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Abstract Systematic conservation planning deals with cost-effective allocation of 
conservation funds. There are diverse ways in which evolutionary history could be 
included in prioritization, but here we considered it at the local scale, valuing higher 
the locations where the local community has high phylogenetic diversity, while still 
aiming at maximizing overall species representation. We conducted the prioritiza-
tion with the Zonation software for spatial conservation planning.

We prioritized areas for conservation in Europe using distribution data and phy-
logenies for 275 mammal species. We prioritized areas in Europe for conserving 
hotspots of evolutionary history. For comparison we made analyses with species 
occurrences alone. Analyses were done for the whole region and for each country 
separately. We explored the impacts of tree uncertainty, and analyzed how well 
existing protected areas performed with respect to Zonation priorities.

Our findings indicate that some hotspots of evolutionary history are missed by 
species-based prioritization, unless specifically accounted for. Uncertainty in spatial 
priorities caused by variation in phylogenetic tree structure was a minor concern for 
prioritization. Protected areas did not perform well when assessed against the 
Zonation priorities for species or for phylogenetic diversity, although highest 
national scale priorities had almost twice as much area protected as the overall 
average.

We emphasize that the chosen goals and analysis setups have strong impacts on 
spatial priorities and therefore care must be taken in defining them appropriately. 
But regardless of setups, the gap between the current conservation efforts and spa-
tial prioritization outcomes is typically greater than the difference between includ-
ing and excluding phylogenetic diversity. Therefore the focus should be on 
increasing the role of spatial analyses in practical conservation, but whenever 
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 feasible, also including evolutionary history in the analyses, because evolutionary 
history is not always well represented by targeting species for conservation.

Keywords Phylogenetic diversity • Quadratic entropy • Spatial prioritization • 
Zonation

 Introduction

Systematic Conservation Planning Protected areas around the world have typi-
cally been established in areas of low competing interests, which is not ideal from 
the perspective of biodiversity conservation (Pressey et al. 1993). Such biased allo-
cation may even lead to existing protected areas performing worse than randomly 
chosen areas in representing diversity (Ferrier 2002). The realization that conserva-
tion would benefit from cost-effective practices led to the development of the field 
of Systematic conservation planning (Box 1, Margules and Pressey 2000; Margules 
and Sarkar 2007). More than 20 years of development have led to the integration of 
numerous aspects to the approach adding to its realism. In particular, the spatial 
prioritization for assessing the existing conservation areas and selecting new ones 
have become comprehensive and efficient, and nowadays they also provide more 
user-friendly graphical user interfaces, which has facilitated their broad use for 
practical conservation planning purposes (Ball et al. 2009; Moilanen et al. 2009).

Evolutionary History in Conservation Phylogenetic diversity or species origi-
nality are often mentioned as important for conservation (Rosauer and Mooers 
2013; Winter et al. 2013), and the history of such discussion goes back already a few 
decades (Vane-Wright et al. 1991; Faith 1992). Evolutionary history is often quanti-
fied in community ecology for the purpose of understanding the diversity of current 
species distributions (Davies and Buckley 2011; Fritz and Rahbek 2012) or the 
potential functioning of ecosystems (Cadotte et al. 2012), whereas applications to 
conservation have remained limited.

Box 1
The process of systematic conservation planning as described by Margules 
and Pressey (2000).

 1. Compile data on the biodiversity of the planning region
 2. Identify conservation goals for the planning region
 3. Review existing conservation areas
 4. Select additional conservation areas
 5. Implement conservation actions
 6. Maintain the required values of conservation areas

A. Arponen and L. Zupan



267

Numerous indices have been developed to measure the originality of species 
( Vane-Wright et al. 1991; Pavoine et al. 2005a; Isaac et al. 2007), or phylogenetic 
diversity (Faith 1992; Schweiger et al. 2008; Pavoine and Bonsall 2011; Faith chap-
ter “The PD Phylogenetic Diversity Framework: Linking Evolutionary History to 
Feature Diversity for BiodiversityConservation”). The former measures assign a 
value for each species based on their dissimilarity from other species, whereas the 
latter look at an assemblage of species as a whole.

Both types can be used in spatial conservation prioritization (Arponen 2012). 
Originality can be used for weighting species differently, whereas diversity indices 
can be used at different scales: either for measuring the diversity of all species 
across a network of protected areas, or for preferentially selecting areas with high 
local, alpha-level diversity of the community. Their use has been rare in published 
studies of spatial conservation prioritization. Arponen et al. (2005) used species 
weights based on species originality in conservation prioritization for plants in 
Finnish herb-rich forests. There are also some examples of considering assemblage- 
level phylogenetic diversity across a network of sites: The “Phylogenetic Diversity” 
of Faith (1992) has been used for conservation prioritization with birds (Rodrigues 
and Gaston 2002) and plants (Forest et al. 2007) in South Africa, as well as in a 
global analysis for mammals (Rodrigues et al. 2011). Instead of spatial prioritiza-
tion of areas for protection, evolutionary history has been considered much more 
commonly in other kinds of conservation contexts (reviewed in Arponen 2012), 
such as creating priority lists of species for conservation. For example, Isaac et al. 
(2007) introduced the “Evolutionary distinctiveness” measure for species and used 
it in combination with extinction risk data to assign priorities for species in the 
EDGE program (see also May-Collado et al. chapter “Global Spatial Analyses of 
Phylogenetic Conservation Priorities for Aquatic Mammals”; Schnell and Safi 
chapter “Metapopulation Capacity Meets Evolutionary Distinctness: Spatial 
Fragmentation Complements Phylogenetic Rarity in Prioritization”).

To our knowledge, phylogenetic diversity has not been used at the scale of local 
communities in spatial conservation prioritization. The use of alpha-level phyloge-
netic diversity is based on the assumption that it would correlate with ecological 
processes better than species richness of the community (Forest et al. 2007), and 
therefore work as an indicator for functional diversity when species traits data are 
missing. This is based on the idea that phylogenetically distinct species are likely to 
be functionally different (Cadotte et al. 2008), although this assumption has also 
been challenged (Mouquet et al. 2012). For this purpose, phylogenetic diversity 
indices that account for species abundances (Chao et al. 2010; Chao et al. chapter 
“Phylogenetic Diversity Measures and Their Decomposition: A Framework Based 
on Hill Numbers”) might be more suitable than the ones that consider only pres-
ences and absences of species (such as Faith 1992): from the perspective of ecosys-
tem function, viable populations and sparse individuals of a species should not be 
considered equally important.

Case Study on European Mammals Mammals are a fairly well known group of 
species regarding their ecology, distributions as well as phylogeny. Nevertheless, 
their phylogenies are not fully resolved, but contain polytomies. Resolving the 
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 polytomies randomly results in variation among different trees, but having good 
spatial distribution data provides a good opportunity for investigating the influence 
of such uncertainty on spatial conservation prioritization. Mammals are also consid-
ered to be of high conservation interest due to their public appeal (Smith et al. 
2012). They were the first focal taxon of the EDGE programme (Isaac et al. 2007), 
which was a pioneering endeavor to bring highly threatened and evolutionarily 
unique species to the limelight and to improve their conservation.

We conducted spatial prioritizations for European mammal conservation with 
the Zonation conservation planning software. We compared traditional, species 
based prioritization to one where alpha-level phylogenetic diversity, measured as 
the equivalent number of Rao’s quadratic entropy, was allowed to influence site 
value through using its inverse as cost in the analyses. Because a continental scale 
analysis may not be politically feasible, we repeated both analyses at national scales, 
where Zonation performs identical prioritization but for each country separately. 
For mammals there is still some uncertainty related to the structure of the phylog-
eny. We acquired 100 different trees and ran Zonation analyses for each of them, 
comparing the similarities of outcomes to each other. We analyzed the trade-offs 
between species representation and the equivalent number of Rao’s quadratic 
entropy in the solutions. Finally, we analyzed the performance of the current pro-
tected area network in representing hotspots of evolutionary history for mammals, 
as well as in representing species, both at the European and at national scales.

 Material and Methods

European Mammal Distributions We used data on the spatial distribution of 
european terrestrial mammals described in Maiorano et al. (2013). The primary data 
were extents of occurrence (EOOs) of the species occurring in Europe and Turkey 
obtained from the Global Mammal Assessment (http://www.iucnredlist.org/initia-
tives/mammals; accessed 15 August 2013 (IUCN 2012)). To refine EOOs and 
remove potential false presences, habitat requirements were used in an expert-based 
modelling approach. More specifically, for each species, habitat requirement was 
defined by experts (G. Amori, D. Russo and L. Boitani) and published literature (see 
Maiorano et al. 2013 for the full list of references) based on three environmental 
variables: land cover, elevation and distance to water. For each species, data  collected 
were used to assign a suitability score (0, unsuitable; 1, secondary habitat and 2, 
primary habitat) to each of the 46 GlobCover land-use/land-cover classes. Elevation 
and distance to water were then combined to the habitat suitability score to refine 
the available EOOs and obtain current distribution with a cell size of 300 m resolu-
tion. The models were validated with help of field data (see Maiorano et al. 2013 
for more details). From these 288 species we used 275 for which phylogenies  
were available.
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As running the phylogenetic analyses and Zonation prioritization at 300 m reso-
lution would have been too demanding for the equipment available at the time, we 
scaled up the species distributions following a regular grid of 10′. As a value for 
each 10′ cell, we kept the percentage of 300 m cells considered as either 1 (primary 
habitat) or 2 (secondary habitat), and we refer to this value as “the proportion of 
suitable area” hereafter. For aesthetic reasons, all the maps presented hereafter have 
been projected using the Lambert conformal conic projection (UTM zone 34).

Mammal Phylogenies Phylogenetic data for mammals were based on the super- 
tree of Bininda-Emonds et al. (2007) updated by Fritz et al. (2009). We used 100 
fully resolved phylogenetic trees, where polytomies were randomly resolved apply-
ing a birth-death model to simulate branch lengths (Kuhn et al. 2011).

Protected Areas We used the WDPA dataset on protected areas (UNEP 2010) cat-
egories I-IV (I: Strict nature reserve or wilderness area, II: National park, III: 
Natural monument or feature and IV: Habitat/Species management area) excluding 
the categories that are generally considered less beneficial for biodiversity conser-
vation (categories V and VI), and areas where the category was either ‘not reported’ 
or ‘not applicable’. We used the proportions of area protected in each cell for our 
analyses of overlap of Zonation priorities with protected areas. WDPA data are 
polygons. As Zonation operates with raster data, we transformed the polygons into 
a raster, following the same grid as the species distribution data (10′ cells regular 
grid). To do so, we overlapped the polygons on the grid and retained the proportion 
of area protected in each grid cell.

Measuring Phylogenetic Diversity To measure the phylogenetic diversity at each 
cell, we used the Rao’s quadratic entropy (Rao 1982), an index of alpha-diversity, 
which is extended to account for the pair-wise dissimilarities of species:
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dij is derived from the ultrametric phylogenetic tree (Pavoine et al. 2005b) and 
corresponds to the phylogenetic dissimilarity between each pair of species i and j. pi 
and pj are the respective proportions of suitable habitat for the species i and j avail-
able in the 10′ pixel c. It is now recognized in the literature that the values of most 
of diversity measures (like the Rao’s quadratic entropy) do not behave intuitively 
because they do not satisfy the “replication principle” (Jost 2007; de Bello et al. 
2010; Chao et al. 2010; Leinster and Cobbold 2012; Chao et al. chapter “Phylogenetic 
Diversity Measures and Their Decomposition: A Framework Based on Hill 
Numbers”). The replication principle (or “doubling property”) states that if we pool 
two equally diverse and equally large groups with no shared species, the total 
 diversity should be two times the diversity of a single group (Chao et al. 2010; Chao 
et al. see their Fig. 2 in chapter “Phylogenetic Diversity Measures and Their 
Decomposition: A Framework Based on Hill Numbers”). To make the Rao’s 
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 quadratic entropy behave this way, we need to transform it into an equivalent 
 number through a simple algebra step (1/(1-QE), Jost 2007). The outcome is a raster 
layer with the value of QE in equivalent number for each of the 10′ pixels with the 
same spatial extent and resolution as the mammal distribution data.

The Zonation Approach Zonation is a spatial prioritization software meant to be 
used as a decision support tool (Moilanen et al. 2009). While other approaches typi-
cally select a fraction of the landscape according to a pre-determined target, e.g. 10 % 
of species distributions, or maximize what is achieved with a pre-determined budget, 
Zonation instead ranks all cells in the entire landscape in the order of conservation 
value. A Zonation solution can be used to identify any best (or worst) fraction of 
the landscape.

The ranking is based on the evaluation of range size normalized richness of 
biodiversity features in each cell (Moilanen et al. 2005, 2011). In plain words, this 
means that features (e.g. species) with broad distributions contribute very little to 
the conservation value of a single cell, whereas narrowly distributed species sub-
stantially increase the conservation value of the cells they occupy. At every iteration 
(removal of one cell) Zonation recalculates the conservation value for the remaining 
cells based on the remaining feature distributions, which become smaller with each 
iteration. Thus, Zonation removes first cells with few, broadly distributed features, 
and during the ranking these features become rarer and rarer in the remaining land-
scape. As an outcome, the remaining highest priority fraction of the landscape will 
contain the cells with high species richness and narrow endemics.

Zonation provides two options as cell-removal rules that determine how the mar-
ginal value of a cell is calculated (Moilanen et al. 2005; Moilanen 2007). The addi-
tive benefit function approach allows for more flexible trade-offs to occur between 
features, because it considers cell value as the sum over benefit functions of repre-
sentation of the features in the cell. This means that narrowly distributed species in 
species poor (or expensive) cells may be traded off against species rich cells. We 
chose to use the Core-area cell removal rule, which defines the cell value based on 
the most valuable occurrence over all species in the cell. This means that if a cell 
contains a large fraction of the range even for only one species, it will get high 
value, regardless of the species richness in the cell. This way the core areas of all 
species’ ranges are retained in the highest priority fraction of the landscape. As spe-
cies distribution data, we used the raster layers of proportion of suitable habitat per 
cell for each species, as described above in the section “European mammal 
distributions”.

Even though Zonation does not consider phylogenetic data by default, it offers 
also options for accounting for evolutionary history in the prioritization. For exam-
ple, species could be weighted based on their evolutionary distinctiveness either 
globally, or with different region-specific weights (Moilanen and Arponen 2011). 
Alternatively, locations can be weighted based on the phylogenetic diversity of the 
local community. In this case study we focus on the latter approach. Technically this 
happens through defining a “cost layer” as inversely proportional to the diversity. 
This way a cell with one-fifth of the phylogenetic diversity of another cell is 
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 considered five times as costly to protect, lowering its position in the Zonation rank-
ing. The cost layer can be scaled differently according to how much importance is 
given to phylogenetic diversity. The equivalent numbers of Rao’s quadratic entropy 
values went from ca. 1 to 7, and the direct inverse was used in our “medium weight-
ing” (that is, cost goes from 0.14 to 1), and this scale was halved (“low weights”, 
0.28–1) and doubled (“high weights”, 0.07–1) to test for sensitivity to this parame-
ter (see Fig. 1 for analysis setups).

The latitudinal gradients in species richness and range sizes cause the spatial 
priorities in analyses at any scale to be concentrated in the more species rich lower 
latitude areas (Eklund et al. 2011; Moilanen et al. 2013). Even though cost-effective 
from the perspective of species conservation, focusing conservation efforts into 
these regions only would be very difficult for many reasons (see section “Discussion 
and Conclusions”). Therefore we also performed an analysis where countries were 
considered as independent administrative units, each aiming to conserve the diver-
sity within their borders. This is implemented through the Administrative units 
analysis in Zonation (Moilanen and Arponen 2011). The analysis would allow for a 
compromise solution between purely European-scale and purely national-scale 
analyses, but for our analytical purposes, we chose the extreme cases only. A 
national-scale prioritization provides an interesting reference for comparison to 
protected areas. We did this for one tree only. Thus, we ended up with four main 
Zonation solutions to assess protected area performance regarding the representa-
tion of species and phylogenetic diversity at both European and national scales 
(Fig. 1).

 Case Study Setup

 Results

Spatial priorities in the European analyses were strongly concentrated around the 
southern parts as well as eastern border of the study region (Fig. 2a, b). Spatial pri-
orities between the basic Core-area prioritization and the variants where phyloge-
netic diversity as the equivalent number of Rao’s QE was included are extremely 
similar in some regions, but contain some rather dramatic differences in specific, 
especially northern parts of Europe (Fig. 2a, b). Spearman rank correlations between 
the rank values in the basic Core-area solution and the three weighting variants of 
the equivalent number of Rao’s QE were 0.93, 0.91 and 0.89, for the low, medium 
and high weight scales, respectively.

We repeated the basic and phylogenetic diversity weighted analyses at the 
national scale, where Zonation performed the prioritization separately for each 
country (Fig. 2c, d). Here the priorities were forced to be evenly distributed among 
the countries, such that e.g. the best 10 % of the landscape consisted of the best  
10 % in each country. Such priorities are much more scattered across Europe, and 
concentrated around country borders.
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Fig. 1 Diagram representing the flow of our analyses. The left part of the figure illustrates the 
analyses we ran at the European scale while at the right of the dashed line are the analyses con-
ducted at the national level. In all analyses, the data input for the species were the proportion of 
suitable habitat (1 raster layer per species). We first (a) tested three different weightings for the 
phylogenetic diversity measured as the equivalent number of Rao’s quadratic entropy (low, 
medium and high weighting, see main text) to assess whether this was influencing the prioritiza-
tion results. In a second step (b) we ran Zonation 100 times using cost layers corresponding to the 
100 different phylogenetic trees. We followed this procedure to evaluate the influence of the tree 
structure variation on the prioritization results. The remaining analyses were dedicated for the 
evaluation of the current protected areas network. We used only one cost-layer (corresponding to 
the equivalent number of Rao’s quadratic entropy extracted from tree 1 and a medium weighting) 
to evaluate the protected area network at the (c) European scale and (f) the national scale. Finally 
we ran Zonation without any phylogenetic diversity data to assess the representation of species 
within the protected areas network at (d) European scale and (f) national scale. Abbreviations: med 
medium, phyl. div phylogenetic diversity measured as the equivalent number of Rao’s quadratic 
entropy
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The three phylogenetic weightings give very similar results. The pair-wise 
Spearman rank correlations between these differently weighted Zonation analyses 
were very high (low-medium: 0.9965, low-high: 0.9916, and medium-high: 0.9987). 
Therefore, in the following analyses we used the medium weighting only, which 
corresponds to using the inverse of the equivalent number of Rao’s QE directly as 
cell cost (see Fig. 1).

Fig. 2 Zonation priority maps for mammals in Europe. The red tones represent the best 10 % of 
the solution and blue tones indicate the lowest 50 % of cells. (a) Is the basic, core-area Zonation 
solution for our data where conservation value in Zonation optimization is only based on species 
richness normalised by range size. (b) Is the Zonation solution where the conservation value of a 
cell is weighted with the medium variant of the phylogenetic diversity, i.e. the inverse of the equiv-
alent number of Rao’s quadratic entropy for the local community in each cell is used as cell costs. 
(c) Shows the national level basic Zonation priorities and (d) is the national analysis with phyloge-
netic diversity included
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Similarly, pair-wise Spearman rank correlations for Zonation solutions done 
with the different 100 phylogenetic trees were also very high. The mean pair-wise 
correlation was 0.99985 and even the lowest pair-wise correlation was 0.99934. 
There were only a few regions across the study area where the rankings were not 
consistent (Fig. 3).

We also tested whether the uncertainty of tree structure was related to the posi-
tion in Zonation rank, that is, whether there may have been more or less uncertainty 
associated with top ranking cells. Pair-wise Spearman rank correlations of uncer-
tainty with each of the main Zonation variants gave weak, positive correlations of 
0.10 for the basic solution, 0.12 for the phylogenetic diversity analysis, 0.08 for the 
basic national scale analysis, and 0.07 for the national scale phylogenetic diversity 
analysis. As the tree uncertainty seemed to play a very minor role in the prioritiza-
tion outcome, in the following analyses we used one tree only (see Fig. 1).

To assess how well the Zonation priorities covered the different species’ ranges, 
we plotted the proportions of species ranges retained in the landscape at different 
fractions of cell removal (Fig. 4). The median of representation is higher for the 
analysis with phylogenetic diversity than for the one without (Fig. 4, black squares). 
This may seem surprising, but is explained by the fact that Rao’s QE correlates with 
species richness. Looking into the corresponding values for individual species 

Fig. 3 The range of variation in rank values among the 100 Zonation solutions done with different 
phylogenetic trees. Large majority of areas have very consistent rank values, with variation lower 
than 1 % (i.e. always placed within the same 1 % fraction in the Zonation ranking; black in the 
map). In some regions the variation is broader, but still keeping within the same 10 % fraction in 
Zonation (medium blue). Only very small regions have variation from 10 to 20 % (light blue), and 
only some sparse cells go through more dramatic changes in priority when different tree structures 
are considered, with variation up to 47 % (pink cells)
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(illustrated by the density distributions drawn around the medians in Fig. 4) reveals 
a very subtle trade-off: The basic core-area Zonation retains species representations 
more evenly, as it should by definition, whereas the phylogenetic diversity solution 
loses larger fractions of some species’ ranges earlier on in the cell removal process 
(longer downward tails in the density distributions at lowest 50 % fractions). In 
other words, with the phylogenetic diversity weighting the protection of some spe-
cies is traded off against protection of locations with higher phylogenetic diversity. 
But as this tradeoff is minor and most visible at poorest fractions of the landscape, 
it is unlikely to be of concern for practical conservation.

Fig. 4 Proportions of species distributions retained (y-axis) in different top fractions of the 
landscape (x-axis). The black squares represent the median value across all species, which are 
surrounded by vertically plotted density distributions of all species’ values around the median. 
For example, in the basic Zonation solution, the top 20 % of the landscape covers more than 55 % 
of the ranges for half of the species, but there are also (broadly distributed) species with only ca. 
10 % of their ranges covered. A random selection at the continental scale would result in a 1:1 
diagonal line for the medians (solid line)
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A major difference can be seen between the analyses at different spatial scales. 
When going from European to national priorities, the median representation values 
drop substantially, by even ca. 40 % (Fig. 4). Same pattern arises at the national 
scale from inclusion of phylogenetic diversity: again some species lose more of 
their ranges for the benefit of others that occur in locations with higher values of the 
equivalent number of Rao’s QE.

To look at evolutionary history maintained by the Zonation solutions, we plotted 
the mean equivalent number of Rao’s QE for the cells at different top fractions of 
the rankings (Fig. 5). We observed as an overall general trend that the mean QE is 
increasing as cells are removed from the landscape (from 100 to 1 % in the x-axis) 
for any selection procedure (with or without including phylogenetic diversity as 
selection criteria). This is caused by the positive correlation between QE and spe-
cies richness. By default, Zonation values high species richness cells which will 
tend to be prioritized, and those cells are also more likely to have high QE values 
than species poor cells. The very highest priorities (top 1 % in Fig. 5) again diverge 
from this trend for the solutions that do not consider QE explicitly, because here 
Zonation tries to maintain a representation for as many species as possible, and thus 
the complementarity of species compositions overrides the importance of richness, 
and correlation with the QE weighted solutions disappear.

Fig. 5 Mean phylogenetic diversity measured as the equivalent number of Rao’s QE across cells 
at different top fractions of the landscape according to Zonation. The values have been standard-
ized from an original mean QE of 5.06 across all cells. The different prioritizations converge at top 
fraction equal to 1, as that represents the mean value across all cells in the landscape. If cells were 
removed in random order, the points would form a flat line at this level
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The mean equivalent number of Rao’s QE retained by each fraction of the land-
scape is higher when phylogenetic diversity is accounted for (black-filled symbols 
are higher than empty symbols). This means that including phylogenetic diversity 
as a prioritization criterion improves the outcome of the Zonation solution from the 
perspective of evolutionary history. Our results also highlight that the scale at which 
the prioritization is conducted (European vs. National) does not appear to have a 
consistent impact on the mean QE retained in each fraction of the landscape (same 
colored symbols are close to each other for a given fraction). In other words, the 
choice whether to conduct a prioritization at the country level or at the continent 
level does not influence how much phylogenetic diversity is retained.

We overlaid the Zonation rankings with maps of existing protected areas to see 
how well the priorities and protected areas coincide. The protected areas we consid-
ered in our analyses (WDPA categories I–IV) cover a total of 7.8 % of the land area 
in the study region. We compared them to the same amount of land area prioritized 
by the Zonation variants (Fig. 6), i.e., 7.8 % top fraction of the Zonation solutions. 
A large majority of currently protected land is not considered of high priority by any 
of the Zonation variants (light blue areas), and conversely, much of the Zonation 
priorities are unprotected (yellow-orange tones). The best matching areas are shown 
in red, and are sparsely located across the study region without any clear spatial 
trends.

We plotted the mean proportions of cell area protected among the cells in differ-
ent top fractions of Zonation solutions for each of the four main solutions (Fig. 7). 
For both of the European scale analyses the proportion protected did not seem to 
depend at all whether the cells were considered of high or low priority. Actually 
their pattern of distribution appeared near random. Instead, for the national scale 
analyses there was a consistent pattern of increasing protection with increasing rank 
in Zonation, for both the basic and phylogenetic diversity variants of Zonation. 
Topmost 1 % fractions had almost twice as much area under protection as compared 
with the mean across the whole study region.

 Discussion and Conclusions

We prioritized areas for conservation of hotspots of mammalian evolutionary his-
tory with a spatial prioritization tool. Majority of high priority areas for species 
conservation are also of high priority for the conservation of evolutionary history, 
but there are some regions where substantial differences occur between the two dif-
ferent goals. This implies that targeting species alone does not necessarily succeed 
in protection of hotspots of evolutionary history. Past research has found mixed 
evidence of such surrogacy relationships between protecting species and phyloge-
netic diversity (Polasky et al. 2001; Rodrigues and Gaston 2002; Sechrest et al. 
2002; Forest et al. 2007; Spathelf and Waite 2007; Rodrigues et al. 2011). Our find-
ings show that it makes a difference in what regions such comparisons are made: we 
found little difference between priorities around the Mediterranean, but much more 
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e.g. in Scandinavia. Chazot et al. (chapter “Patterns of Species, Phylogenetic and 
Mimicry Diversity of Clearwing Butterflies in the Neotropics”) found that phyloge-
netic diversity and species richness are less correlated in areas of low species rich-
ness, which might explain some of the patterns in our results as well.

Fig. 6 Overlap of the area identified as priority for conservation with Zonation (7.8 % of the land 
area in the study region) with currently protected areas (WDPA categories I–IV). The two different 
color scales indicate the proportion of each cell under protection: Light blue cells have more than 
half of their area protected, black cells have less than 1 %. The tones from yellow to dark red indi-
cate the same thing, but for the cells belonging to the Zonation 7.8 % top fractions. (a) Is the basic, 
core-area Zonation solution for our data where conservation value in Zonation optimization is only 
based on species richness normalised by range size. (b) Is the Zonation solution where the conser-
vation value of a cell is weighted with the medium phylogenetic diversity, i.e. the inverse of the 
equivalent number of Rao’s quadratic entropy for the local community in each cell is used as cell 
costs. (c) Shows the national level basic Zonation priorities and (d) is the national analysis with 
phylogenetic diversity included
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Mammals are a group of species with broad distributions even at the European 
scale. Such patterns cause the priorities to be strongly concentrated around southern 
parts of the study area, where the diversity gradients peak. Whenever such a region 
is subdivided into smaller administrative units, species ranges will typically extend 
over multiple units. And whenever distributional ranges cross boundaries, selecting 
areas complementary to each other within a subunit of a larger area is likely to lead 
to selecting areas as far as possible from each other: the Northern border will host 
mostly different species from those along the southern border. This so-called edge 
artefact (Moilanen et al. 2013) is important to consider when discussing the rele-
vance of spatial scales in priority setting.

Fig. 7 The mean proportion of area protected in the different top fractions of the Zonation rank-
ings. For example, out of the best 1 % of the cells according to the continental scale phylogenetic 
diversity variant (with inverse of the equivalent number of Rao’s QE as cell cost) approximately  
7 % of area is under protection, whereas in both of the National Zonation variants more than twice 
as much of the top priority area is under protection. The 100 % bar indicates the overall mean of 
area protected across the whole study region, corresponding to 7.8 % of land area
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A European scale prioritization is much more cost-efficient in covering species 
ranges, as compared with the national scale analyses that barely surpass a random 
selection (Fig. 4). National level prioritization is bound to be less cost-effective 
(Erasmus et al. 1999; Kark et al. 2009; Bladt et al. 2009) if all species, including the 
broadly distributed ones, must be conserved separately in each country. However, it 
would not be politically feasible to focus all conservation efforts to the European- 
scale hotspots either, because these cover disproportionate fractions of some coun-
tries, while leaving others virtually unprotected. Therefore, in reality a balanced 
compromise solution between the two extremes would be desirable, but such options 
are explored elsewhere (Moilanen and Arponen 2011; Moilanen et al. 2013).

Our results suggest that the amount of uncertainty related to the mammal phylog-
enies is not significant from the perspective of spatial prioritization of evolutionary 
hotspots. The differences between trees are minor and appear to occur in parts of the 
phylogeny with species that mainly occur in species rich communities, and thus the 
patterns of species distributions drive the prioritization and mask the impact of phy-
logenetic uncertainty. This is not to say that phylogenetic uncertainty in general 
would not matter in conservation prioritization. It may well be that for less well 
known taxa with higher uncertainty, or taxa with different phylogenetic structure 
and different kinds of patterns of spatial distributions of the species would show 
much higher variation in prioritization outcomes. The result could also be different 
for another conservation goal, e.g., if aiming at maximizing phylogenetic diversity 
across the study region (Rodrigues and Gaston 2002; Rodrigues et al. 2011) rather 
than considering it at the level of local community as we do here.

When including additional constraints to prioritization, such as a weighting 
based on phylogenetic diversity, some other aspect may have to be compromised 
and trade-offs sought, as priorities for different goals rarely perfectly coincide. In 
the case of the European mammals and alpha-level phylogenetic diversity, we found 
that the trade-offs were very reasonable, and indeed, negligible as compared with 
the losses incurred by restricting the prioritization to the national scale.

As expected, the mean phylogenetic diversity in cells prioritized by Zonation 
variants where phylogenetic diversity was included as a cost layer were higher than 
in those variants that did not include it. In relative terms the differences were not 
enormous (see Fig. 5), but one must consider that (1) Zonation can only work with 
the values that occur in the landscape, and in this case it had to select from a set of 
cells where the overall mean of phylogenetic diversity (measured as the equivalent 
number of Rao’s quadratic entropy) was slightly larger than 5 and maximum was 7, 
and (2) the Core-area Zonation needs to retain core cells for all species, and cannot 
entirely give up on an “expensive” species – that is, a species occurring only in cells 
with very low phylogenetic diversity. Thus, the flexibility of the solutions strongly 
depends on the spatial patterns of species distributions and how they relate to the 
phylogenetic tree structure. For example, if species’ range sizes are relatively small 
and overlap little, Zonation needs to retain a large number of cells to cover core 
distributions for all of them, and thus there is little flexibility in the solution even 
when variation in cell costs (or phylogenetic diversity) is high. If rare endemics hap-
pen to occur in cells with the highest phylogenetic diversity and all other species 
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have very broad distributions, then that leaves quite a lot of flexibility for ranking 
the rest of the landscape.

We found the current network of protected areas to perform rather poorly with 
respect to representation of areas perceived as high priorities by the European scale 
Zonation solutions. The proportions of different fractions from Zonation solutions 
were covered by protected areas roughly equally, close to the overall mean percent-
age of protected area in the study region. In other words, current protected areas 
appear equivalent to a random allocation of sites when compared with the European 
scale Zonation priorities. However, as discussed earlier, prioritization at the 
European scale may not be a reasonable comparison, as conservation planning in 
the real world mainly happens at more local scales. The comparison to the national 
scale prioritization was more positive, with highest Zonation priorities almost twice 
as likely to be protected as the mean across the region. Even though less than 15 % 
protection of the highest priorities is perhaps not an outcome to celebrate, it does 
indicate that at least according to some criteria, protected area allocation in Europe 
has not been fully opportunistic, and is not worse than random, as could be the case 
when the sites are biased towards areas of low economic interest (Ferrier 2002).

However, it is also important to remember, that even the best solution at national 
scale was only mildly better than a random selection (Fig. 4), making it another 
unreasonable baseline to compare against. It may well be, that the higher coinci-
dence of protected areas with Zonation priorities is simply a consequence of coun-
tries preferably locating protected areas near borders, which coincides with spatial 
priorities due to the edge artefact mentioned above, rather than being a sign of cost- 
effective protected area planning. Such a pattern was found in the Americas in a 
previous study (Moilanen et al. 2013). Analyses at higher data resolutions that 
include other taxa and different aspects of diversity are required to make more real-
istic and useful assessments of protected areas, but our first attempt does provide 
some interesting insight into these questions.

Conservation of evolutionary history is generally acknowledged to be important, 
although the debate on the alternative justifications for it is still ongoing (Rosauer 
and Mooers 2013; Winter et al. 2013). The underlying reason for its conservation 
will influence the practical goals and conservation priorities. Our analysis identifies 
priority regions for conserving high alpha-level phylogenetic diversity for mam-
mals. Such an approach is typically justified on the basis of representing higher 
functional diversity (see section “Introduction”), but due to the correlation of QE 
with species richness it may also be closer to a species-based solution than some 
alternative ways of considering evolutionary history in conservation prioritization. 
Therefore, our results should not be taken as proof of an existing surrogacy relation-
ship of species and phylogenetic diversity-based prioritizations, especially as also 
with our approach there were some regions with clear differences to species-based 
prioritization. An important notion regarding Zonation, or any prioritization tool, is 
that it does not inherently “know” what is desirable in conservation. It can only 
answer the questions it is posed, and it is up to the user that the questions make 
sense (see also Moilanen 2008). For example, merely adjusting the strength of the 
weighting (cost layer) in the current analysis will shift priorities to some extent. 
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Similar prioritizations for different taxa are also quite likely to produce different 
outcomes. Conservation is always driven by value judgments (Vane-Wright and 
Coppock 2009), and there is even a risk of purposefully setting goals in a manner 
that produces desired spatial outcomes.

Since there necessarily are multiple potentially relevant objectives, a conserva-
tive, precautionary strategy would be to assess several of them and focus on areas 
where most priorities are in concordance, and consider as unimportant only the 
areas where no high priorities occur. However, in practice different types of conser-
vation actions could be necessary to address the different objectives, and therefore 
the conflicts may be more apparent than real. For instance, regions with particularly 
low phylogenetic diversity may also be of conservation concern as they can repre-
sent areas of active diversification (Forest et al. 2007), but they might require differ-
ent type of conservation from “museum” areas with relict species, as these areas and 
species in them might be threatened by very different processes.

Another open and closely related question is at what spatial scales should we 
operate when measuring and prioritizing evolutionary history? In our case the 
assumption was that phylogenetic diversity measured as the equivalent number of 
Rao’s quadratic entropy of the local community was the relevant unit, but especially 
when assessing the diversity across the study region, the delineation of the study 
region will have an impact on priorities as described above, but also through “prun-
ing” of the phylogenetic tree: A specific region will cover parts of a full phylogeny, 
and regional scale prioritization with such a partial tree may prioritize areas differ-
ent from a global prioritization with a full tree.

Considering the amount of literature on conservation of evolutionary history in 
general, it is surprising how rarely it is considered in systematic conservation plan-
ning applications. Phylogenetic data are increasing and the modern computational 
prioritization tools are better able to account for such data even at broad scales and 
for large numbers of species. These developments facilitate the inclusion of phylo-
genetic diversity into conservation planning. We hope that it will become a routine 
part of spatial conservation prioritization procedures, and that the message will also 
better reach the broader public through active communication.
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