πi

∂

∂zk
− j

)
.

Example 2.2.9. For partial differential operators, it can be readily observed that
the application of difference operators reduces the order of symbols. Thus, let

D =
∑

|α|≤N

cα(x)X
α
x , cα ∈ C∞(G).

Then it was shown in [RT10a, Proposition 10.7.4] that

ΔqσD(x, π) =
∑

|α|≤N

cα(x)
∑
β≤α

(
α

β

)
(−1)|β|(Xβ

x q)(e)σXα−β
x

(x, π).

In particular, if q has zero of order M at e ∈ G then Op(ΔqσD) is of order N−M .

Remark 2.2.10. We can estimate differences in terms of original symbols: assume
that the symbol σ ∈ Σ satisfies

μ := sup
π
〈π〉−m‖σ(π)‖L (Hπ) <∞

for some m ∈ R. Then for any difference operator Δq defined in terms of a function
q ∈ C∞(G) we have the estimate

‖Δqσ(π)‖L (Hπ) ≤ Cμ‖q‖Cκ+�|m|�(G)〈π〉m

with a constant C independent of σ and q, where κ = �(dimG)/2	 is the smallest
integer larger than half the dimension of G and �|m|	 is the smallest integer larger
than |m|. We refer to [RW14, Lemma 7.1] for the proof. However, if q vanishes at
the unit element e to some order, we can impose a much better behaviour.
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The usual Hörmander classes Ψm(G) of pseudo-differential operators on G
viewed as a manifold can be characterised in terms of the matrix-valued symbols.
Here we recall that A ∈ Ψm(G) means that in every local coordinate chart U ⊂ G,
the pullback of A|U to Rn is a pseudo-differential operator AU ∈ Ψm

1,0(R
n), i.e. it

can be written as

AUf(x) =

∫
Rn

e2πix·ξa(x, ξ)f̂(ξ)dξ with f̂(ξ) =

∫
Rn

e−2πix·ξf(x)dx, (2.25)

with symbol a = aU ∈ Sm
1,0(R

n), i.e. satisfying

|∂β
x∂

α
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|

for all multi-indices α, β, and all x, ξ ∈ Rn.

The following characterisation was partly proved in [RT10a, RT13] (namely
(A)⇐⇒(C)) and completed in [RTW14] (namely (B)⇐⇒(C)⇐⇒(D)) .

Theorem 2.2.11. Let G be a compact Lie group of dimension n. Let A be a linear
continuous operator from C∞(G) to D′(G). Then the following statements are
equivalent:

(A) A ∈ Ψm(G).

(B) For every left-invariant differential operator D ∈ Diffk(G) of order k and

every difference operator Δq ∈ diff l(Ĝ) of order l the symbol estimate

‖ΔqDσA(x, π)‖L (Hπ) ≤ CqD〈π〉m−l

is valid.

(C) For an admissible collection Δ1, . . . ,Δ� ∈ diff1(Ĝ) we have

‖Δα
πX

β
xσA(x, π)‖L (Hπ) ≤ Cαβ〈π〉m−|α|

for all multi-indices α ∈ N�
0 and β ∈ Nn

0 . Moreover,

sing suppRA(x, ·) ⊆ {e}.

(D) For a strongly admissible collection Δ1, . . . ,Δ� ∈ diff1(Ĝ) we have

‖Δα
πX

β
xσA(x, π)‖L (Hπ) ≤ Cαβ〈π〉m−|α|

for all multi-indices α ∈ N�
0 and β ∈ Nn

0 .

Motivated by Theorem 2.2.11, (D), we may define symbol classes Sm
ρ,δ(G).

Fixing a strongly admissible collection of difference operators

Δ1, . . . ,Δ� ∈ diff1(Ĝ),
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we say that σA ∈ Sm
ρ,δ(G) if σA(x, ·) ∈ Σ satisfies

‖Δα
πX

β
xσA(x, π)‖L (Hπ) ≤ Cαβ〈π〉m−ρ|α|+δ|β|

(2.26)

for all (x, π) ∈ G × Ĝ and for all multi-indices α ∈ N�
0 and β ∈ Nn

0 . If ρ > δ,
this definition is independent of the choice of a strongly admissible collection
of difference operators. The equivalence (A)⇐⇒(D) in Theorem 2.2.11 can be
rephrased as

A ∈ Ψm(G)⇐⇒ σA ∈ Sm
1,0(G).

For any 0 ≤ δ < ρ ≤ 1, the equivalence (B)⇐⇒(C)⇐⇒(D) in Theorem 2.2.11
remains valid for the symbol class Sm

ρ,δ(G) if we replace the symbolic conditions
there by the condition (2.26). As we shall see later, the class Sm

ρ,δ(G) with different
values of ρ and δ becomes useful in a number of applications.

Theorem 2.2.5 has analogue for (ρ, δ) classes:

Theorem 2.2.12. Let 0 ≤ δ < ρ ≤ 1 and let A be an operator with symbol in
Sm
ρ,δ(G). Then A is a bounded from Hs(G) to Hs−m(G) for any s ∈ R.

See [RW14, Theorem 5.1] for the proof.

2.2.3 Symbolic calculus, ellipticity, hypoellipticity

We now give elements of the symbolic calculus on the compact Lie group G. Here,
we fix some strongly admissible collection of difference operators, with correspond-

ing operators X
(α)
x coming from the Taylor expansion formula (2.24). We refer to

[RT10a, Section 10.7.3] for proofs and other variants of the calculus below. We
start with the composition.

Theorem 2.2.13. Let m1,m2 ∈ R and 0 ≤ δ < ρ. Let A,B : C∞(G)→ C∞(G) be
linear continuous operators with symbols σA ∈ Sm1

ρ,δ (G) and σB ∈ Sm1

ρ,δ (G). Then

σAB ∈ Sm1+m2

ρ,δ (G) and we have

σAB ∼
∑
α≥0

1

α!
(Δα

πσA)(X
(α)σB),

where the asymptotic expansion means that for every N ∈ N we have

σAB(x, π)−
∑

|α|<N

1

α!
(Δα

πσA)(x, π)X
(α)
x σB(x, π) ∈ S

m1+m2−(ρ−δ)N
ρ,δ (G).

The composition formula together with Theorem 2.2.5 imply a criterion for
the boundedness in L2-Sobolev spaces.
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Corollary 2.2.14. Let G be a compact Lie group and let A : C∞(G) → C∞(G) be
a linear continuous operator. Let m ∈ R. Assume that the symbol σA satisfies

‖Xα
x σA(x, π)‖L (Hπ) ≤ Cα〈π〉m

for all (x, π) ∈ G × Ĝ, and all multi-indices α. Then A extends to a bounded
operator from Hs(G) to Hs−m(G), for all s ∈ R.

Let us now present a construction of amplitude operators in our setting. Let
0 ≤ ρ, δ ≤ 1. We say that a : G×G× Ĝ→ Σ is a matrix-valued amplitude in the
class Am

ρ,δ(G) if for a strongly admissible collection of difference operators on Ĝ
we have the amplitude inequalities

‖Δα
πX

β
xX

γ
y a(x, y, π)‖L (Hπ) ≤ Cαβγ〈π〉m−ρ|α|+δ|β+γ|

,

for all multi-indices α, β, γ and for all (x, y, π) ∈ G × G × Ĝ. The corresponding
amplitude operator Op(a) : C∞(G)→ D′(G) is defined by

Op(a)f(x) :=
∑
π∈Ĝ

dπ Tr

(
π(x)

∫
G

a(x, y, η)f(y)π(y)∗dy
)
. (2.27)

In the case a(x, y, π) = σA(x, π) independent of y, we recover the quantization
(2.22), namely, we have Op(a) = A.

Theorem 2.2.15. Let a ∈ Am
ρ,δ(G). If 0 ≤ δ < 1 and 0 ≤ ρ ≤ 1 then Op(a) is a

continuous linear operator from C∞(G) to C∞(G). Moreover, if 0 ≤ δ < ρ ≤ 1,
then A = Op(a) is a pseudo-differential operator with a matrix-valued symbol
σA ∈ Sm

ρ,δ(G), which has the asymptotic expansion

σA(x, π) ∼
∑
α≥0

1

α!
Δα

πX
(α)
y a(x, y, π)|y=x,

where the asymptotic expansion means that for every N ∈ N we have

σA(x, π)−
∑

|α|<N

1

α!
Δα

πX
(α)
y a(x, y, π)|y=x ∈ S

m−(ρ−δ)N
ρ,δ (G).

For the proof of this theorem we refer to [RT11]. Given the formula for the
amplitude operators in Theorem 2.2.15, the symbol of the adjoint operator can be
found as follows.

Theorem 2.2.16. Let m ∈ R and 0 ≤ δ < ρ. Let A : C∞(G)→ C∞(G) be a linear
continuous operator with symbol σA ∈ Sm

ρ,δ(G). Then the symbol σA∗ of the adjoint
operator A∗ satisfies σA∗ ∈ Sm

ρ,δ(G), and is given by

σA∗(x, π) ∼
∑
α≥0

1

α!
Δα

πX
(α)
x σA(x, π)

∗,
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where σA(x, π)
∗ is the adjoint matrix to σA(x, π), and the asymptotic expansion

means that for every N ∈ N we have

σA∗(x, π)−
∑

|α|<N

1

α!
Δα

πX
(α)
x σA(x, π)

∗ ∈ S
m−(ρ−δ)N
ρ,δ (G).

We recall that the operator A ∈ Ψm(G) on G viewed as a manifold is elliptic
if all of its localisations to coordinate charts are (locally) elliptic. This can be
characterised in terms of the matrix-valued symbols. A combination of [RTW14,
Theorem 4.1] and [RT10a, Theorem 10.9.10] yields

Theorem 2.2.17. An operator A ∈ Ψm(G) is elliptic if and only if its symbol

σA(x, π) is invertible for all but finitely many π ∈ Ĝ, and for all such π satisfies

‖σA(x, π)
−1‖L (Hπ) ≤ C〈π〉−m

for all x ∈ G. Furthermore, in this case, assume that

σA ∼
∞∑
j=0

σAj
, Aj ∈ Ψm−j(G).

Let σB ∼
∑∞

k=0 σBk
, where

σB0
(x, π) = σA0

(x, π)−1

for large 〈π〉, and the symbols σBk
are defined recursively by

σBN
= −σB0

N−1∑
k=0

N−k∑
j=0

∑
|γ|=N−j−k

1

γ!
(Δγ

πσBk
)(X(γ)

x σAj ).

Then Op(σBk
) ∈ Ψ−m−k(G), B = Op(σB) ∈ Ψ−m(G), and the operators AB − I

and BA− I are in Ψ−∞(G).

One can also provide a criterion for the hypoellipticity in terms of matrix-
valued symbols ([RTW14]), in analogy to the one on Rn given by Hörmander
([Hör67b]).

Theorem 2.2.18. Let m ≥ m0 and 0 ≤ δ < ρ ≤ 1. Let A ∈ Op(Sm
ρ,δ(G)) be a

pseudo-differential operator with symbol σA ∈ Sm
ρ,δ(G) which is invertible for all

but finitely many π ∈ Ĝ, and for all such π satisfies

‖σA(x, π)
−1‖L (Hπ) ≤ C〈π〉−m0

for all x ∈ G. Assume also that (for a strongly admissible collection of difference
operators) we have

‖σA(x, π)
−1

[
Δα

πX
β
xσA(x, π)

]
‖L (Hπ) ≤ C〈π〉−ρ|α|+δ|β|
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for all multi-indices α, β, all x ∈ G, and all but finitely many π ∈ Ĝ. Then there
exists an operator B ∈ Op(S−m0

ρ,δ (G)) such that AB − I and BA − I belong to

Ψ−∞(G). Consequently, we have

sing supp Au = sing supp u

for all u ∈ D′(G).

We finish this section with several results that are usually expected from the
calculus. The following asymptotic expansion formula was established in [RW14].

Proposition 2.2.19. Let σj ∈ S
mj

ρ,δ (G), j ∈ N0, 0 ≤ δ < ρ ≤ 1, be a family of
symbols with mj ↘ −∞. Then there exists a symbol σ ∈ Sm0

ρ,δ (G) such that

σ −
N−1∑
j=0

σj ∈ SmN

ρ,δ (G)

for all N ∈ N0.

The functional calculus of matrix valued symbols and its operator counter-
part have been also developed in [RW14]. A notable corollary of such functional
calculus is the following

Corollary 2.2.20. Let 0 ≤ δ < ρ ≤ 1 and let m ≥ 0. Assume σA ∈ S2m
ρ,δ (G) satisfies

σA(x, π) > 0 and
‖σA(x, π)

−1‖L (Hπ) ≤ C〈π〉−2m

for all x and π. Then the square root

σB(x, π) =
√
σA(x, π)

in the sense of positive matrices is a symbol satisfying σB ∈ Sm
ρ,δ(G).

This is the corollary of the following more general result:

Theorem 2.2.21. Let 0 ≤ δ ≤ 1 and 0 < ρ ≤ 1. Assume σA ∈ Sm
ρ,δ(G), m ≥ 0, is

positive definite, invertible, and satisfies

‖σA(x, π)
−1‖L (Hπ) ≤ C〈π〉−m

for all x and for all but finitely many π. Then for any number s ∈ C,

σB(x, π) := σA(x, π)
s = exp(s log σA(x, π))

defines a symbol σB ∈ Sm′
ρ,δ(G), with m′ = Re (ms).

In fact, the assumptions of Theorem 2.2.21 imply something stronger, namely,
that the symbol σA(x, π) is parameter-elliptic with respect to R−; we refer to
[RW14] for the definition of parameter-ellipticity in this setting, and for a more gen-
eral exposition and statements of the functional calculus on compact Lie groups.
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2.2.4 Fourier multipliers and Lp-boundedness

Here we give an overview of the Lp-estimates for the Fourier multipliers and for
non-invariant operators on compact Lie groups following [RW13, RW15]. We set
aside the case of bi-invariant operators (or spectral multipliers) noting that there
exist many results in this direction (see e.g. N. Weiss [Wei72], Coifman and G.
Weiss [CW74], Stein [Ste70b], Cowling [Cow83], Alexopoulos [Ale94], to refer the
reader to only a few). Instead, we concentrate on the case of left-invariant operators
(or Fourier multipliers). To the best of our knowledge the literature in this case is
much smaller, with a notable exception of a multiplier theorem for left-invariant
operators on the group SU(2) treated by Coifman and Weiss [CW71b], Coifman
and de Guzmán [CdG71], and appearing in more detail in the monograph by
Coifman and Weiss [CW71a]. The conditions there are formulated using specific
explicit expressions involving Clebsch-Gordan coefficients on SU(2), but they can
be recast in a much shorter form using the concept of difference operators. It also
allows one to treat the case of general compact Lie groups. Finally we note that
there exist also results for the spectral multipliers in the sub-Laplacian, also on
SU(2), for which we refer to Cowling and Sikora [CS01].

First, we discuss left-invariant operators A : C∞(G) → D′(G), so that the
matrix-valued symbol σA(x, π) = σA(π) is independent of x and can be given as

σA(π) = π(x)∗(Aπ)(x) = (Aπ)(e).

The multiplier theorems that we will present can be said to be of Mihlin-Hörman-
der type in the sense that they provide analogues of famous multiplier theorems
on Rn by Mihlin [Mih56, Mih57] and Hörmander [Hör60].

In order to formulate the results, we need to fix a particular collection of
first order difference operators associated to the elements of the unitary dual Ĝ.
Thus, for a fixed representation π0 ∈ Ĝ, we notice that the (dπ0

× dπ0
)-matrix

π0(x) − Idπ0
vanishes at x = e. Consequently, we define the difference operators

π0D = (π0Dij)
dπ0
i,j=1 associated with its elements,

π0
Dij := Δ(π0)ij−δi,j ,

where δi,j is the Kronecker delta. For a family of difference operators of this type,

D1 =π1
Di1j1 , D2 =π2

Di2j2 , . . . ,Dm =πm
Dimjm , (2.28)

with πk ∈ Ĝ, 1 ≤ ik, jk ≤ dπk
, 1 ≤ k ≤ m, we define

Dα := Dα1
1 · · ·Dαm

m . (2.29)

The described difference operators π0
D have a number of useful properties. For

example, they satisfy the finite Leibniz formula (while general difference operators
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satisfy only an asymptotic Leibniz formula, see [RT10a, Section 10.7.4]). Namely,
for any fixed π0, they satisfy

Dij(στ) = (Dijσ)τ + σ(Dijτ) +

dπ0∑
k=1

(Dikσ)(Dkjτ). (2.30)

The collection of difference operators

{π0
Dij : π0 ∈ Ĝ, 1 ≤ i, j ≤ dπ0

}

is strongly admissible. Moreover, it has a finite strongly admissible sub-collection.
Indeed, a homomorphic embedding of G into U(N) for some N is itself a represen-
tation of G. Decomposing it into irreducible components gives the desired finite
family of π0’s.

We now formulate the first result on the Lp-boundedness of left-invariant
operators.

Theorem 2.2.22. Let A : C∞(G) → D′(G) be a left-invariant linear continuos
operator on a compact Lie group G, and let k denote the smallest even integer
such that k > 1

2 dimG. Assume that the symbol σA of A satisfies

‖DασA(π)‖L (Hπ) ≤ Cα〈π〉−|α|
(2.31)

for all multi-indices |α| ≤ k and all π ∈ Ĝ. Then the operator A is of weak type
(1,1) and is bounded on Lp(G) for all 1 < p <∞.

We note that by Theorem 2.2.11, imposing conditions (2.31) for all multi-
indices α would imply that A is a left-invariant pseudo-differential operator in
Hörmander’s class, A ∈ Ψ0(G), for which the Lp-boundedness would follow from
the corresponding Lp-boundedness in Rn for its localisations. However, imposing
conditions (2.31) for multi-indices |α| ≤ k still assures that the operator A is of
Calderón-Zygmund type (in the sense of Coifman and Weiss, see Section A.4). The
proof of the Lp-boundedness for 1 < p ≤ 2 follows by Marcinkiewicz interpolation
theorem (see Proposition 1.5.1) from the L2-boundedness (and hence also weak
(2,2) type) in Theorem 2.2.5, and from weak (1,1) type, which becomes, therefore,
the main task.

For 2 < p < ∞, the result follows by duality. Before we give an idea behind
the proof of the weak (1,1) type, let us formulate several corollaries from Theorem
2.2.22. We recall that the Sobolev space W p,s(G) on G is the usual Sobolev space
on G as a manifold defined by requiring all the localisations to belong to the
Euclidean space W p,s(Rn) = (I−LRn)−s/2Lp(Rn), where LRn is the Laplacian on
Rn and s ∈ R.

Corollary 2.2.23. Let A : C∞(G) → D′(G) be a left-invariant linear continuous
operator on a compact Lie group G. Let 0 ≤ ρ ≤ 1 and let k denote the smallest
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even integer such that k > 1
2 dimG. Assume that the symbol σA of A satisfies

‖DασA(π)‖L (Hπ) ≤ Cα〈π〉−ρ|α|

for all multi-indices |α| ≤ k and all π ∈ Ĝ. Then the operator A extends to a
bounded operator from the Sobolev space W p,r(G) to Lp(G) for any 1 < p < ∞,
with

r = k(1− ρ)|1
p
− 1

2
|.

Example 2.2.24. Let

Lsub = X2 + Y 2

be a sub-Laplacian on SU(2). Then it was shown in [RTW14] that it has a
parametrix with the matrix-valued symbol in the class S−1

1
2 ,0

(SU(2)). Consequently,

for any 1 < p <∞, Corollary 2.2.23 implies the subelliptic estimate

‖f‖
W

p,s+1−| 1
p
− 1

2
|
(SU(2))

≤ Cp‖Lsubf‖Wp,s(SU(2)),

where the estimate is extended from s = 0 to any s ∈ R by the calculus. We refer to
[RTW14] for the construction and discussion of parametrices for other operators,
including the heat and the wave operator, d’Alambertian, and some higher order
operators, on SU(2) and on S3, and to [RW13, RW15] for the corresponding Lp-
estimates.

Example 2.2.25. Let (φ, θ, ψ) be the standard Euler angles on SU(2), see e.g.
[RT10a, Chapter 11] for a detailed treatment of SU(2). Thus, we have 0 ≤ φ < 2π,
0 ≤ θ ≤ π, and −2π ≤ ψ < 2π, and every element

u = u(φ, θ, ψ) =

(
a b
−b̄ ā

)
∈ SU(2)

is parametrised in such a way that

2aā = 1 + cos θ, 2ab = ieiφ sin θ, −2ab̄ = ieiψ sin θ.

Conversely, we can also write

u(φ, θ, ψ) =

(
cos( θ2 )e

i(φ+ψ)/2 i sin( θ2 )e
i(φ−ψ)/2

i sin( θ2 )e
−i(φ−ψ)/2 cos( θ2 )e

−i(φ+ψ)/2

)
∈ SU(2).

Let X be a left-invariant vector field on G normalised in such a way that ‖X‖ =
‖∂/∂ψ‖ with respect to the Killing form. It was shown in [RTW14] that for γ ∈ C,

the operator X + γ is invertible if and only if iγ �∈ 1

2
Z,
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and, moreover, for such γ, the inverse (X + γ)−1 has its matrix-valued symbol in
the class S0

0,0(SU(2)). The same conclusion remains true if we replace SU(2) by
S3, with the corresponding selection of Euler’s angles. Then, Corollary 2.2.23 and
the calculus imply the subelliptic estimate

‖f‖Wp,s(S3) ≤ Cp‖(X + γ)f‖
W

p,s+2| 1
p
− 1

2
|
(S3)

, 1 < p <∞, s ∈ R.

There is an analogue of this estimate on arbitrary compact Lie groups, see [RW15].

Let us briefly indicate an idea behind the proof of Theorem 2.2.22. In order
to use the theory of singular integral operators (according to Coifman and Weiss,
see Section A.4), we first define a suitable quasi-distance on G.

Let Ad : G → U(g) be the adjoint representation of G. Then by the Peter-
Weyl theorem it can be decomposed as a direct sum of irreducible representations,

Ad = (dimZ(G))1⊕
⊕
π∈Θ0

π,

where Z(G) is the centre of G, 1 is the trivial representation, and Θ0 is an index set
for the representations entering in this decomposition. Then we define a smooth
non-negative function

r2(x) := dimG− TrAd(x) =
∑
π∈Θ0

(dπ − χπ(x)), (2.32)

which is central, non-degenerate, and vanishes of the second order at the unit
element e ∈ G. It can be then checked that the function

d(x, y) := r(x−1y)

is the quasi-distance in the sense of Section A.4. Consequently, one can check that
the operator A satisfies Calderón-Zygmund conditions of spaces of homogeneous
type, in terms of the quasi-distance above. Such a verification relies heavily on the
developed symbolic calculus, Leibniz rules for difference operators, and criteria for
the weak (1,1) type in terms of suitably defined mollifiers. We refer to [RW15] for
further details of this construction.

Using the function r(x), one can refine the statement of Theorem 2.2.22.
Thus, let us define the difference operator associated with r2(x), namely,

!∗ := Δr2 = FG r2(x) F−1
G ,

and we have that !∗ ∈ diff2(Ĝ) is the second order difference operator.

Theorem 2.2.26. Let A : C∞(G) → D′(G) be a left-invariant linear continuous
operator on a compact Lie group G, and let k denote the smallest even integer
such that k > 1

2 dimG. Assume that the symbol σA of A satisfies

‖!∗ k/2σA(π)‖L (Hπ) ≤ C〈π〉−k
(2.33)
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as well as
‖DασA(π)‖L (Hπ) ≤ Cα〈π〉−|α|

(2.34)

for all multi-indices |α| ≤ k − 1 and all π ∈ Ĝ. Then the operator A is of weak
type (1,1) and is bounded on Lp(G) for all 1 < p <∞.

We note that, comparing (2.33) to the condition (2.31) in Theorem 2.2.22,
only a single difference condition of order k is required in Theorem 2.2.26. This
has interesting consequences, already in the case of the torus, as we will show in
Example 2.2.27.

Moreover, the assumption (2.34) can be refined further: namely, to form a
strongly admissible family of first order difference operators giving Dα in (2.28)
and (2.29), it is enough to take only πk ∈ Θ0, the set of the irreducible components
of the adjoint representation.

In all the theorems of this section an assumption that k is an even integer is
present. This seems to be related to the technical part of the argument, namely,
to the usage of the second order difference operator !∗ that is naturally related to
the quasi-metric on G as well as satisfies the finite Leibniz formula. The latter can
be derived from (2.30) using the decomposition

!∗ = −
∑
π∈Θ0

dπ∑
i=1

πDii,

which follows from the definition of r2(x) in (2.32). Thus, it satisfies

!∗ (στ) = (!∗σ)τ + σ(!∗ τ)−
∑
π∈Θ0

dπ∑
i,j=1

(πDijσ)(πDjiτ),

and becomes instrumental in establishing the relation between assumption (2.33)
and properties of the integral kernel of A in terms of the quasi-metric. However, we
note also that the condition on the even number of analogous expressions appears
already in the multiplier theorem for bi-invariant operators, established by rather
different methods by N. Weiss [Wei72].

Example 2.2.27. Let us consider now the case of the torus, G = Tn. In this case,
the left-invariant operators take the form

Af(x) =
∑
ξ∈Zn

e2πix·ξσ(ξ)f̂(ξ) with f̂(ξ) =

∫
Tn

e−2πix·ξf(x)dx.

or, in other words,

Âf(ξ) = σ(ξ)f̂(ξ), ξ ∈ Zn.

We take

r2(x) = 2n−
n∑

j=1

(e2πixj + e−2πixj ),
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so that

!∗σ(ξ) = 2nσ(ξ)−
n∑

j=1

(σ(ξ + ej) + σ(ξ − ej)),

where ξ ∈ Zn and ej is the jth unit vector in Zn. The appearing operator !∗ is
rather curious since it replaces the assumptions usually imposed on all highest
order difference conditions as, for example, in the suitably modified toroidal ver-
sion of Hörmander’s multiplier theorem [Hör60] (where one would need to make
assumptions on all differences of order

[
n
2

]
+ 1), or in Marcienkiewicz’ version of

multiplier theorem of Nikolskii [Nik77, Section 1.5.3] (where one imposes difference
conditions up to order n). To clarify the nature of the operator !∗ , we give the
examples for T2 and T3. As a consequence of Theorem 2.2.26 we get the following
statements. Let 1 < p <∞. Assume that

|σ(ξ)| ≤ C and |ξ| |σ(ξ + ej)− σ(ξ)| ≤ C,

for all ξ ∈ Z2 and j = 1, 2, or ξ ∈ Z3 and j = 1, 2, 3, respectively. Furthermore,
assume that

|ξ|2 |σ(ξ)− 1

4

2∑
j=1

(σ(ξ + ej) + σ(ξ − ej))| ≤ C for T2,

or

|ξ|2|σ(ξ)− 1

6

3∑
j=1

(σ(ξ + ej) + σ(ξ − ej))| ≤ C for T3,

respectively. Then the operator A is bounded on Lp(T2) or Lp(T3), respectively.

We now drop the assumption of left-invariance and consider general lin-
ear continuous operators from C∞(G) to D′(G). Then we can assure the Lp-
boundedness provided we complement the differences in π with derivatives with
respect to x.

Theorem 2.2.28. Let A : C∞(G) → D′(G) be a linear continuous operator on a
compact Lie group G, and let k denote the smallest even integer such that k >
1
2 dimG. Let 1 < p < ∞ and let l > dimG

p be an integer. Assume that the symbol
σA of A satisfies

‖Xβ
x!∗ k/2σA(x, π)‖L (Hπ) ≤ C〈π〉−k

(2.35)

as well as

‖Xβ
xD

ασA(x, π)‖L (Hπ) ≤ Cα〈π〉−|α|
(2.36)

for all π ∈ Ĝ and for all multi-indices α and β with |α| ≤ k− 1 and |β| ≤ l. Then
the operator A is bounded on Lp(G).

We refer to [RW15] for the detailed proofs of all the results in this section.



88 Chapter 2. Quantization on compact Lie groups

2.2.5 Sharp G̊arding inequality

The sharp G̊arding inequality on Rn is an important lower bound for operators
with positive symbols, finding many applications in the theory of partial differ-
ential equations of elliptic, parabolic and hyperbolic types. The original G̊arding
inequality for elliptic operators has been established by G̊arding in [G̊ar53]. It says
that if p ∈ Sm

ρ,δ(R
n), 0 ≤ δ < ρ ≤ 1, is a symbol satisfying

Re p(x, ξ) ≥ c|ξ|m,

c > 0, for all x ∈ Rn and ξ large enough, then the corresponding pseudo-differential
operator

p(x,D)f(x) =

∫
Rn

e2πix·ξp(x, ξ)f̂(ξ)dξ

satisfies the following lower bound: for every s ∈ R and every compact set K ⊂ Rn

there exist some constants c0, c1 such that

Re (p(x,D)f, f)L2(Rn) ≥ c0‖f‖2Hm/2(Rn) − c1‖f‖2Hs(Rn) (2.37)

holds for all f ∈ D(K). Its improvement, the so-called sharp G̊arding inequality was
obtained by Hörmander in [Hör66]. It says that if p ∈ Sm

ρ,δ(R
n), 0 ≤ δ < ρ ≤ 1,

is a non-negative symbol, p(x, ξ) ≥ 0 for all x, ξ ∈ Rn, then the corresponding
pseudo-differential operator satisfies the lower bound

Re (p(x,D)f, f)L2(Rn) ≥ −c‖f‖2H(m−(ρ−δ))/2(Rn) (2.38)

for all f ∈ D(K). This inequality was further generalised to systems by Lax and
Nirenberg [LN66], Kumano-go [Kg81], and Vaillancourt [Vai70]. It has been also
extended to regain two derivatives for the class S2

1,0(R
n) by Fefferman and Phong

[FP78]. For expositions concerning sharp G̊arding inequalities with different proofs
we refer to monographs of Kumano-go [Kg81], Taylor [Tay81], Lerner [Ler10], or
Friedrichs’ notes [Fri70]. There is also an approach based on constructions in space
variables rather than in frequency one, developed by Nagase [Nag77].

The situation with G̊arding inequalities on manifolds is more complicated.
The main problem is that the assumption that the symbol of a pseudo-differential
operator is non-negative is harder to formulate since the full symbol is not in-
variantly defined. For second order pseudo-differential operators, under the non-
negativity assumption on the principal symbol and certain non-degeneracy as-
sumptions on the sub-principal symbol, a lower bound now known as Melin-
Hörmander inequality has been obtained by Melin [Mel71] and Hörmander [Hör77].
The non-degeneracy conditions on the sub-principal symbol can be somehow re-
laxed, see [MPP07].

Nevertheless, in our setting we are assisted by the fact that the algebraic
structure of a Lie group gives us the notion of the full symbol in (2.19). This
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symbol, however, is not needed for the standard G̊arding inequality (2.37) since the
ellipticity is determined by the principal symbol only. Thus, the standard G̊arding
inequality (2.37) on compact Lie groups has been established in [BGJR89] using
Langlands’ results for semi-groups on Lie groups [Lan60].

Let us first look at a possible assumption for the positivity of an operator in
the invariant situation. If an operator A is given by the convolution Af = κ ∗ f ,
we obtain

(Af, f)L2(G) = (κ ∗ f, f)L2(G) = (f̂ κ̂, f̂)�2(Ĝ) =
∑
π∈Ĝ

dπ Tr
(
f̂(π) κ̂(π) f̂(π)∗

)
,

where we used the Plancherel identity (2.13). On the other hand, according to
Section 1.5, A is right-invariant, and according to Example 2.2.4 its symbol is
σA(x, π) = π(x)∗κ̂(ξ)π(x). Thus, we get that A is a positive operator if and only if

the matrix κ̂(π) is positive for all π ∈ Ĝ, i.e. when (κ̂(π)v, v)Hπ
≥ 0 for all v ∈ Hπ.

But this means that the symbol σA is positive, σA(x, π) ≥ 0 for all (x, π) ∈ G× Ĝ.
Analogously, for left-invariant operators Af = f ∗ κ, one sees that

(Af, f)L2(G) = (f ∗ κ, f)L2(G) = (κ̂ f̂ , f̂)�2(Ĝ) =
∑
π∈Ĝ

dπ Tr
(
f̂(π)∗ κ̂(π) f̂(π)

)
.

So again, A is a positive operator if and only if its symbol σA(π) = κ̂(π) is positive.

This motivates a hypothesis that the positivity of the matrix-valued symbol
on G would be an analogue of the positivity of the Kohn-Nirenberg symbol on Rn.
Indeed, we have the following criterion, which for non-invariant operators becomes
a sufficient condition:

Theorem 2.2.29. Let A ∈ Ψm(G) be such that its matrix-valued symbol σA is
positive, i.e.

σA(x, π) ≥ 0 for all (x, π) ∈ G× Ĝ.

Then there exists a constant c such that

Re (Af, f)L2(G) ≥ −c‖f‖2H(m−1)/2(G)

for all f ∈ C∞(G).

The usual proofs of the sharp G̊arding inequality on Rn (that is, the proofs
not relying on the anti-Wick quantization) make use of a positive approximation
of a pseudo-differential operator, the so-called Friedrichs symmetrisation, approx-
imating an operator with non-negative symbol of order m by a positive operator
modulo an error of order m − 1. This construction, indeed, allows one to gain
one derivative needed for the sharp G̊arding inequality. Unfortunately, such an
approximation in the frequency variable seems to be less useful on a Lie group G
because the unitary dual Ĝ is not well adapted for such purpose. However, one
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can carry out, instead, a symmetrisation in the space variables using the symbolic
calculus of operators for the construction. In particular, it relies heavily on dealing
with the symbol class Sm

1, 12
(G) defined in Section 2.2.3.

As in the case of operators on Rn, the sharp G̊arding inequality leads to sev-
eral further conclusions concerning the L2-boundedness of operators. For example,
pseudo-differential operators of the first order are bounded on L2(Rn) provided
their matrix-valued symbols are bounded:

Corollary 2.2.30. Let A ∈ Ψ1(G) be such that its matrix-valued symbol σA satisfies

‖σA(x, π)‖L (Hπ) ≤ C

for all (x, π) ∈ G× Ĝ. Then the operator A is bounded from L2(G) to L2(G).

It can be also used to determine constants as bounds for operator norms
of mappings between L2-Sobolev spaces. For the proofs of the statements in this
section, as well as for further details we refer the reader to [RT11].

In the above, we concentrated on symbol classes Sm
1,0(G) of type (1, 0). How-

ever, certain conclusions can be made also for operators with symbols of type
(ρ, δ).

Proposition 2.2.31 (G̊arding’s inequality on G). Let 0 ≤ δ < ρ ≤ 1 and m > 0.
Let A ∈ OpS2m

ρ,δ (G) be elliptic and such that σA(x, ξ) ≥ 0 for all x and co-finitely
many ξ. Then there are constants c1, c2 > 0 such that for any function f ∈ Hm(G)
the inequality

Re (Af, f)L2 ≥ c1‖f‖2Hm − c2‖f‖2L2

holds true.

The statement follows by the calculus from its special case m = ρ − δ. We
refer to [RW14, Corollary 6.2] for the proofs.
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