
Chapter 1

Preliminaries on Lie groups

In this chapter we provide the reader with basic preliminary facts about Lie groups
that we will be using in the sequel. At the same time, it gives us a chance to fix
the notation for the rest of the monograph. The topics presented here are all well-
known and we decided to give a brief account without proofs referring the reader
for more details to excellent sources where this material is treated from different
points of view; for example, the monographs by Chevalley [Che99], Fegan [Feg91],
Nomizu [Nom56], Pontryagin [Pon66], to mention only a few. Thus, this chapter
can also serve as a quick and informal introduction to the subject, and we refer to
monographs [RT10a] for an undergraduate level introduction to general Lie groups
and their representation theory, and to Corwin and Greenleaf [CG90] or Goodman
[Goo76] for a rather comprehensive treatment of nilpotent Lie groups. The groups
that we are dealing with in the monograph are either compact or nilpotent Lie
groups, so we can restrict our attention to unimodular Lie groups only.

The choice of material is adapted to our subsequent needs and, after giving
basic definitions, we go straight to discussing convolutions, invariant differential
operators, and elements of the representation theory. More information on com-
pact or homogeneous nilpotent Lie groups will be given in relevant chapters at
appropriate places. In particular Section 3.1.1 will provide examples and basic
properties of graded nilpotent Lie groups. Relevant monographs to consult on in-
variant differential operators and related harmonic analysis may be Helgason’s
books [Hel84b, Hel01] or Wallach’s [Wal73].

1.1 Lie groups, representations, and Fourier transform

A Lie group G is a smooth manifold endowed with the smooth mappings

G×G � (x, y) �→ xy ∈ G and G � x �→ x−1 ∈ G

satisfying, for all x, y, z ∈ G, the properties
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1. x(yz) = (xy)z;

2. ex = xe = x;

3. xx−1 = x−1x = e,

where e ∈ G is an element of the group called the unit element. To avoid unnec-
essary technicalities at a few places, we will always assume that G is connected,
although we sometimes will emphasise it explicitly. A compact Lie group is a Lie
group which is compact as a manifold.

Lie groups are naturally topological groups. Recall that a topological group
G is a topological set G endowed with the continuous mappings

G×G � (x, y) �→ xy ∈ G and G � x �→ x−1 ∈ G

satisfying, for all x, y, z ∈ G, the same properties 1., 2. and 3. as above. When
the topology of a topological group is locally compact (i.e. every point has a
compact neighbourhood), we say that the group is locally compact. Lie groups are
(Hausdorff) locally compact.

Representations

A representation π of a group G on a Hilbert space Hπ �= {0} is a homomorphism
π of G into the group of bounded linear operators on Hπ with bounded inverse.
This means that

• for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is bounded and has
bounded inverse,

• for any x, y ∈ G, we have π(xy) = π(x)π(y).

A representation π of a group G is unitary when π(x) is unitary for every
x ∈ G. Hence a unitary representation π of a group G is a homomorphism π ∈
Hom(G,U(Hπ)), which means that

• for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is unitary:

π(x)−1 = π(x)∗;

• for any x, y ∈ G, we have π(xy) = π(x)π(y).

Here and everywhere, if H is a topological vector space, L (H) denotes the
space of all continuous linear operators H → H, and U(H) the space of unitary
ones, with respect to the inner product on H. For two different topological vector
spaces H1 and H2, we denote by L (H1,H2) the space of all linear continuous
mappings from H1 to H2.

An invariant subspace for a representation π is a vector subspace W ⊂ Hπ

such that π(x)W ⊂ W holds for every x ∈ G. A representation π is called irre-
ducible when it has no closed invariant subspaces.
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Let us give the prototype example of a representation which is not irreducible.
If πj ∈ Hom(G,U(Hπj

)) is a family of representations, then using the direct sum

Hπ :=
⊕
j

Hπj

with the induced inner product, we get a representation π which is the direct sum
of πj :

π =
⊕
j

πj ∈ Hom(G,U(Hπ)), π(x)|Hπj
= πj(x).

Naturally, a sum of several πj ’s can not be irreducible as each Hπj
is a closed

invariant subspace of Hπ.

If the space Hπ is finite dimensional, the representation π is said to be finite
dimensional and its dimension/degree is defined by

dπ := dimHπ.

The trivial representation, sometimes denoted by 1, is given by the group homo-
morphism G � x �→ 1 ∈ C, and its dimension is one. If Hπ is infinite dimensional,
then the representation π is said to be infinite dimensional.

Two representations π1 and π2 are said to be equivalent if there exists a
bounded linear mapping A : Hπ1

→ Hπ2
between their representation spaces with

a bounded inverse such that the relation

Aπ1(x) = π2(x)A (1.1)

holds for all x ∈ G. In this case we write

π1 ∼ π2 or, more precisely sometimes, π1 ∼A π2

and denote their equivalence class by [π1] = [π2]. For unitary representations,
A is assumed to be unitary as well. A bounded linear mapping with bounded
inverse satisfying the relation (1.1) is sometimes called an intertwining operator or
intertwiner. The set of bounded linear mappings A with bounded inverse satisfying
the relation (1.1) is denoted by Hom(π1, π2).

Note that for any representation π, Hom(π, π) contains at least λIHπ
, λ ∈ C,

where IHπ
is the identity mapping on Hπ.

We now assume that the group G is topological. A representation π of G is
continuous if the mapping {

G×Hπ −→ Hπ

(x, v) �−→ π(x)v
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is continuous. A representation π of G is called strongly continuous if the mapping
π : G → L (Hπ) is continuous for the strong operator topology in L (Hπ), that
is, if the mapping {

G −→ Hπ

x �−→ π(x)v

is continuous for all v ∈ Hπ.

A continuous representation is strongly continuous. The converse is true for
unitary representations. Indeed, if π is a unitary representation of G, then we have
for any x, x0 ∈ G and v, v0 ∈ Hπ,

‖π(x)v − π(x0)v0‖Hπ
= ‖π(x0)(π(x

−1
0 x)v − v0)‖Hπ

= ‖π(x−1
0 x)v − v0‖Hπ

= ‖π(x−1
0 x)(v − v0) + (π(x−1

0 x)v0 − v0)‖Hπ

≤ ‖π(x−1
0 x)(v − v0)‖Hπ

+ ‖π(x−1
0 x)v0 − v0‖Hπ

= ‖v − v0‖Hπ
+ ‖π(x−1

0 x)v0 − v0‖Hπ
,

having used only the unitarity of π and the triangle inequality. This shows that if
a representation of G is unitary and strongly continuous then it is continuous.

Schur’s lemma: Let π be a strongly continuous unitary representation of a topo-
logical group G on a Hilbert space Hπ. The representation π is irreducible if and
only if the only bounded linear operators on Hπ commuting with all π(x), x ∈ G,
are the scalar operators. Equivalently,

π irreducible ⇐⇒ Hom(π, π) = {λIHπ
: λ ∈ C}.

The set of all equivalence classes of strongly continuous irreducible unitary
representations of G is called the unitary dual of G or just dual of G and is denoted
by Ĝ.

Later, we will give more details on representations of compact or nilpotent
Lie groups and their dual.

The unitary dual of G is never a group unless G is commutative. However,
if G is a commutative locally compact group, then Ĝ has a natural structure of a
commutative locally compact group and we have

Pontryagin duality: if G is a commutative locally compact group, then
̂̂
G � G.

For most of the statements in the sequel, if they hold for one representation,
they will also hold for all equivalent representations. That is why we may simplify
the notation a little writing π ∈ Ĝ instead of [π] ∈ Ĝ for its equivalence class.
In this case we can think of π as either any representative from its class or the
equivalence class itself. If we need to work with a particular representation from
an equivalence class (for example the one diagonalising certain operators in a
particular choice of the basis in Hπ) we will specify this explicitly.
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Haar measure

A fundamental fact, valid on general locally compact groups, is the existence of
an invariant measure, called Haar measure:

Theorem 1.1.1. Let G be a locally compact group. Then there exists a non-zero left-
invariant measure on G, and it is unique up to a positive constant. More precisely,
there exists a positive Radon measure on G satisfying

|xA| = |A| for every Borel set A ⊂ G and every x ∈ G,

where |A| denotes the measure of the set A with respect to this Radon measure.
In the sequel, we denote this measure by dx, dy, etc., depending on the variable
of integration. Then, for every x ∈ G and every continuous compactly supported
function f on G, we have ∫

G

f(xy)dy =

∫
G

f(y)dy.

We fix one of such measures. In this monograph, we will be only dealing with
either compact or nilpotent Lie groups, in which case it can be shown that the
Haar measure is also right-invariant:

|Ax| = |A| for every Borel set A ⊂ G and every x ∈ G,

and also ∫
G

f(yx)dy =

∫
G

f(y)dy;

such groups are called unimodular. Since the mapping f �→
∫
G
f(y−1)dy is posi-

tive, left-invariant, and normalised, by uniqueness we must also have∫
G

f(y−1)dy =

∫
G

f(y)dy.

For a more general definition of a modular function we can refer to Definition
B.2.10. Here we can summarise a few properties of (unimodular) groups:

• Any Lie group is a locally compact (Hausdorff) group.

• Any compact (Hausdorff) group is a locally compact (Hausdorff) group and
it is also unimodular.

• Any abelian locally compact (Hausdorff) group is unimodular.

• Any nilpotent or semi-simple Lie group is unimodular.

If 1 ≤ p ≤ ∞, Lp(G) or simply Lp denote the usual Lebesgue space on G
with respect to the Haar measure, with the norm

‖ · ‖Lp = ‖ · ‖Lp(G) = ‖ · ‖p,
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given for p ∈ [1,∞) by

‖f‖p =

(∫
G

|f(x)|pdx
)1/p

,

and for p =∞ by
‖f‖∞ = sup

x∈G
|f(x)|.

Here the supremum refers to the essential supremum with respect to the Haar
measure.

The Hilbert sesquilinear form on L2(G) is denoted by

(f1, f2)L2 = (f1, f2)L2(G) =

∫
G

f1(x)f2(x)dx.

Example 1.1.2. Let us give an important example of so-called left and right regular
representations leading to the notions of left- and right-invariant operators. We
define the left and right regular representations of G on L2(G), πL, πR : G →
U(L2(G)), respectively, by

πL(x)f(y) := f(x−1y) and πR(x)f(y) := f(yx).

Definition 1.1.3. An operator A is called left (right, resp.) invariant if it commutes
with the left (right, resp.) regular representation of G.

Fourier analysis

For f ∈ L1(G) we define its Fourier coefficient or group Fourier transform at the
strongly continuous unitary representation π as

FGf(π) ≡ f̂(π) ≡ π(f) :=

∫
G

f(x)π(x)∗dx. (1.2)

More precisely, we can write

(f̂(π)v1, v2)Hπ
=

∫
G

f(x)(π(x)∗v1, v2)Hπ
dx.

This gives a linear mapping f̂(π) : Hπ → Hπ. If the representation π is finite
dimensional, then after a choice of a basis in the representation space Hπ, the
Fourier coefficient f̂(π) can be also viewed as a matrix f̂(π) ∈ Cdπ×dπ .

Remark 1.1.4. The choice of taking the adjoint π(x)∗ in (1.2) is natural if we think

of the unitary dual of the torus Tn = Rn/Zn being T̂n = {πξ(x) = e2πix·ξ}ξ∈Zn �
Zn, and the Fourier transform on the torus defined by

f̂(πξ) ≡ f̂(ξ) =

∫
Tn

e−2πix·ξf(x)dx =

∫
Tn

f(x)πξ(x)
∗dx.
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In other contexts, the other choice, that is, integrating against π(x) instead of
π(x)∗, may be made. This is the case for instance in the study of C∗-algebras
associated with groups.

Remark 1.1.5. We note that the Fourier coefficient f̂(π) depends on the choice of
the representation π from its equivalence class [π]. Namely, if π1 ∼ π2, so that

π2(x) = U−1π1(x)U

for some unitary U and all x ∈ G, then

f̂(π2) = U−1f̂(π1)U.

This means that strictly speaking, we need to look at Fourier coefficients modulo
conjugations induced by the equivalence of representations. This should, however,
cause no problems, and we refer to Remark 2.2.1 for more discussion on this.

Recalling that the Fourier transform on Rn maps translations to modulations,
here we have an analogous property, namely, if π ∈ Ĝ, f ∈ L1(G) and x ∈ G, then

f̂(·x)(π) = π(x)f̂(π) and f̂(x ·)(π) = f̂(π)π(x), (1.3)

whenever the right hand side makes sense. Let us show these properties by a formal
argument, which can be made rigorous on Lie groups, see the proof of Proposition
1.7.6, (iv). We have

π(x)f̂(π) =

∫
G

f(y)π(x)π(y)∗dy

=

∫
G

f(y)π(yx−1)∗dy

=

∫
G

f(yx)π(y)∗dy

= f̂(·x)(π), (1.4)

as well as

f̂(x ·)(π) =

∫
G

f(xy)π(y)∗dy

=

∫
G

f(y)π(x−1y)∗dy

=

∫
G

f(y)π(y)∗π(x)dy

= f̂(π)π(x). (1.5)

We will continue with a more detailed discussion of the Fourier transform on
compact Lie groups in Section 2.1, on nilpotent Lie groups in Section 1.8.1 and,
more generally, on a separable locally compact connected, unimodular, amenable
group G of type I in Section 1.8.2.
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1.2 Lie algebras and vector fields

A (real) Lie algebra is a real vector space V endowed with a bilinear mapping

V × V � (a, b) �→ [a, b] ∈ V,

called the commutator of a and b, such that

• [a, a] = 0 for every a ∈ V ;

• Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ V .

By writing [a+ b, a+ b] = [a, a] + [a, b] + [b, a] + [b, b] we see that the first property
is equivalent to the condition that

∀a, b ∈ V [a, b] = −[b, a].

We now proceed to equip the tangent space of G (at every point) with a Lie
algebra structure. A map X(x) : C∞(G) → R is called a tangent vector to G at
x ∈ G if

• X(x)(f + g) = X(x)f +X(x)g;

• X(x)(fg) = X(x)(f)g(x) + f(x)X(x)(g).

The notation X(x) is used only in this section and the reason for its choice is that
we want to reserve the notation Xx for derivatives, to be used later.

The space of all tangent vectors at x is a finite dimensional vector space of
dimension equal to the dimension of G as a manifold; the finite dimensionality can
be seen by passing to local coordinates. This vector space is denoted by TxG. The
disjoint union,

TG :=
⋃
x∈G

TxG

is a vector bundle over X, called the tangent bundle. The canonical projection
proj : TG → G is given by projX(x) := x. If Ux is a (sufficiently small) open

neighbourhood of x in G, we can trivialise the vector bundle TG by proj−1(Ux) �
Ux × E with a vector space E of dimension equal to that of G. This induces the
manifold structure on TG.

A (smooth) vector field on G is a (smooth) section of TG, i.e. a (smooth)
mapping X : G→ TG such that X(x) ≡ X(x) ∈ TxG. It acts on C∞(G) by

(Xf)(x) := (X(x)f)(x), f ∈ C∞(G).

There is a bracket structure on the space of vector fields acting on C∞(G) given
by

[X,Y ](x)(f) := X(x)Y f − Y (x)Xf, x ∈ G,

leading to the corresponding (smooth) vector field [X,Y ] : G → TG given by
x �→ [X,Y ](x). One can readily check that [X,X] = 0 for every vector field X and
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that the introduced bracket satisfies the Jacobi identity. This bracket [·, ·] is called
the commutator bracket for vector fields.

We now recall that G is also a group, and relate vector fields to the group
structure. First, we define the left and right translations by an element y ∈ G:

Ly, Ry : G→ G, Ly(x) := yx, Ry(x) := xy.

Consequently, their derivatives are the mappings

dLy, dRy : TG→ TG such that dLy ∈ L (TxG, TyxG), dRy ∈ L (TxG, TxyG).

Now, a vector field X : G → TG is called left-invariant if it commutes with the
left translations, in the sense that

X ◦ Ly = dLy ◦X ∀y ∈ G. (1.6)

A similar construction leads to the notion of right-invariant vector fields, satisfying

X ◦Ry = dRy ◦X

for all y ∈ G.

It follows that once a left-invariant vector field is defined at any one point, by
the left-invariance it is uniquely determined at all points. Thus, the mapping X �→
X(e) is a one-to-one correspondence between left-invariant vector fields on G and
the tangent space TeG at the unit element e ∈ G. Conversely, given X(e) ∈ TeG,
the vector field X defined by (1.6) is automatically smooth and, by definition,
left-invariant. With this identification, we can now simplify the notation for left-
invariant vector fields X, writing X also for its value X(e) at the unit element. It
can be readily checked that if X and Y are left-invariant vector fields, so is also
their commutator [X,Y ].

Definition 1.2.1. The Lie algebra g of the Lie group G is the space TeG equipped
with the commutator [·, ·] induced by the commutator bracket of vector fields.

We now define the exponential mapping expG. For X ∈ g, consider the initial
value problem for a function γ : [0, ε)→ G, ε > 0, given by the ordinary differential
equation determined by the left-invariant vector field associated with X:

γ′(t) = X(γ(t)), γ(0) = e.

From the theory of ordinary differential equations we know that this equation is
uniquely solvable on some interval [0, ε) and the solution depends smoothly on
X(e). Moreover, we notice that we can increase the interval of existence by taking
smaller vectors X(e), in particular, in such a way that the solution exists on the
interval [0, 1]. In this case we set expG X := γ(1). Altogether, it follows that the
mapping expG is a smooth diffeomorphism from some open neighbourhood of 0 ∈ g
to some open neighbourhood of e ∈ G.
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Now, each vector X ∈ g can be viewed as a left-invariant differential operator
on C∞(G) defined by

Xf(x) :=
d

dt
f(x expG(tX))|t=0. (1.7)

Indeed, it can be readily checked that XπL(y) = πL(y)X for all y ∈ G. Analo-
gously, the same vector X ∈ g defines a right-invariant differential operator, which
we denote by

X̃f(x) :=
d

dt
f(expG(tX)x)|t=0.

Thus, throughout this book, we will be interpreting the Lie algebra g = TeG of G
as the vector space of first order left-invariant partial differential operators on G.
The space of all left-invariant vector fields will be sometimes denoted by D(G) or
by Diff1(G), and the space of all right-invariant vector fields by D̃(G).

1.3 Universal enveloping algebra and differential
operators

Roughly speaking, the universal enveloping algebra of a Lie algebra g is the natural
non-commutative polynomial algebra on g. If g is the Lie algebra of a Lie group G,
then, similarly to the interpretation of g as the space of left-invariant derivatives
on G, the universal enveloping algebra U(g) of the Lie algebra of G will be also
interpreted as the vector space of left-invariant partial differential operators on
G of finite order. The associative algebra will be generated as a complex algebra
over g, so that we could write U(gC) for it, where gC denotes the complexification
of g. However, we will simplify the notation writing U(g), and will later use the
Poincaré-Birkhoff-Witt theorem to identify it with the left-invariant differential
operators on G with complex coefficients. Let us now formalise these statements.

The following construction is algebraic and works for any real Lie algebra g.
Let us denote the m-fold tensor product of gC by ⊗mgC := gC ⊗ · · · ⊗ gC, and let

T :=
∞⊕

m=0

⊗mgC

be the tensor product algebra of g, which means that T is the linear span of the
elements of the form

λ001+

M∑
m=1

Km∑
k=1

λmkXmk1 ⊗ · · · ⊗Xmkm,

where 1 is the formal unit element of T , λmk ∈ C, Xmkj ∈ g, and M,KM ∈ N.
This T becomes an associative algebra with the product

(X1 ⊗ · · · ⊗Xp)(Y1 ⊗ · · · ⊗ Yq) := X1 ⊗ · · · ⊗Xp ⊗ Y1 ⊗ · · · ⊗ Yq
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extended to a uniquely determined bilinear mapping T ×T → T . We now want to
induce the commutator structure on T : let I be the two-sided ideal in T spanned
by the set

O := {X ⊗ Y − Y ⊗X − [X,Y ] : X,Y ∈ g},
i.e. I is the smallest vector subspace of T such that

• O ⊂ I;
• for every J ∈ I and T ∈ T we have JT, TJ ∈ I.

The quotient algebra
U(g) := T /I

is called the universal enveloping algebra of g; the quotient mapping

ι : T � T �→ T + I ∈ U(g) = T /I,

restricted to g, ι|g : g→ U(g), is called the canonical mapping of g. This gives the
embedding of g into U(g):

Ado-Iwasawa theorem: the canonical mapping ι|g : g→ U(g) is injective.

Let n = dimG and let {Xj}nj=1 be a basis of the Lie algebra g of G. Regarded
as first order left-invariant derivatives, they give rise to higher order left-invariant
differential operators

Xα = Xα1
1 . . . Xαn

n , α = (α1, . . . , αn) ∈ Nn
0 .

The converse is also true (for a stronger version of this see e.g. [Bou98, Ch 1, Sec.
2.7]):

Poincaré-Birkhoff-Witt theorem: any left-invariant differential operator T on G
can be written in a unique way as a finite sum

T =
∑
α∈Nn

0

cαX
α,

where all but a finite number of the coefficients cα ∈ C are zero. This gives an
identification between the universal enveloping algebra U(g) and the space of left-
invariant differential operators on G.

We denote the space of all left-invariant differential operators of order k by
Diffk(G).

If T is as above, we define three new elements T̄ , T ∗, and T t of U(g) via

T̄ :=
∑
α∈Nn

0

c̄α(Xn)
αn . . . (X1)

α1 , (1.8)

T ∗ :=
∑
α∈Nn

0

c̄α(−Xn)
αn . . . (−X1)

α1 , (1.9)
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and
T t :=

∑
α∈Nn

0

cα(−Xn)
αn . . . (−X1)

α1 . (1.10)

These T ∗ and T t are called the (formal) adjoint and transpose operators of T ,
respectively. Naturally, they coincide with the natural transpose and formal adjoint
operators of their corresponding left-invariant vector fields. Recall that the latter
operators are defined via:

Definition 1.3.1. Let T be an operator T on L2(G) with domain D(G) (T may be
unbounded, D(G) ⊂ DomT ). The natural transpose and formal adjoint operators
of T are the operators T t and T ∗ on L2(G) defined via

〈Tφ, ψ〉 = 〈φ, T tψ〉 and (Tφ, ψ)L2(G) = (φ, T ∗ψ)L2(G), φ, ψ ∈ D(G).

We also define the operator T̄ on L2(G) via

T̄ φ := T φ̄,

for φ, φ̄ ∈ DomT .

Note that we also have, e.g.,

T ∗ = {T t} = {T̄}t

and so on. Denoting
f̃(x) := f(x−1),

the left- and right- invariant differential operators are related by

X̃f(x) = −(Xf̃)(x−1) and hence X̃αf(x) = (−1)|α|(Xαf̃)(x−1). (1.11)

Indeed, we can write

Xf̃(x) =
d

dt
f((x expG(tX))−1)|t=0 =

d

dt
f(expG(−tX)x−1)|t=0 = −(X̃f)(x−1),

implying (1.11).
For any X ∈ g identified with a left-invariant vector field, we have

X̃y{f(xy)} =
d

dt
f(xetXy)t=0 = Xx{f(xy)}.

Recursively, we obtain

X̃α
y {f(xy)} = Xα

x {f(xy)}. (1.12)

The first order differential operators are formally skew-symmetric:∫
G

(Xf1)f2 = −
∫
G

f1(Xf2) and

∫
G

(X̃f1)f2 = −
∫
G

f1(X̃f2),
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so that from (1.11) we also have

X̃f(x) = −(Xf̃)(x−1) = (Xtf̃)(x−1).

We now summarise several further notions and their properties that will be
of use to us in the sequel:

• there is a natural representation of the Lie group G acting on its Lie algebra
g, called the adjoint representation. To introduce it, first define the inner
automorphism Ix(y) := xyx−1. We have Ix : G → G and Ixy = IxIy. Its
differential at e gives a linear mapping from TeG to TeG, and we denote it
by

Ad(x) := (dIx)e : g→ g.

We have Ad(e) = I and Ad(xy) = Ad(x)Ad(y), so that Ad : G → L (g)
becomes a representation of G on g;

• the left and right multiplications on G are related by

x expG X = exp(Ad(x)X)x, x ∈ G, X ∈ g;

• a Lie group G is called a linear Lie group if it is a closed subgroup of GL(n,C);
the adjoint representation of such G is given by

Ad(X)Y = XYX−1

as multiplication of matrices;

• universality of unitary groups: any compact Lie group is isomorphic to a
subgroup of U(N), the group of (N ×N)-unitary matrices, for some N ∈ N;

• let ad : g→ L(g) be the linear mapping defined by

ad(X)Y := [X,Y ];

then d(Ad)e = ad; see also Definition 1.7.4;

• the Killing form of the Lie algebra g is the bilinear mapping B : g× g → R
defined by

B(X,Y ) := Tr(ad(X) ad(Y ));

it satisfies

B(X,Y ) = B(Y,X) and B(X, [Y, Z]) = B([X,Y ], Z)

and is invariant under the adjoint representation of G, namely,

B(X,Y ) = B(Ad(x)(X),Ad(x)(Y )) for all x ∈ G, X, Y ∈ g;
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• A connected Lie group G is called semi-simple if B is non-degenerate; a
connected semi-simple groupG is compact if and only if B is negative definite.

The Ad-invariance of the Killing form has its consequences. On one hand,
any bilinear form on g can be extended to a bilinear (non-necessarily positive
definite) metric on G by left translations. It is automatically left-invariant. On
the other hand, if the form on g is Ad-invariant, then the extended metric is
also right-invariant. Thus, we can conclude that the Killing form induces a bi-
invariant metric on G. By the last property above, if G is semi-simple, the Killing
form is non-degenerate, and hence the corresponding metric is pseudo-Riemannian.
Moreover, if G is a connected semi-simple compact Lie group, the positive-definite
form −B induces the bi-invariant Riemannian metric on G.

For the basis {Xj}nj=1 as above, let us define Rij := B(Xi, Xj). If the group

G is semi-simple, the matrix (Rij) is invertible, and we denote its inverse by R−1.
This leads to another vector space basis on g given by

Xi :=

n∑
j=1

(R−1)ijXj ,

and to the so-called Casimir element of U(g) defined by

Ω :=

n∑
i=1

XiX
i.

It has the crucial property: Ω is independent of the choice of the basis {Xj}, and

ΩT = TΩ for all T ∈ U(g).

We finish this section with the formula for the group product which will be useful
for us, especially in the nilpotent case:

Theorem 1.3.2 (Baker-Campbell-Hausdorff formula). Let G be a Lie group with
Lie algebra g. There exists a neighbourhood V of 0 in g such that for any X,Y ∈ V ,
we have

expG X expG Y = expG
(∑
n>0

(−1)n+1

n

∑
p,q∈N

n
0

pi+qi>0

(
∑n

j=1(pj + qj))
−1

p1!q1! . . . pn!qn!

×(adX)p1(adY )q1 . . . (adX)pn(adY )qn−1Y
)
.

The equality holds whenever the sum on the right-hand side is convergent.

Writing first few terms explicitly, we have

expG X expG Y

= expG

(
X + Y +

1

2
[X,Y ] +

1

12
[[X,Y ], Y ]− 1

12
[[X,Y ], X] + . . .

)
.
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1.4 Distributions and Schwartz kernel theorem

Here we fix the notation concerning distributions. For an extensive analysis of
spaces of distributions and their properties on manifolds we refer to [Hör03].

The space of smooth functions compactly supported in a smooth manifold M
will be denoted by D(M). Throughout the book, any smooth manifold is assumed
to be paracompact (i.e. every open cover has an open refinement that is locally
finite) and this allows us to consider the space of distributions D′(M) as the dual
of D(M). Note that any Lie group is paracompact.

If u ∈ D′(M) and φ ∈ D(M), we shall denote the evaluation of u on φ by
〈u, φ〉, or even by 〈u, φ〉M when we wish to be precise; however, we shall usually
pretend that the distributions are functions and write

〈u, φ〉 =
∫
M

u(x)φ(x)dx, u ∈ D′(M), φ ∈ D(M).

The Schwartz space S(Rn) of rapidly decreasing functions will be equipped
with a family of seminorms defined by

‖f‖S(Rn),N := sup
|α|≤N, x∈Rn

(1 + |x|)N
∣∣∣∣( ∂

∂x

)α

f(x)

∣∣∣∣ . (1.13)

Its dual, the space of tempered distributions, is denoted by S ′(Rn).

Theorem 1.4.1 (Schwartz kernel theorem). We have the following statements:

• Let T : S(Rn)→ S ′(Rn) be a continuous linear operator. Then there exists a
unique distribution κ ∈ S ′(Rn × Rn) such that

Tφ(x) =

∫
Rn

κ(x, y)φ(y)dy.

In other words, T is an integral operator with kernel κ. The converse is also
true.

• Let M be a smooth connected manifold and let T : D(M) → D′(M) be a
continuous linear operator. There exists a unique distribution κ ∈ D′(M×M)
such that

Tφ(x) =

∫
M

κ(x, y)φ(y)dy.

In other words, T is an integral operator with kernel κ. The converse also is
true.

In both cases, the map κ �→ T is an isomorphism of topological vector space.

We refer to e.g. [Tre67] for further details. We will also give a version of this
theorem on Lie groups for left-invariant operators in Corollary 3.2.1.
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Let Ω be an open set in Rn or inM . We say that u ∈ D′(Ω) is supported in the
set K ⊂ Ω if 〈u, φ〉 = 0 for all φ ∈ D(Ω) such that φ = 0 on K. The smallest closed
set in which u is supported is called the support of u and is denoted by suppu.
The space of compactly supported distributions on M is denoted by E ′(M), and
the duality between E ′(M) and C∞(M) will still be denoted by 〈·, ·〉.

We write u ∈ D′
j(Ω) for the space of distributions of order j on Ω, which

means that for any compact subset K of Ω,

∃C > 0 ∀φ ∈ D(K) |〈u, φ〉| ≤ C‖φ‖Cj(K),

but j does not depend on K. An important property of such distributions, useful
for us, is the following

Proposition 1.4.2. If a distribution u ∈ D′
j(R

n) has support suppu = {0}, then
there exist constants aα ∈ C such that

u =
∑
|α|≤j

aα∂
αδ0,

where δ0(φ) = φ(0) is the delta-distribution at zero.

1.5 Convolutions

Let f, g ∈ L1(G) be integrable function on a locally compact group. The convolu-
tion f ∗ g is defined by

(f ∗ g)(x) :=
∫
G

f(y)g(y−1x)dy.

In this monograph we consider only unimodular groups. This means that the Haar
measure is both left- and right-invariant. Consequently we also have

(f ∗ g)(x) =
∫
G

f(xy−1)g(y)dy.

On a nilpotent or compact Lie group which is not abelian, the convolution is
not commutative: in general, f ∗ g �= g ∗ f . However, apart from the lack of
commutativity, group convolution and the usual convolution on Rn share many
properties. For example, we have

〈f ∗ g, h〉 =

∫
G

(f ∗ g)(x) h(x) dx

=

∫
G

∫
G

f(y) g(y−1x) h(x) dy dx

= 〈f, h ∗ g̃〉, with g̃(x) = g(x−1). (1.14)
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We also have

〈f ∗ g, h〉 =

∫
G

∫
G

f(y) g(y−1x) h(x) dy dx

=

∫
G

∫
G

f(y) g(z) h(yz) dy dz

=

∫
G

∫
G

f(wz−1) g(z) h(w) dz dw

= 〈g, f̃ ∗ h〉. (1.15)

With the notation ·̃ for the operation given by g̃(x) = g(x−1), we also have

(f ∗ g)̃ = g̃ ∗ f̃ . (1.16)

One can readily check the following simple properties:

• if f, g ∈ L1(G) then f ∗ g ∈ L1(G), and we have ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ;

• under the assumptions above, we have

(f ∗ g)(x) =
∫
G

f(y−1)g(yx)dy =

∫
G

f(xy)g(y−1)dy

for almost every x ∈ G;

• if either f or g are continuous on G then f ∗ g is continuous on G;

• ‖f ∗ g‖L∞ ≤ ‖f‖L2‖g‖L2 ;

• the convolution is associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h, for f, g, h ∈ L1(G);

• the convolution is commutative if and only if G is commutative;

• (if G is a Lie group and ) if X is a left-invariant vector field, whenever it
makes sense, we have

X(f ∗ g) = f ∗ (Xg) and X̃(f ∗ g) = (X̃f) ∗ g;

moreover, we also have
(Xf) ∗ g = f ∗ (X̃g);

• the right convolution operator f �→ f ∗κ is left-invariant; the left convolution
operator f �→ κ ∗ f is right-invariant.

To check the last statement, let us show that the right convolution operator given
via Af = f ∗ κ is left-invariant:

πL(z)Af(x) = (f ∗ κ)(z−1x) =

∫
G

f(y) κ(y−1z−1x)dy

=

∫
G

f(z−1y) κ(y−1x)dy = (πL(z)f) ∗ κ(x) = AπL(z)f(x).
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Conversely, it follows from the Schwartz integral kernel theorem that if A is left-
invariant, it can be written as a right convolution Af = f ∗ κ, and if A is right-
invariant, it can be written as a left convolution Af = f ∗ κ, see Section 1.4 and
later Corollary 3.2.1.

With our choice of the definition of the convolution and the Fourier transform
in (1.2), one can readily check that for f, g ∈ L1(G), we have

f̂ ∗ g(π) = ĝ(π)f̂(π) (1.17)

or, in the other notation,
π(f ∗ g) = π(g)π(f).

We say that an operator A is of weak type (p, p) if there is a constant C > 0
such that for every λ > 0 we have

|{x ∈ G : |Af(x)| > λ}| ≤ C
‖f‖pLp(G)

λp
,

where |{·}| denotes the Haar measure of a set in G.

Proposition 1.5.1 (Marcinkiewicz interpolation theorem). Let r < q and assume
that operator A is of weak types (r, r) and (q, q). Then A is bounded on Lp(G) for
all r < p < q.

An important fact, the Young inequality, relates convolution to Lp-spaces:

Proposition 1.5.2 (Young’s inequality). Suppose

1 ≤ p, q, r ≤ ∞ and
1

p
+

1

q
=

1

r
+ 1.

If f1 ∈ Lp(G) and f2 ∈ Lq(G) then f1 ∗ f2 ∈ Lr(G) and

‖f1 ∗ f2‖r ≤ ‖f1‖p‖f2‖q.

If p, q ∈ (1,∞) are such that 1
p + 1

q > 1, f1 ∈ Lp(G), and f2 satisfies the

weak-Lq(G) condition:

sup
s>0

sq |{x : |f2(x)| > s}| =: ‖f2‖qw−Lq(G) <∞,

then f1 ∗ f2 ∈ Lr with r as above and

‖f1 ∗ f2‖r ≤ ‖f1‖p‖f2‖w−Lq(G).

The proof is an easy adaptation of the Euclidean case which can be found
e.g., in [SW71] or, in the nilpotent case, in [FS82, Proposition 1.18] and [Fol75,
Proposition 1.10].
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Convolution of distributions

We now define the convolution of distributions on a Lie group G. For φ ∈ C∞(G),
we recall that

φ̃(x) = φ(x−1)

and
πL(x)φ(y) = φ(x−1y).

Consequently, we note that

(πL(x)φ̃)(y) = φ̃(x−1y) = φ(y−1x).

It follows that we can write the convolution as

(f ∗ g)(x) = 〈f, πL(x)g̃〉,

and hence it make sense to define

Definition 1.5.3. Let v ∈ D′(G) and φ ∈ D(G). Then we define their convolution
as

(v ∗ φ)(x) := 〈v, πL(x)φ̃〉 ≡ 〈v, φ̃(x−1 ·)〉.
We also define

(φ ∗ v)(x) := 〈v, πR(x
−1)φ̃〉 ≡ 〈v, φ̃(·x−1)〉,

where
πR(x

−1)φ̃(y) = φ̃(yx−1),

and which is also consistent with the convolution of functions.

We note that this expression makes since since πL(x), πR(x
−1) and φ �→ φ̃

are continuous mappings from D(G) to D(G).

For example, for the delta-distribution δe at the unit element e ∈ G, it follows
that

δe ∗ φ = φ for every φ ∈ D(G),

since we can calculate

(δe ∗ φ)(x) = 〈δe, πL(x)φ̃〉 = φ(y−1x)|y=e = φ(x).

The following properties are easy to check using Definition 1.5.3:

• if v ∈ D′(G) and φ ∈ D(G), then v ∗ φ ∈ C∞(G);

• if u, v, φ ∈ D(G), then 〈u ∗ v, φ〉 = 〈u, φ ∗ ṽ〉, in consistency with (1.14).

For v ∈ D′(G), we now define ṽ ∈ D′(G) by

〈ṽ, φ〉 := 〈v, φ̃〉.

In particular, if v ∈ D′(G) and φ ∈ D(G), then φ ∗ ṽ ∈ C∞(G). This shows that
the following convolution of distributions is correctly defined:
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Definition 1.5.4. Let u ∈ E ′(G) and v ∈ D′(G). Then we define their convolution
as

〈u ∗ v, φ〉 := 〈u, φ ∗ ṽ〉, ∀φ ∈ D(G).

This gives u∗v ∈ D′(G) which is consistent with the convolution of functions
in view of (1.15). If we start with a compactly supported distribution v ∈ E ′(G) in
Definition 1.5.3, we arrive at the definition of the composition u ∗ v for u ∈ D′(G)
and v ∈ E ′(G), given by the same formula as in Definition 1.5.4.

A word of caution has to be said about convolution of distributions, namely,
it is not in general associative for distributions, although it is associative for func-
tions.

1.6 Nilpotent Lie groups and algebras

From now on, any Lie algebra g is assumed to be real and finite dimensional.

Proposition 1.6.1. The following are equivalent:

• ad is a nilpotent endomorphism over g, i.e.

∃k ∈ N ∀X ∈ g (adX)k = 0;

• the lower central series of g, defined inductively by

g(1) := g, g(j) := [g, g(j−1)], (1.18)

terminates at 0 in a finite number of steps.

Definition 1.6.2. (i) If a Lie algebra g satisfies any of the equivalent conditions
of Proposition 1.6.1, then it is called nilpotent.

(ii) Moreover, if g(s+1) = {0} and g(s) �= {0}, then g is said to be nilpotent of
step s.

(iii) A Lie group G is nilpotent (of step s) whenever its Lie algebra is nilpotent
(of step s).

Here are some examples of nilpotent Lie groups and their Lie algebras.

Example 1.6.3. The abelian group Rn equipped with the usual addition is nilpo-
tent. Its Lie algebra is Rn equipped with the trivial Lie bracket.

Example 1.6.4. If no ∈ N, the Heisenberg group Hno is the Lie group whose
underlying manifold is R2no+1 and whose law is

h1h2 =
(
x1 + x2, y1 + y2, t1 + t2 +

1

2
(x1y2 − y1x2)

)
, (1.19)
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for h1 = (x1, y1, t1) and h2 = (x2, y2, t2) in Rno × Rno × R. Here, for vectors
x1, y1, x2, y2 ∈ Rno , we denote by x1y2 and y1x2 their usual inner products on
Rno .

Its Lie algebra hno
is R2no+1 equipped with the Lie bracket given by the

commutator relations of its canonical basis {X1, . . . , Xno
, Y1, . . . , Yno

, T}:

[Xj , Yj ] = T for j = 1, . . . , no,

and all the other Lie brackets (apart from those obtained by anti-symmetry) are
trivial.

In the case no = 1, we will often simplify the notation and write X,Y, T for
the basis of h1, etc...

Example 1.6.5. Let Tno
be the group of no×no matrices which are upper triangular

with 1 on the diagonal. The matrix group Tno
is a nilpotent Lie group.

It can be proved that any (connected simply connected) nilpotent Lie group
can be realised as a subgroup of Tno

.
Its Lie algebra tno is the space of no × no matrices which are upper triangle

with 0 on the diagonal. A basis is {Ei,j , 1 ≤ i < j ≤ no} where Ei,j is the matrix
with all zero entries except the i-th row and j-th column which is 1.

Proposition 1.6.6. Let G be a connected simply connected nilpotent Lie group with
Lie algebra g. Then

(a) The exponential map expG is a diffeomorphism from g onto G.

(b) If G is identified with g via expG, the group law (x, y) �→ xy is a polynomial
map.

(c) If dλg denotes a Lebesgue measure on the vector space g, then dλg ◦ exp−1
G is

a bi-invariant Haar measure on G.

This proposition can be found in, e.g. [FS82, Proposition 1.2] or [CG90, Sec.
1.2].

After the choice of a basis {X1, . . . , Xn} for g, Proposition 1.6.6, Part (a),
implies that the group G is identified with Rn via the exponential mapping; this
means that a point x = (x1, . . . , xn) ∈ Rn is identified with the point

expG(x1X1 + . . .+ xnXn)

of the group. Part (b) implies that the law can be written as

x · y = (P1(x, y), P2(x, y), . . . , Pn(x, y)), (1.20)

where Pj : Rn × Rn → R, j = 1, . . . , n, are polynomial mappings given via the
Baker-Campbell-Hausdorff formula (see Theorem 1.3.2). Indeed in the nilpotent
case, since ad is nilpotent, the Baker-Campbell-Hausdorff formula is finite and
holds for any two elements of the Lie algebra.
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Remark 1.6.7. More is known.

1. Certain choices of bases, namely the so-called Jordan-Hölder or strong-Malcev
bases ([Puk67, CG90]), lead to a ‘triangular’ shaped law, that is,

P1(x, y) = x1 + y1,

P2(x, y) = x2 + y2 +Q2(x1, y1),

...

Pn(x, y) = xn + yn +Qn(x1, . . . , xn−1, y1, . . . , yn−1),

with Q1, . . . , Qn polynomials.

In Chapter 3 we will see that in the particular case of homogeneous Lie
groups, with the choice of the basis made in Section 3.1.3, this fact together
with some additional homogeneous properties is proved in Proposition 3.1.24.

2. The second type of exponential coordinates

Rn � (x1, . . . , xn) �−→ expG(x1X1) . . . expG(xnXn) ∈ G,

may be used to identify a nilpotent Lie group with Rn after the choice of a
suitable basis as in Part 1.

In the particular case of homogeneous Lie groups, with the choice of the
basis made in Section 3.1.3, this fact together with some additional homoge-
neous properties is proved in Lemma 3.1.47.

3. The converse of (a) and (b) in Proposition 1.6.6 holds in the following sense:
if a Lie group G can be identified with Rn such that

(a) its law is a polynomial mapping (as in (1.20)),

(b) and for any s, t ∈ R, x ∈ Rn, the product of the two points sx and tx
is the point (s+ t)x,

then the Lie group G is nilpotent [Puk67, Part. II chap. I].

However, we will not use these general facts.

Setting aside the abelian case (Rn,+), we use the multiplicative notation for
the group law of any other connected simply connected nilpotent Lie group G.
The identification of G with g leads to consider the origin 0 as the unit element
(even if the equality xx−1 = 0 may look surprising at first sight). Because of the
Baker-Campbell-Hausdorff formula (see Theorem 1.3.2), the inverse of an element
is in fact its opposite, that is, with the notation above,

x−1 = (−x1, . . . ,−xn).

The identification of G with g allows us to define objects which usually live
on a vector space, for example the Schwartz class:
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Definition 1.6.8. A Schwartz function f on G is a function f such that f ◦ expG is
a Schwartz function on g. We denote by S(G) the class of Schwartz functions. It is
naturally a Fréchet space and its dual space is the space of tempered distribution
S ′(G).

Formally a distribution T ∈ D′(G) is tempered when T ◦ expG is a tempered
distribution on g. The distribution duality is formally given by

〈f, φ〉 =
∫
G

f(x)φ(x)dx, f ∈ S ′(G), φ ∈ S(G).

The Schwartz space and the tempered distributions on a nilpotent homoge-
neous Lie group will be studied more thoroughly in Section 3.1.9.

1.7 Smooth vectors and infinitesimal representations

In this section we describe the basics of the part of the representation theory of
non-compact Lie groups that is relevant to our context. For most statements of
this section we give proofs since understanding of these ideas will be important for
the developments of pseudo-differential operators in Chapter 5. Thus, the setting
that we have in mind is that of nilpotent Lie groups, although we do not need to
make this assumption for the following discussion. For the general representation
theory of locally compact groups we can refer to, for example, the books of Knapp
[Kna01], Wallach [Wal92, Chapter 14] or Folland [Fol95].

Let us first recall some basic definitions about differentiability of a Banach
space-valued function.

Definition 1.7.1. Let f be a function from on open subset Ω of Rn to a Banach
space B with norm | · |B .

The function f is said to be differentiable at xo ∈ Ω if there exists a (neces-
sarily unique) linear map f ′(xo) : Rn → B such that

1

|x− xo|Rn

|f(x)− f(xo)− f ′(xo)(x− xo)|B −→x→xo

0.

We call f ′(xo) the differential of f at xo.
If f is differentiable at each point of Ω, then x �→ f ′(x) is a function from

Ω to the Banach space L (Rn, B) of linear mappings from Rn to B (recall that
linear mappings from Rn to B are automatically bounded.) We say that f is of
class C1 if x �→ f ′(x) is continuous, and that f is of class C2 if x �→ f ′(x) is of
class C1 and so on. We say that f is of class C∞ if f is of class Ck for all k ∈ N.

These definitions extend to any open set of any smooth manifold.

As in the case of functions valued in a finite dimensional Euclidean space, we
have the basic properties for a function f as in Definition 1.7.1:
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• The function f is of class Ck if and only if all of its partial derivatives of
order 1, 2, . . . , k exist and are continuous.

• The chain rule holds for a composition f ◦ h where h is a mapping from an
open subset of a finite dimensional Euclidean space into Ω.

We can now define the smooth vectors of a representation.

Definition 1.7.2. Let G be a Lie group and let π be a representation of G on a
Hilbert space Hπ. A vector v ∈ Hπ is said to be smooth or of type C∞ if the
function

G � x �→ π(x)v ∈ Hπ

is of class C∞.

We denote by H∞
π the space of all smooth vectors of π.

The following is a necessary preparation to introduce the notion of the in-
finitesimal representation and of the operator dπ(X). This will be of fundamental
importance in the sequel.

Proposition 1.7.3. Let G be a Lie group with Lie algebra g. Let π be a strongly
continuous representation of G on a Hilbert space Hπ. Then for any X ∈ g and
v ∈ H∞

π , the limit

lim
t→0

1

t
(π(expG(tX))v − v)

exists in the norm topology of Hπ and is denoted by dπ(X)v. Each dπ(X) leaves
H∞

π invariant, and dπ is a representation of g on H∞
π satisfying

∀X,Y ∈ g dπ(X)dπ(Y )− dπ(Y )dπ(X)− dπ ([X,Y ]) = 0. (1.21)

Consequently, dπ extends to a representation of the Lie algebra U(g) on H∞
π with

dπ(0) = 0 and dπ(1) = 0.

Recalling the derivative with respect to X in (1.7), we may formally abbre-
viate writing

dπ(X)v = X(π(x)v)|x=e or even dπ(X) = Xπ(e). (1.22)

Sketch of the proof of Proposition 1.7.3. Let v ∈ H∞
π . The function f : g → Hπ

defined by f(X) := π(expX)v is of class C∞, and for any X ∈ g we have

f ′(0)(X) = lim
t→0

1

t
(π(expG(tX))v − v) .

By definition f ′(0)(X) = dπ(X).
Since π is continuous we have, using the identification of g with the space of

left-invariant vector fields,

π(x)dπ(X)v = lim
t→0

1

t
π(x) (π(expG(tX))v − v)

= lim
t→0

1

t
(π(x expG(tX))v − π(x)v) = XF (x),
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where F : G → H is the function defined by F (x) := π(x)v. By assumption F is
of type C∞ thus x �→ XF (x) is also of type C∞ and the equality above says that
dπ(X)v is smooth. Hence dπ(X) leaves H∞

π stable. Consequently X �→ dπ(X) can
be extended to an algebra homomorphism U(g)→ H∞

π as in the statement.
It remains to prove (1.21), i.e. that

∀X,Y ∈ g dπ(X)dπ(Y )− dπ(Y )dπ(X)− dπ ([X,Y ]) = 0.

We fix X,Y ∈ g and define a path c by

c(t) := expG

(
(−sgnt)|t| 12X

)
expG

(
−|t| 12Y

)
expG

(
(sgnt)|t| 12X

)
expG

(
|t| 12Y

)
.

Clearly c is defined on a neighbourhood of 0 in R and valued in G, and is of class
C1 with c′(0) = [X,Y ]. Let v ∈ H∞

π . By the chain rule the map t �→ π(c(t))v has
differential F ′(e)([X,Y ]) at t = 0, where F is F (x) = π(x)v as above and e is the
neutral element. Thus

dπ([X,Y ]) = lim
t→0

1

t
(π(c(t))v − v) = lim

t→0

1

t2
(
π(c(t2))v − v

)
.

The strong continuity of π implies then

lim
t→0

1

t2
(π(expG(tX) expG(tY ))v − π(expG(tY ) expG(tX))v)

= lim
t→0

π(expG(tY ) expG(tX))
1

t2
(
π(c(t2))v − v

)
= dπ([X,Y ])v. (1.23)

But we can also compute

(dπ(X)dπ(Y )v, u) = ∂s=0∂t=0(π(expG(sX) expG(tY ))v, u)

= lim
t→0

(
1

t2
{π(expG(tX) expG(tY ))− π(expG(tX))− π(expG(tY )) + I} v, u).

Interchanging X and Y and subtracting we find

((dπ(X)dπ(Y )− dπ(Y )dπ(X))v, u) (1.24)

= lim
t→0

(
1

t2
{π(expG(tX) expG(tY ))− π(expG(tY ) expG(tX))} v, u).

Comparing this with (1.23), we obtain (1.21). This concludes the proof of
Proposition 1.7.3. �
Definition 1.7.4. Let G be a Lie group with Lie algebra g and let π be a strongly
continuous representation of G on a Hilbert space Hπ. The representation dπ
defined in Proposition 1.7.3 is called the infinitesimal representation associated
to π. We will often denote it also by π. Consequently, for T ∈ U(g) or for its
corresponding left-invariant differential operator, we write

π(T ) := dπ(T ).



40 Chapter 1. Preliminaries on Lie groups

Example 1.7.5. For example, the infinitesimal representation of Ad is ad, see Sec-
tion 1.3.

We now collect some properties of the infinitesimal representations.

Proposition 1.7.6. Let G be a Lie group with Lie algebra g and let π be a strongly
continuous unitary representation of G on a Hilbert space Hπ. Then we have the
following properties.

(i) For the infinitesimal representation dπ of g on H∞
π each dπ(X) for X ∈ g is

skew-hermitian: dπ(X)∗ = −dπ(X).

(ii) The space H∞
π of smooth vectors is invariant under π(x) for every x ∈ G,

and

∀D ∈ U(g) ∀v ∈ H∞
π π(x)dπ(D)π(x)−1v = dπ(Ad(x)D)v.

(iii) If S is a vector subspace of Hπ such that for all v ∈ S and X ∈ g, the limits
of t−1 {π(expG(tX))v − v} as t→ 0 exist, then S ⊂ H∞

π .

(iv) Let φ ∈ D(G). For any X ∈ g, viewed as a left-invariant vector field,

∀v ∈ Hπ π(φ)v ∈ H∞
π and dπ(X)π(φ)v = π(Xφ)v,

and viewing X as a right-invariant vector field X̃,

∀v ∈ H∞
π π(φ)dπ(X)v = π(X̃φ)v.

If G is a connected simply connected nilpotent Lie group, one can replace
D(G) by the Schwartz space S(G).

Proof. Let us prove Part (i). Let u, v ∈ H∞
π . The unitarity of π implies(

v,
i

t
(π(expG(tX))u− u)

)
=

(
i

−t (π(expG(−tX))v − v) , u

)
.

By definition of dπ(X)u and dπ(X)v, the limits as t → 0 of the left and right
hand sides are (v, idπ(X)u) and (idπ(X)v, u), respectively. Hence they are equal
and dπ(X) is skew-hermitian. This proves Part (i).

For (ii), we first observe that the map x �→ π(x)π(xo)v is the composition of
x �→ xxo and x �→ π(x)v. Hence H∞

π is an invariant subspace for π(xo).
Now let X ∈ g, x ∈ G and v ∈ H∞

π . Then we compute easily

1

t
(π(expG(tX))− I)π(x)−1v = π(x)−1 1

t

(
π(x expG(tX)x−1)− I

)
v

= π(x)−1 1

t
(π(expG(Ad(x)(tX))− I) v.
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Passing to the limit as t→ 0, we obtain

dπ(X)π(x)−1v = π(x)−1dπ(Ad(x)(tX))v.

Hence
π(x)dπ(X)π(x)−1 = dπ(Ad(x)(tX))

on H∞
π . Using Proposition 1.7.3, we obtain a similar property for D ∈ U(g) instead

of X. This shows (ii).

For (iii), by assumption for v ∈ S the map Fv : G � x �→ π(x)v is differ-
entiable at the neutral element e, the partial derivative in the X ∈ g direction
being

XFv(e) = lim
t→0

1

t
{π(expG(tX))v − v} .

More generally, since π is strongly continuous, we have for any x ∈ G,

π(x)XFv(e)= lim
t→0

1

t
π(x) {π(expG(tX))v − v}= lim

t→0

1

t
{Fv(x expG(tX))− Fv(x)} .

Thus Fv is also differentiable at x ∈ G and

XFv(x) = π(x)XFv(e)

for any X ∈ g. This shows that the first derivatives of Fv are continuous, thus Fv

must be of class C1. Furthermore,

F ′
v(x)(X) = π(x)XFv(e).

If Fv is of class Ck for k ∈ N, then the map x �→ XFv(x) = π(x)XFv(e) is of class
Ck and Fv must be of class Ck+1. Inductively this shows that Fv is of type C∞.
This shows Part (iii).

For (iv), for any φ ∈ L1(G) and x ∈ G, recalling (1.3), we have

π(x)π(φ) = π(φ(·x)).

Hence for any φ ∈ D(G), v ∈ Hπ and X ∈ g,

1

t
(π(expG(tX))π(φ)v − π(φ)v) = π

(
φ(· expG(tX))− φ

t

)
v.

This last expression tends to π(Xφ)v as t→ 0. Applying (iii) to S = π(φ)Hπ, we
see that S ⊂ H∞

π . We also have

dπ(X)π(φ)v = π(Xφ)v.

For the right-invariant case, again by (1.3), we have

π(φ)π(x) = π(φ(x ·))
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for any φ ∈ L1(G) and x ∈ G. Hence for any φ ∈ D(G), v ∈ Hπ and X ∈ g,

1

t
(π(φ)π(expG(tX))v − π(φ)v) = π

(
φ(expG(tX) ·)− φ

t

)
v.

This last expression tends to π(X̃φ)v as t → 0 while the left-hand side tends to
π(φ)dπ(X)v if v ∈ H∞

π . This proves Part (iv) in the general case. The changes for
G connected simply connected nilpotent Lie group, and to replace D(G) by S(G)
are straightforward. This concludes the proof of Proposition 1.7.6. �

In the following proposition, we show that the space of smooth vectors is
dense in the space of a strongly continuous representation. The argument is fa-
mously due to G̊arding.

Proposition 1.7.7. Let G be a Lie group and let π be a strongly continuous repre-
sentation of G on a Hilbert space Hπ. Then the subspace H∞

π of smooth vectors is
dense in Hπ.

Proof. Let v ∈ Hπ and ε > 0 be given. Since π is strongly continuous, the set

Ω := {x ∈ G : |π(x)∗v − v|Hπ < ε}

is open. We can find a non-negative function φ ∈ D(G) supported in Ω satisfying∫
G
φ(x)dx = 1. Then

|π(φ)v − v|Hπ =

∣∣∣∣∫
G

φ(x)(π(x)∗v − v)dx

∣∣∣∣
Hπ

≤
∫
Ω

φ(x)|π(x)∗v − v|Hπ
dx ≤

∫
G

φ(x)εdx = ε.

By Proposition 1.7.6, we know that π(φ)v is a smooth vector. This shows that
H∞

π is dense in Hπ. �
In the proof above, we have in fact showed that the vectors π(φ)v for v ∈ Hπ

and φ ∈ D(G) form a dense subspace of Hπ. If G is nilpotent connected simply
connected, the same property holds with φ ∈ S(G). The finite linear combinations
of those vectors form a subspace called the G̊arding subspace, which is included in
H∞

π by Proposition 1.7.6 (iv).
It turns out that the G̊arding subspace is not only included in the subspace

H∞
π but is in fact equal to H∞

π . This is a consequent of the following theorem, due
to Dixmier and Malliavin [DM78]:

Theorem 1.7.8 (Dixmier-Malliavin). Let G be a Lie group and let π be a strongly
continuous representation of G on a Hilbert space Hπ.

The space H∞
π of smooth vectors is spanned by all the vectors of the form

π(φ)v for v ∈ H∞
π and φ ∈ D(G). This means that any smooth vector can be

written as a finite linear combination of vectors of the form π(φ)v.
If G is a connected simply connected nilpotent Lie group, one can replace

D(G) by the Schwartz space S(G).
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1.8 Plancherel theorem

Here we discuss the Plancherel theorem for locally compact groups and for the
special case of nilpotent Lie groups. Our presentation will be rather informal.
One reason is that we decided not to present here in full detail the orbit method
yielding the representations of the nilpotent Lie groups but to limit ourselves only
to its consequences useful for our subsequent analysis. The reason behind this
choice is that it could take quite much space to prove the general results for the
orbit method and would lead us too much away from our main exposition also
risking overwhelming the reader with technical discussions somewhat irrelevant
for our purposes. In general, this subject is well-known and we can refer to books
by Kirillov [Kir04] or by Corwin and Greenleaf [CG90] for excellent expositions
of this topic. The same reasoning applies to the abstract Plancherel theorem: it is
known in a much more general form, due to e.g. Dixmier [Dix77, Dix81], and we
will limit ourselves to describing its implications for nilpotent Lie groups relevant
to our subsequent work.

As we will see in Chapter 2, all the results of the abstract Plancherel theorem
in the case of compact groups can be recaptured there thanks to the Peter-Weyl
theorem (see Theorem 2.1.1). However, for nilpotent Lie groups, even if the orbit
method provides a description of the dual of the group and of the Plancherel
measure, in our analysis we will need to use the properties of the von Neumann
algebra of the group provided by the general abstract Plancherel theorem. This
will replace the use of the Fourier coefficients in the compact case.

Before we proceed, let us adopt two useful conventions. First, the set of all
strongly continuous unitary irreducible representations of a locally compact group
G will be denoted by RepG, i.e.

RepG = {all strongly continuous unitary irreducible representations of G}.

The equivalence of representations in RepG leads to the unitary dual Ĝ. We have
already agreed to write π ∈ Ĝ meaning that the expressions, when dealing with
Fourier transforms, may depend on π as described in Remark 1.1.5. However,
in this section we will sometimes want to show that certain expressions do not
depend on the equivalence class of π, and for this purpose we will be sometimes
distinguishing between the sets RepG and Ĝ.

The second useful convention that we will widely use especially in Chapter
5 is that we may denote the Fourier transform in three ways, namely, we have

φ̂(π) ≡ π(φ) ≡ FG(φ)(π).

Although this may seem as too much notation for the same object, the reason for
this is two-fold. Firstly, the notation π(φ) is widely adopted in the representation
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theory of C∗-algebra associated with groups. Secondly, it becomes handy for longer
expressions as well as for expressing properties like

π(Tφ) = π(T )π(φ)

where π(T ) is the infinitesimal representation given in Definition 1.7.4. The no-

tation φ̂(π) is useful as an analogy for the Euclidean case and will be extensively
used in the case of compact groups. When we want to write the Fourier transform
as a mapping between different spaces, the notation FG becomes useful.

1.8.1 Orbit method

In this section we briefly discuss the idea of the orbit method and its implications
for our analysis. In general, we will not use the orbit method by itself in our
analysis, but only the existence of a Plancherel measure and some Fourier analysis
similar to the compact case as described in Section 2.1.

Let G be a connected, simply connected, nilpotent Lie group with Lie algebra
g. The orbit method describes a way to associate to a given linear functional on
g a collection of unitary irreducible representations of G which are all unitarily
equivalent between themselves. Consequently, to any element of the dual g′ of g,
one can associate an equivalence class of unitary irreducible representations. It
turns out that any such class is realised in this way. Furthermore, two elements
f1, f2 ∈ g′ lead to the same class if and only if the two elements are in the same
orbit under the natural action of G on g′; this natural action is the so-called co-
adjoint representation: since the group G acts on g by the adjoint representation
Ad, it also acts on its dual g′ by

co-Ad : G× g′ � (g, f) �−→ f(Ad−1g ·) ∈ g′.

This gives a one-to-one correspondence between

• on the one hand, the dual Ĝ of the group, that is, the collection of unitary
irreducible representations modulo unitary equivalence, and

• on the other hand, g′/co-Ad(G), that is, the set of co-adjoint orbits.

Example 1.8.1. In the case of the Heisenberg group Hno
presented in Example

1.6.4, a family of representatives of all co-adjoint orbits is

1. either of the form λT ′ if λ ∈ R\{0},
2. or of the form

∑no

j=1

(
x′
jX

′
j + y′jY

′
j

)
with x′

j , y
′
j ∈ R,

where {X ′
1, . . . , X

′
no
, Y ′

1 , . . . , Y
′
no
, T ′} is the dual basis to the canonical basis of bno

given in Example 1.6.4. To λT ′ is associated the Schrödinger representation πλ,
and to

∑no

j=1 x
′
jX

′
j+y′jY

′
j is associated the 1-dimensional representation (x, y, t) �→

exp
(
i(xx′ + yy′)

)
, where xx′ and yy′ denote the canonical scalar product on Rn.

See Section 6.2.
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As for Schrödinger representations, the representations constructed via the
orbit method can be realised as acting on some L2(Rm) and the dual Ĝ may be
identified with g′/co-Ad(G), or even with suitable representatives of this quotient.

Thus, by the orbit method the unitary dual Ĝ is ‘concretely’ described as
a subset of some Euclidean space. It is then possible to construct ‘explicitly’ a
measure μ on Ĝ such that we have the Fourier inversion theorem (where we recall
once more the notation and conventions described in the beginning of Section 1.8):

Theorem 1.8.2. Let G be a connected simply connected nilpotent Lie group. The
dual Ĝ is then equipped with a measure μ called the Plancherel measure satisfying
the following property for any φ ∈ S(G).

The operator π(φ) ≡ φ̂(π) is trace class for any strongly continuous unitary
irreducible representation π ∈ RepG, and Tr(π(φ)) depends only on the class of π;

the function Ĝ � π �→ Tr (π(φ)) is integrable against μ and the following formula
holds:

φ(0) =

∫
Ĝ

Tr (π(φ)) dμ(π). (1.25)

For the explicit expression of the Plancherel measure μ, see, e.g., [CG90,
Theorem 4.3.9].

Applying formula (1.25) to φ(·) = f(·x) and using π(φ) = π(x)π(f) in view
of (1.3), we obtain:

Corollary 1.8.3 (Fourier inversion formula). Let G be a connected simply connected

nilpotent Lie group and let μ be the Plancherel measure on Ĝ.
If f ∈ S(G), then π(x)π(f) and π(f)π(x) are trace class for every x ∈ G,

the function Ĝ � π �→ Tr (π(x)π(f)) is integrable against μ, and we have

f(x) =

∫
Ĝ

Tr (π(x)π(f)) dμ(π) =

∫
Ĝ

Tr (π(f)π(x)) dμ(π). (1.26)

The latter equality can be seen by the same argument as above, applied to
the function f(x ·).

Example 1.8.4. In the case of the Heisenberg group Hno
, the Plancherel measure

is given by integration over R\{0} against cn0
|λ|nodλ, with a suitable constant cno

(depending on normalisations):

φ(0) = cno

∫
R\{0}

Tr
(
πλ(φ)

)
|λ|nodλ.

An orthonormal basis for Hπλ
= L2(Rno) is given by the Hermite functions. The

subset of Ĝ formed by the 1-dimensional representations is negligible with respect
to the Plancherel measure. We refer to Section 6.2.3 for a more detailed discussion
as well as for the constant cno

.
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Applying the inversion formula to φ ∗ (φ∗), where φ∗(x) = φ̄(x−1), one ob-
tains:

Theorem 1.8.5 (Plancherel formula). We keep the notation of Theorem 1.8.2. Let
φ ∈ S(G). Then the operator π(φ) is Hilbert-Schmidt, that is,

‖π(φ)‖2HS = Tr (π(φ)π(φ)∗) <∞

for any π ∈ RepG, and its Hilbert-Schmidt norm is constant on the equivalence
class of π. The function Ĝ � π �→ ‖π(φ)‖2HS is integrable against μ and∫

G

|φ(x)|2dx =

∫
Ĝ

‖π(φ)‖2HS dμ(π). (1.27)

Formula (1.27) can be extended unitarily to hold for any φ ∈ L2(G), permit-
ting the definition of the group Fourier transform of a square integrable function
on G.

Applying the inversion formula to φ ∗ (ψ∗), or bilinearising the Plancherel
formula, we also obtain:

Corollary 1.8.6. Let φ, ψ ∈ S(G). Then the operator π(φ)π(ψ)∗ is trace class for
any π ∈ RepG, and its trace is constant on the equivalence class of π. The function
Ĝ � π �→ Tr (π(φ)π(ψ)∗) is integrable against μ and

(φ, ψ)L2(G) =

∫
G

φ(x)ψ(x)dx =

∫
Ĝ

Tr (π(φ)π(ψ)∗) dμ(π).

1.8.2 Plancherel theorem and group von Neumann algebras

In this section we describe the concept of the group von Neumann algebra that be-
comes handy in associating symbols with convolution kernels of invariant operators
on G. For the details of the constructions described below we refer to Dixmier’s
books [Dix77, Dix81] and to Section B in the appendix of this monograph. For
the Plancherel theorem on locally compact groups with emphasis on the decom-
position of reducible representations in continuous Hilbert sums, see also Bruhat
[Bru68]. A more extensive discussion of this subject is given in Appendix B.2,
more precisely in Section B.2.5. An abstract version of the Plancherel theorem is
also given in the appendix in Theorem B.2.32.

Our framework

The representation theory of a general locally compact group may be very wild.
However, in favourable cases most of the traditional Fourier analysis on compact
Lie groups (described in Section 2.1) remains valid under natural modifications;
for instance, the sum over the discrete dual in the compact case is replaced by an
integral. By favourable cases we mean the following hypothesis:
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(H) The group G is separable locally compact,
unimodular, and of type I.

(See e.g. Dixmier [Dix77]). For our purpose, it suffices to know that any Lie group

which is either compact or nilpotent satisfies (H). Its unitary dual Ĝ is a standard
Borel space.

We will now present the abstract Plancherel theorem as obtained by Dixmier
in [Dix77, §18.8] and stated in Theorem B.2.32. Here, we will formulate it neither
in its logical order with the viewpoint of proving its statement nor in its full
generality since this would require introducing a lot of additional notation. Instead,
we present its consequences applicable to our setting, starting with the existence
of the Plancherel measure.

The Plancherel formula

We start by describing the part of the Plancherel theorem dealing with the Plan-
cherel formula. First if φ ∈ Cc(G) and π ∈ RepG, then φ̂(π) is a bounded operator
on Hπ (as the group Fourier transform of an integrable function) and one checks
easily that its Hilbert-Schmidt norm is constant on the class of π ∈ RepG in
Ĝ. Hence ‖φ̂(π)‖HS(Hπ) may be viewed as depending on π ∈ Ĝ. The Plancherel
formula states that there exists a unique positive σ-finite measure μ, called the
Plancherel measure, such that for any φ ∈ Cc(G) we have∫

G

|φ(x)|2dx =

∫
Ĝ

∥∥∥φ̂(π)∥∥∥2
HS(Hπ)

dμ(π). (1.28)

In the compact or nilpotent case, the Plancherel measure can be described ex-
plicitly via the Peter-Weyl Theorem (see Theorem 2.1.1) or the orbit method (see
Theorem 1.8.5), respectively.

The Plancherel formula in (1.28) may be reformulated in the following (more
precise) way. The group Fourier transform is an isometry from Cc(G) endowed
with the L2(G)-norm to the Hilbert space

L2(Ĝ) :=

∫ ⊕

Ĝ

HS(Hπ)dμ(π). (1.29)

Hence the space L2(Ĝ) is defined (see Section B.1 or, e.g., [Dix81, Part II ch. I])
as the space of μ-measurable fields of Hilbert-Schmidt operators {σπ ∈ HS(Hπ) :

π ∈ Ĝ} which are square integrable in the sense that

‖σ‖2
L2(Ĝ)

:=

∫
Ĝ

‖σπ‖2HSdμ(π) <∞.

Here we use the usual identifications of a strongly continuous irreducible unitary
representation from RepG with its equivalence class in Ĝ, and of a field of opera-
tors on Ĝ with its equivalence class with respect to the Plancherel measure μ. One
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can check that indeed, the properties above do not depend on a particular repre-
sentative of π and of the field of operators. The Plancherel formula implies that FG

extends to an isometry on L2(G). We keep the same notation FG for this map, al-
lowing us to consider the Fourier transform of a square integrable function. The ab-
stract Plancherel theorem states moreover that the isometry FG : L2(G)→ L2(Ĝ)

is surjective. In other words, FG maps L2(G) onto L2(Ĝ) isometrically.
Note that for any φ, ψ ∈ L2(G), the operator π(φ) π(ψ)∗ is trace class on Hπ

for almost all π ∈ RepG with

Tr |π(φ) π(ψ)∗| ≤ ‖π(φ)‖HS(Hπ)‖π(ψ)∗‖HS(Hπ) = ‖π(φ)‖HS(Hπ)‖π(ψ)‖HS(Hπ),

and that Tr |π(φ) π(ψ)∗| and Tr (π(φ) π(ψ)∗) are constant on the class of π ∈
RepG in Ĝ. Thus these traces can be viewed as being parametrised by π ∈ Ĝ.
The bilinearisation of the Plancherel formula yields∫

G

φ(x)ψ(x)dx =

∫
Ĝ

Tr (π(φ) π(ψ)∗) dμ(π). (1.30)

One also checks easily, for example by density of Cc(G) in L2(G), that For-
mula (1.17), that is,

f̂ ∗ g(π) = ĝ(π)f̂(π) (1.31)

or, in the other notation,
π(f ∗ g) = π(g)π(f),

remains valid for f ∈ L1(G) and g ∈ L2(G) and also for f ∈ L2(G) and g ∈ L1(G).

We now present the parts of the Plancherel theorem (relevant for our sub-
sequent analysis) regarding the description of the group von Neumann algebra.

Group von Neumann algebra

In this monograph, we realise the von Neumann algebra of a group G as the algebra
denoted by LL(L

2(G)) and defined as follows.

Definition 1.8.7. Let L (L2(G)) denote the set of bounded linear operators L2(G)→
L2(G), and let LL(L

2(G)) be the subset formed by the operators in L (L2(G))
which are left-invariant (in the sense of Definition 1.1.3).

Endowed with the operator norm and composition of operators, one checks
easily that LL(L

2(G)) is a von Neumann algebra, see Section B.2.5 for the expo-
sition of its general ideas.

Given a μ-measurable field of uniformly bounded operators σ = {σπ}, the
operator Tσ ∈ LL(L

2(G)) defined via

T̂σφ(π) = σπφ̂(π), φ ∈ L2(G), (1.32)
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is in LL(L
2(G)). Using (1.30), this yields that the operator Tσ : S(G) → S ′(G)

can also be defined by

(Tσφ, ψ)L2(G) =

∫
Ĝ

Tr (σπ π(φ) π(ψ)∗) dμ(π), φ, ψ ∈ L2(G). (1.33)

This defines a map σ �→ Tσ from L∞(Ĝ) to LL(L
2(G)) where the space

L∞(Ĝ) is defined by

Definition 1.8.8. Let L∞(Ĝ) denote the space of μ-measurable fields on Ĝ of uni-

formly bounded operators σ = {σπ ∈ L (Hπ), π ∈ Ĝ}, that is,

sup
π∈Ĝ

‖σπ‖L (Hπ) <∞. (1.34)

Here we use the usual identifications of a strongly continuous irreducible
unitary representation from RepG with its equivalence class in Ĝ, and of a field of
operators on Ĝ with its equivalence class with respect to the Plancherel measure
μ. One can check that indeed, being in L∞(Ĝ) does not depend on a particular
representative of π and of the field of operators. In (1.34), the supremum is to be
understood as the essential supremum with respect to the Plancherel measure μ.

We endow L∞(Ĝ) with the pointwise composition given by

στ := {σπτπ, π ∈ Ĝ}, for σ = {σπ, π ∈ Ĝ}, τ = {τπ, π ∈ Ĝ} ∈ L∞(Ĝ),

and the essential supremum norm

‖σ‖L∞(Ĝ) := sup
π∈Ĝ

‖σπ‖L (Hπ). (1.35)

We may sometimes abuse the notation and write ‖σπ‖L∞(Ĝ) when no confu-

sion is possible.
One checks easily that L∞(Ĝ) is a von Neumann algebra and that the map

L∞(Ĝ) � σ �−→ Tσ ∈ LL(L
2(G)),

is a morphism of von Neumann algebras. The Plancherel theorem implies that
this map is in fact a bijection and an isometry, and hence a von Neumann algebra
isomorphism. More precisely it yields that for any T ∈ LL(L

2(G)), there exists

a μ-measurable field of uniformly bounded operators {σ(T )
π } such that for any

φ ∈ L2(G) the Hilbert-Schmidt operators T̂ φ(π) and σ
(T )
π f̂(π) are equal μ-almost

everywhere; the field {σ(T )
π } is unique up to a μ-negligible set.

Note that by the Schwartz kernel theorem (see Corollary 3.2.1), an operator
T ∈ LL(L

2(G)) is of convolution type with kernel κ ∈ D′(G),

Tf = f ∗ κ, f ∈ D(G).
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If κ ∈ D′(G) is such that the corresponding convolution operator D(G) � f �→ f ∗κ
extends to a bounded operator Tκ on L2(G) then Tκ ∈ LL(L

2(G)) and we extend
the definition of the group Fourier transform by setting

σ(T )
π := π(κ) ≡ κ̂(π). (1.36)

We denote by K(G) the set of such distributions κ:

Definition 1.8.9. Let K(G) denote the space of distributions κ ∈ D′(G) such that
the corresponding convolution operator

D(G) � f �→ f ∗ κ

extends to a bounded operator on L2(G).

If G is a connected simply connected nilpotent Lie group, the Schwartz kernel
theorem (see Corollary 3.2.1), implies in fact that the distributions in K(G) are
tempered, i.e. K(G) ⊂ S ′(G).

If κ ∈ K(G), then κ∗ defined via κ∗(x) = κ̄(x−1) is also in K(G). If κ1, κ2 ∈
K(G) and Tκ1

, Tκ2
∈ LL(L

2(G)) denote the associated right-convolution opera-
tor, then Tκ1Tκ2 ∈ LL(L

2(G)) and we denote by κ2 ∗ κ1 its convolution kernel.
One checks easily that this convolution product coincides or extends the already
defined convolution products in Section 1.5. Furthermore K(G) equipped with this
convolution product, the ∗-adjoint and the operator norm

‖κ‖K(G) := ‖f �→ f ∗ κ‖L (L2(G)) (1.37)

is a von Neumann algebra. It is naturally isomorphic to LL(L
2(G)).

The part of the Plancherel theorem that we have already presented implies
that the space K(G) is a von Neumann algebra isomorphic to LL(L

2(G)) and to

L∞(Ĝ). Moreover, the group Fourier transform defined on K(G) gives the isomor-

phism between K(G) and L∞(Ĝ).

Naturally, L1(G) is embedded in K(G) since if κ ∈ L1(G), then the operator
φ �→ φ ∗ κ is in LL(L

2(G)). Note that Young’s inequality (see Proposition 1.5.2)
implies

‖κ̂‖L∞(Ĝ) = ‖κ‖K ≤ ‖κ‖L1(G). (1.38)

Furthermore, as FG(φ ∗ κ) = κ̂φ̂ (see e.g. (1.31)), there is no conflict of notation
between the group Fourier transforms defined first on L1(G) via (1.2) and then
on K(G) in (1.36) as these group Fourier transforms coincide, since the field of
operators associated to an operator in LL(L

2(G)) is unique.

More generally, the proof of Example 1.8.10 below shows that the space of
complex Borel measures M(G) (which contains L1(G)) is contained in K(G), that
is,

L1(G) ⊂M(G) ⊂ K(G).

Moreover, their group Fourier transform may be defined directly via (1.39) below
or as of an element of K(G) via Definition 1.36.
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Example 1.8.10 (Complex Borel measures). Any complex Borel measure η on G
is in K(G) and

‖η‖K ≤ ‖η‖M(G),

where ‖η‖M(G) denotes the total mass of η.
The group Fourier transform of a complex Borel measure η is given in the

sense of Bochner by the integral

FG(η)(π) ≡ η̂(π) ≡ π(η) :=

∫
G

π(x)∗dη(x). (1.39)

In particular, the group Fourier transform of the Dirac measure δe at the neutral
element is the identity operator

δ̂e(π) ≡ π(δe) = IHπ

on the representation space Hπ. More generally, the group Fourier transform of
the Dirac measure δxo

at the element xo ∈ G is

δ̂xo
(π) = π(xo).

Proof of Example 1.8.10. By Jensen’s inequality, for p = 1 and 2 (in fact for any
p ∈ [1,∞)), the operator Tη : D(G) � φ �→ φ ∗ η extends to an Lp-bounded
operator with norm ‖η‖.

If φ ∈ Cc(G), then φ ∗ η ∈ L1(G) (see Example 1.8.10) and we have in the
sense of Bochner, using the change of variable y = xz−1,

π(φ ∗ η) =

∫
G×G

φ(xz−1)π(x)∗dxdη(z) =
∫
G×G

φ(y)π(yz)∗dydη(z)

=

∫
G×G

φ(y)π(z)∗π(y)∗dydη(z) =
∫
G

π(z)∗dη(z)
∫
G

φ(y)π(y)∗dy

= π(η)π(φ),

confirming the formula for π(η). Since the field of operators associated to an
operator in LL(L

2(G)) is unique, the group Fourier transform of η as an element

of K(G) is {π(η), π ∈ Ĝ} defined in (1.39). �

The abstract Plancherel theorem

We now summarise the consequences of Dixmier’s abstract Plancherel theorem,
see Theorem B.2.32, that we will use:

Theorem 1.8.11 (Abstract Plancherel theorem). Let G be a Lie group satisfying
hypothesis (H). We denote by μ its Plancherel measure.

The Fourier transform FG extends to an isometry from L2(G) onto

L2(Ĝ) :=

∫ ⊕

Ĝ

HS(Hπ)dμ(π).
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The Fourier transform of an element f of K(G), i.e. f ∈ D′(G) such that
the operator D(G) � φ �→ φ ∗ f extends boundedly to L2(G), has a meaning as a
field of uniformly (μ-essentially) bounded operators

{f̂(π) ≡ π(f) : π ∈ Ĝ} ∈ L∞(Ĝ)

satisfying

π(φ ∗ f) = π(f)π(φ)

for any φ ∈ D(G) and π ∈ Ĝ. Conversely, any field in L∞(Ĝ) leads to an element
of K(G). Furthermore

‖f‖K = ‖φ �→ φ ∗ f‖L (L2(G)) = sup
π∈Ĝ

‖f̂(π)‖L (Hπ). (1.40)

The Fourier transform is a von Neumann algebra isomorphism from K(G)

onto L∞(Ĝ). In particular, it is a bijection from K(G) onto L∞(Ĝ) and satisfies

∀f1, f2, f ∈ K(G) FG(f1 ∗ f2) = FG(f2)FG(f1) and FG(f
∗) = FG(f)

∗,

if f∗(x) = f̄(x−1). Moreover

‖f̂‖L∞(Ĝ) = ‖f‖K(G).

If G is a connected simply connected nilpotent Lie group, the elements of
K(G) are tempered distributions.

Naturally the various definitions of group Fourier transforms on L1(G) or on
the space M(G) of regular complex measures on G, on L2(G) or on K(G), coincide
on any intersection of these subspaces of D′(G). This can be seen easily using the

abstract Plancherel theorem, especially the bijections FG : L2(G) → L2(Ĝ) and

FG : K(G) → L∞(Ĝ), together with the properties of the convolution and of the
representations, especially (1.31).

1.8.3 Fields of operators acting on smooth vectors

Let us assume that the group G satisfies hypothesis (H) as in the previous section
and is also a Lie group. This means that G is a unimodular Lie group of type I,
for instance a compact or nilpotent Lie group.

In our subsequent analysis, we will need to consider fields of operators para-
metrised by Ĝ but not necessarily bounded, for instance the fields given by the
π(X)α’s.

The definition of fields of smooth vectors or of operators defined on smooth
vectors will be a consequence of the following lemma. For a more general setting
for measurable fields of operators see Section B.1.5.
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Lemma 1.8.12. Let π1, π2 ∈ RepG with π1 ∼T π2, that is, we assume that π1 and
π2 are intertwined by the unitary operator T , i.e. Tπ1 = π2T . Then T maps H∞

π1

onto H∞
π2

bijectively.

Proof. This is an easy consequence of the Dixmier-Malliavin theorem, see Theorem
1.7.8. �

Lemma 1.8.12 allows us to define fields of operators not necessarily bounded
but just defined on smooth vectors:

Definition 1.8.13. A Ĝ-field of operators defined on smooth vectors is a family of
classes of operators {σπ, π ∈ Ĝ} where

σπ := {σπ1
: H∞

π1
→ Hπ1

, π1 ∈ π}

for each π ∈ Ĝ viewed as a subset of RepG, satisfying for any two elements σπ1

and σπ2 in σπ:
π1 ∼T π2 =⇒ σπ2

T = Tσπ1
.

It is measurable when for one (and then any) choice of realisation π1 and

any vector xπ1
∈ H∞

π1
, as π runs over Ĝ, the resulting field {σπ1

xπ1
, π ∈ Ĝ} is

μ-measurable whenever
∫
Ĝ
‖xπ1
‖2Hπ1

dμ(π) <∞.

We will allow ourselves the shorthand notation

σ = {σπ : H∞
π → Hπ, π ∈ Ĝ}

to indicate that the Ĝ-field of operators is defined on smooth vectors. Unless
otherwise stated, all the Ĝ-fields of operators are assumed to be measurable and
with operators defined on smooth vectors. We may allow ourselves to write σ =
{σπ, π ∈ Ĝ}. Note that we do not require the domain of each operator to be the
whole representation space Hπ1 but just the space of smooth vectors.

The next definition would allow us to compose such fields of operators.

Definition 1.8.14. A measurable Ĝ-field of operators acting on the smooth vectors
is a measurable Ĝ-field of operators σ = {σπ : H∞

π → Hπ, π ∈ Ĝ} such that for
any π1 ∈ RepG, we have

σπ1
(H∞

π1
) ⊂ H∞

π1
.

We will often abuse the notation and write

{σπ : H∞
π → H∞

π , π ∈ Ĝ}

to express the fact that the measurable Ĝ-field of operators act on smooth vectors.

Remark 1.8.15. Let σ = {σπ : H∞
π → Hπ, π ∈ Ĝ} be a Ĝ-field. If π1 ∼T π2 that

is, we assume that π1 and π2 are intertwined by the unitary operator T , then T
maps σπ1

(H∞
π1
) onto σπ2

(H∞
π2
) bijectively. Thus the range σπ(H∞

π ) makes sense as
the collection of the equivariant ranges σπ1

(H∞
π ) for π1 ∈ π ⊂ RepG.

Consequently, in Definition 1.8.14, it suffices that σπ1
(H∞

π1
) ⊂ H∞

π1
for one

representation π1 ∈ π for each π ∈ Ĝ.
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Remark 1.8.16. We will often consider measurable field of operators σπ,s acting on

smooth vectors and parametrised not only by Ĝ but also by another set S. When
this set S is a subset of some Rn, we say that this parametrisation is smooth
whenever the map appearing in Definition 1.8.14 above is not only measurable
with respect to Ĝ but also smooth with respect to the S-variable. Note that this
hypothesis yields the existence of the fields of operators given by Dsσπ,s where Ds

is a (smooth) differential operator on S.

It is clear that one can sum two fields σ = {σπ : H∞
π → Hπ, π ∈ Ĝ} and

τ = {τπ : H∞
π → Hπ, π ∈ Ĝ} defined on smooth vectors. We may then write

σ + τ = {σπ + τπ : H∞
π → Hπ, π ∈ Ĝ}

for the resulting field. If σ and τ act on smooth vectors, then so does σ + τ .
It is also clear that one can compose two fields σ = {σπ : H∞

π → Hπ, π ∈ Ĝ}
and τ = {τπ : H∞

π → H∞
π , π ∈ Ĝ} defined on smooth vectors if the first one acts

on smooth vectors. We may then write

στ = {σπτπ : H∞
π → Hπ, π ∈ Ĝ}

for the resulting field which is then defined on smooth vectors. Note that στ is not
obtained as the composition of two unbounded operators on Hπ as in Definition
A.3.2 but as the composition of two operators acting on the same space H∞

π .

Almost by definition of smooth vectors, we have the following example of
measurable fields of operators acting on smooth vectors:

Example 1.8.17. If T ∈ U(g) then {π(T ), π ∈ Ĝ} yields a measurable field of

operators acting on smooth vectors and parametrised by Ĝ (see also Proposition
1.7.3).

If T1, T2 ∈ U(g) then the composition of {π(T1), π ∈ Ĝ} with {π(T2), π ∈ Ĝ}
as field of operators acting on smooth vectors is {π(T1T2), π ∈ Ĝ}.

The definition of Fourier transform and Proposition 1.7.6 (iv) easily imply
the next example of measurable fields of operators acting on smooth vectors:

Example 1.8.18. If φ ∈ D(G), then φ̂ = {π(φ) : H∞
π → H∞

π , π ∈ Ĝ} is a measur-

able Ĝ-field of operators acting on smooth vectors.
If φ1, φ2 ∈ D(G), then the composition of φ̂1 with φ̂2 as fields of operators

acting on smooth vectors is φ̂2 ∗ φ1.
If G is simply connected and nilpotent, the properties above also hold for

Schwartz functions.

A field σ = {σπ : Hπ → Hπ, π ∈ Ĝ} always gives by restriction operators
that are defined on smooth vectors. If we start from a field of operators σ = {σπ :

H∞
π → Hπ, π ∈ Ĝ} defined on smooth vectors, we can not always extend it to
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operators defined on every Hπ. However, since the space H∞
π of smooth vectors is

dense in Hπ (see Proposition 1.7.7), each operator σπ1
: H∞

π1
→ Hπ1

, π1 ∈ RepG,
has a unique extension to a bounded operator on Hπ1

provided that such an
extension exists. In this case, σπ2 would have the same property if π1 ∼ π2, and
the operator norm ‖σπ1‖L (Hπ1 )

or the Hilbert-Schmidt norm ‖σπ1‖HS(Hπ1 )
of σπ1

are constant (maybe infinite) for π1 ∈ π. Hence we may regard these norms as

being parametrised by π ∈ Ĝ. Furthermore, if ‖σ‖L∞(Ĝ) or ‖σ‖L2(Ĝ) are finite,

then the field of bounded operators in L∞(Ĝ) or L2(Ĝ) (resp.) is unique and
extends σ.

On a compact Lie group, any Ĝ-field of operators is measurable and the
operators act on smooth vectors. This is because in this case Ĝ is discrete and
countable, and all the strongly continuous irreducible representations are finite
dimensional and these have only smooth vectors, see the Peter-Weyl theorem in
Theorem 2.1.1.

However on a non-compact Lie group, we can not restrict ourselves to the
case of Ĝ-fields acting on smooth vectors in general since a non-compact Lie group
may have infinite dimensional (strongly continuous irreducible) representations

with non-smooth vectors and we then can find fields in L2(Ĝ) which do not act on

smooth vectors. Indeed, in this case, we can find a measurable field {vπ, π ∈ Ĝ}
of non-smooth vectors satisfying

∫
Ĝ
‖vπ‖2HS(Hπ)

dμ(π) <∞, and then construct the

field of operators {vπ⊗v∗π, π ∈ Ĝ} in L2(Ĝ) which does not act on smooth vectors.
Such field of vectors {vπ} are easy to find for instance on the Heisenberg group
Hn whose case is detailed in Chapter 6: in this case, almost all the representations
in Ĥn may be realised on L2(Rn) and the space of smooth vectors then coincides
with the Schwartz space S(Rn), see Section 6.2.1.

We can give a sufficient condition for a field to act on smooth vectors:

Lemma 1.8.19. Let σ = {σπ : H∞
π → Hπ} be a field defined on smooth vectors. If

for each φ ∈ D(G), σφ̂ is a field of operators acting on smooth vectors, that is,

σφ̂ = {σππ(φ) : H∞
π → H∞

π },

then σ acts on smooth vectors.

Proof. Let us assume that σφ̂ is a field of operators acting on smooth vectors
for every φ ∈ D(G). Then, for each π ∈ Ĝ realised as a representation and each

smooth vector v ∈ H∞
π , σπφ̂(π)v is smooth. By the Dixmier-Malliavin Theorem,

see Theorem 1.7.8. the finite linear combination of the vectors of the form φ(π)v
form H∞

π . Therefore σπ : H∞
π → H∞

π , and the statement is proved. �

As an application of Lemma 1.8.19, we see that the field δ̂xo
given at the end

of Example 1.8.10 acts on smooth vectors:

Example 1.8.20. For any xo ∈ G, the field δ̂xo
= {π(xo) : H∞

π → H∞
π } ∈ L∞(Ĝ)

acts on smooth vectors.
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Proof. Let xo ∈ G. If φ ∈ D(G), then by (1.4), π(xo)π(φ) = φ̂(· xo)(π) and
φ(· xo) ∈ D(G). Thus for any v ∈ H∞

π , π(xo)π(φ)v is smooth. We conclude using
Lemma 1.8.19. �

To summarise, we will identify measurable Ĝ-fields σ = {σπ : H∞
π → Hπ, π ∈

Ĝ} defined on smooth vectors with their possible extensions whenever possible. If
the group is non-compact, we can not restrict ourselves to fields acting on smooth
vectors.
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