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    Abstract     The great bulk of the present knowledge of the Tree of Life comes from 
many phylogenies, each with relatively few tips, but with lots of diversity concern-
ing taxa and characters sampled and methods of analysis used. For several biodiver-
sity hotspots this is the kind of data available and ready to be used to have a better 
understanding on the evolutionary patterns and to identify areas with remarkable 
evolutionary history. But relying on data coming from independent studies raises 
some methodological challenges of standardization, comparability and assessments 
of bias to make the best use of the currently available information. To bring light to 
this subject here we analyzed the distribution of phylogenetic diversity in New 
Caledonia, a biodiversity hotspot characterized by strong rates of regional and inter-
nal endemicity. We used a dataset with 18 phylogenies distributed in 16 study sites, 
and based our analysis on the measure Ws sum. Our study comprises the analysis of 
(1) the role of the number of phylogenies on site’ scores and a strategy of standard-
ization of the dataset by the number of phylogenies; (2) the infl uence of species 
richness on site scores and the design of the measure Ws ranks to focus on the most 
divergent species of each phylogeny; (3) an assessment of the infl uence of individ-
ual phylogenies; (4) a resampling strategy using multiple phylogenies to verify the 
results’ stability.  
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        Introduction 

 Opening wide the sampling window in  biodiversity   studies is a major goal today, 
and this leads to two major research challenges. On the one hand is the diffi culty of 
dealing with big data, as, for example, those from entire genomes. Now that the 
main barriers to obtain enormous sequences seem to be broken, and that this kind of 
data is becoming easy and much cheaper to be obtained, the main constraint is the 
analysis of such huge datasets. On the other hand are the diffi culties associated with 
synthetizing evidences produced by several independent studies where, by defi ni-
tion, the sampling protocols are not standardized. Both issues are at the core of the 
analysis of phylogenetic  diversity   for conservation and deserve more attention if we 
are to produce sound guidelines for conservation. However, in this chapter we will 
focus only on the last one. 

 Our interest in this problem is due to the fact that the great bulk of present knowl-
edge of the  Tree   of  Life   does not result from a comprehensive analysis with stan-
dardized samples of taxa and characters. Instead, the greatest part of published 
works comprises studies at the level of families or genera, with lots of  diversity   
concerning taxon and characters sampling and methods of analysis. But the 
increased facility of molecular sequencing and phylogenetic analysis observed in 
the recent years has led to a substantial increase in available phylogenies. As a con-
sequence, for some  biodiversity   hotspots, an important number of detailed phyloge-
netic studies for several distinct groups are now available. The data from these 
independent studies, associated with a greater accuracy and availability of species 
occurrence records, provide a rich material that can enhance biodiversity conserva-
tion decisions. This allows for detecting evolutionary patterns across a broader 
sample of the Tree of Life and, ultimately, for detecting hotspots of evolutionary 
history within these biodiversity Hotspots. Obviously, the higher the diversity of 
groups covered by the set of phylogenies the fi ner the picture of the Tree of Life in 
the region and the more reliable the contribution of phylogenetic information to the 
conservation planning (Rodrigues et al. 2005). 

 Although the possibility of integrating results from different phylogenies has 
been studied for a while (see Posadas et al.  2001 ,  2004 ; Faith et al.  2004 ; López- 
Osorio and Miranda Esquivel  2010 ), we are only starting to explore the implications 
of different  sampling effort   and imperfect knowledge on studies of phylogenetic 
 diversity   for assessing areas for conservation (see Nipperess and Matsen  2013  and 
Nipperess, chapter “  The  Rarefaction   of Phylogenetic  Diversity  : Formulation, 
Extension and Application    ” and Miranda-Esquivel, chapter “   Support   in  Area   
 Prioritization   Using Phylogenetic Information    ”). In order to shed light to this prob-
lem here we propose some solutions when assessing hotspots for conservation 
within  New Caledonia  . 
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    Assessing Hotspots of Evolutionary Distinctiveness in  New 
Caledonia   

  New Caledonia   is a Pacifi c Ocean island located some 1450 km east of Australia 
(Fig.  1 ). It is about 500 km long and 50 km wide and is classed as a globally signifi -
cant  biodiversity   hotspot (Myers et al.  2000 ; Grandcolas et al.  2008 ; Kier et al. 
 2009 ). The island’s biological  diversity   is  threatened   by activities associated with 
large- scale   opencast nickel mining, an increased frequency of fi res, and by ecologi-
cal displacements caused by invasive species (Bouchet et al.  1995 ; Beauvais et al. 
 2006 ; Pascal et al.  2008 ; Pellens and Grandcolas  2010 ).

   A key feature of the  New Caledonia  n biota is its high level of endemism. The 
geographical isolation of the island and its ultramafi c soils have all been proposed 
as factors promoting high levels of endemicity. This endemicity exists at the level of 
the island, but also at fi ner geographical scales, and within New Caledonia micro- 
endemism is common with many species restricted to individual mountains, moun-
tain slopes, valleys, watercourses or edaphic ‘islands’ (e.g., Murienne et al.  2005 ; 
Sharma and Giribet  2009 ; Espeland and Johanson  2010b ; Pillon et al.  2010 ; Nattier 
et al.  2012 ,  2013 ). 
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  Fig. 1    Localization of  New Caledonia   in the southern Pacifi c and the 16 study areas in New 
Caledonia’s mainland       
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 This high level of endemism has attracted considerable scientifi c interest in the 
evolutionary history of the island (see the review in Pellens and Grandcolas  2010 ) 
and phylogenies for several groups are now available. There have also been macro- 
analyses of the distribution of micro- endemic   species (Wulff et al.  2013 ). However, 
to date there has been no systematic evaluation of the distribution of  biodiversity   in 
the context of evolutionary distinctiveness within the island, comparing multiple 
taxonomic groups over multiple geographical locations. In the current paper we 
tackle this topic with the aim to identify sites with high levels of phylogenetic 
 diversity  . 

 This type of study raises some methodological challenges. In an ideal world, one 
would design a sampling strategy involving equal  sampling effort   (or at least quanti-
fi ed sampling effort) at multiple sites for multiple sets of taxa, sampled for a com-
mon and comparable set of characters, and with the data analyzed in a common and 
comparable analytical framework. Unfortunately such a dataset does not exist pres-
ently for  New Caledonia  . Instead, we have taken an approach to make the best use 
of the currently available information by mining the literature for tree topologies, 
and then developing an analytical framework that copes with the shortcomings of 
the extant dataset. 

 Specifi cally we have pulled together the available data consisting of multiple 
phylogenies from different groups of organisms, of different levels of species  rich-
ness  , built from different character sets, different analytical methods and partially 
overlapping geographical locations. Our framework aims to standardize the contri-
butions of these different datasets in a meta-analysis, and also to quantify the inevi-
tably high-levels of uncertainty and variance in the range of possible conclusions 
that comes from dealing with (a) a complex biological system, and (b) imperfect 
data.   

    Material and Methods 

    Data and Sampling 

 We included all available phylogenetic studies up to 2010 that satisfi ed the three 
following conditions: (1) having a monophyletic group from  New Caledonia   with 
three species or more; (2) having extensive coverage of the geographic distribution 
of the group within New Caledonia’s mainland; (3) having species represented in at 
least three out of the 16 selected geographical areas (see below). This resulted in 18 
phylogenies encompassing both terrestrial and freshwater organisms (Table  1 ). The 
monophyletic clades in which New Caledonian species were found ranged from 3 
to 59 species (mean 14.9, median 10.5) and in total these phylogenies included 269 
species, all  endemic   to New Caledonia. They included organisms as diverse as 
insects, harvestmen, gastropods, vertebrates (geckos – Squamata), and vascular 
plants.
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   We considered 16 areas (sites) within  New Caledonia  n mainland. This set of 
sites includes the very great majority of areas with remaining native forests and are 
distributed throughout the length of the island. These areas correspond to geograph-
ical entities with discrete boundaries, such as isolated mountains, or parts of large 
ridge systems or lowlands separated from the adjacent one by main valleys, rivers 
or lakes (Fig.  1 ). The basic condition for including an  area   in this analysis was the 
availability of at least fi ve phylogenetic studies containing species represented at the 
site, and a minimum of ten species studied. Distributional data were collected from 
the original phylogenetic studies from the literature cited therein, and from the spe-
cialists working on the group in the region (Table  1 ).  Species richness   in this paper 

      Table 1    Overview of the 18 phylogenies used in this study, with complementary references of 
species distribution   

 Key  Family  Genus  Reference 

 1  Blattaria  Blattidae   Angustonicus   Murienne ( 2006 ) 
 2  Blattaria  Blattidae   Lauraesilpha   Murienne et al. ( 2008 ) 
 3  Heteroptera  Tingidae   Cephalidiosus   Murienne et al. ( 2009 ) 

  Nobarnus  
 4  Orthoptera  Eneopteridae   Agnotecous   Desutter-Grandcolas and 

Robillard ( 2006 ) 
 5  Trichoptera  Hydrobiosidae   Xanthochorema   Espeland et al. ( 2008 ) 
 6  Trichoptera  Hydropsychidae   various   Espeland and Johanson 

( 2010a ) 
 7  Trichoptera  Ecnomidae   Agmina   Espeland and Johanson 

( 2010b ) 
 8  Coleoptera  Dytiscidae   Rhantus   Balke et al. ( 2007 ) 
 9  Opiliones  Troglosironidae   Troglosiro   Sharma and Giribet 

( 2009 ) 
 10  Gastropoda  Hydrobiidae   various   Haase and Bouchet 

( 1998 ) 
 11  Squamata  Scincidae   Marmorosphax   Sadlier et al. ( 2009 ) 
 12  Squamata  Scincidae   various   Sadlier et al. ( 2004 ) 
 13  Squamata  Diplodactylidae   Dierogekko   Bauer et al. ( 2006 ) 
 14  Squamata  Diplodactylidae   Eurydactylodes   Bauer et al. ( 2009 ) 
 15  Squamata  Diplodactylidae   Rhacodactylus   Good et al. ( 1997 ) and 

Bauer ( 1990 ) 
 16  Ericales  Sapotaceae   Planchonella   Swenson et al. ( 2007 ) 

and Munzinger and 
Swenson ( 2009 ) 

 17  Ericales  Sapotaceae   various   Munzinger and Swenson 
( 2009 ), Swenson et al. 
( 2008 ) and Swenson and 
Munzinger ( 2009 ,  2010a , 
 b ,  c ) 

 18  Ericales  Ebenaceae   Diospyros   Duangjai et al. ( 2009 ) 

  Key = the reference number that will be used in Tables  2  and  3  when referring to these studies  
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refers to the number of species from the 18 phylogenies occurring in each area. A 
species was considered a microendemic if it was recorded in an area and nowhere 
else. In total, our data set consists of 523 records of occurrence of a given species 
from a phylogeny at one of these 16 sites.  

    Metric and Corrections for Bias 

 We calculated evolutionary distinctiveness using the  topology   based metric, the  Ws   
index from Posadas et al. ( 2001 ), which is derived from the Taxonomic Distinctness 
index conceived by Vane-Wright et al. ( 1991 ). We chose this metric for three rea-
sons. (1) It assigns higher values to species with fewer and more distant relatives 
than to species with more and closer relatives, allowing for a better identifi cation of 
areas with more phylogenetically divergent species (Redding et al.  2008 ). (2) It is 
designed for combining phylogenetic information from different cladograms, inde-
pendently of the kind of characters (morphological, molecular, etc.) or reconstruc-
tion method, since it is a topology based metric. This way, we were able to integrate 
data from phylogenies of taxa as different as plants, reptiles, molluscs and arthro-
pods to study the evolutionary distinctiveness of different areas in  New Caledonia  . 
(3) Each phylogeny contributes with the same amount of information, indepen-
dently of its total species’ number, as the Ws values for the species in any given 
phylogeny sum to one. 

 The traditional procedure is to sum  Ws   of all species present in each  area   and 
rank areas according to this sum (Posadas et al.  2001 ; Lehman  2006 ; McGoogan 
et al.  2007 ; López-Osorio and Miranda Esquivel  2010 ). However, this practice often 
leads to strong correlations with species  richness   (see López-Osorio and Miranda 
Esquivel  2010 ), having the possibility of masking important evolutionary diver-
gence in sites with less species, or less phylogenies. Secondly, as Ws is bound 
between 0 and 1 for a given phylogeny, it is sensitive to the number of sampled spe-
cies in each phylogeny. Although this will in part be driven by species richness, it is 
also simply affected by the scope of the study selected by the investigator (e.g. fam-
ily level or genus level). Thus the wider the phylogenetic breadth of a study (the 
more species included), the lower the overall maximum value for any one species. 
Thirdly, in the absence of exhaustive location-based sampling, the data available on 
the evolutionary  diversity   of a given site will simply refl ect the taxa that happen to 
have been sampled for individual research projects. If this bias is not corrected for, 
it will be hard to see the phylogenetic content, as the number of phylogenies and the 
number of species in each site might drive the result. 

 In order to address these shortcomings, we designed a method to highlight sites 
containing the most divergent taxa from each of the phylogenies. We fi rstly calcu-
lated  Ws   for each species in each phylogeny, and placed the species in order from 
the highest to the lowest Ws value. We then awarded “points” to the most divergent 
species in each phylogeny and compared the resulting scores among sites. As we 
were interested in the ‘front-runners’ from each phylogeny – we fi rstly took the top 
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three species, i.e. the most ‘basal’ species from each phylogeny, assigning them a 
score of 1 (for most basal) 0.67 (second place) and 0.33 (for third place). However, 
we latterly truncated this to scores for 1st and 2nd place (1 and 0.67) to emphasise 
the most divergent species. In the case of ties for the most divergent species, the 
total score of 1.67 was divided by the number of species that tied. Where there is a 
unique fi rst place score, but ties for second place, the ‘second prize’ of 0.67 was 
‘shared’ amongst the species which tied. The scores were then summed for all phy-
logenies at each site. 

 This method ensures that each phylogeny contributes a directly equal total score, 
and we are simply assessing in each case where the most divergent species are. The 
downside of using fi rst and second ranked species, is that it discards information 
from all of the other species in each data set. To accommodate this, we also continue 
to report the (more conventional) sum of  Ws   values, also standardised by the num-
ber of phylogenies present at a given site.  

     Resampling   Analysis 

 Our data set is constrained by the number of phylogenies that were available. To 
assess whether our fi ndings are sensitive to the composition of the sample of phy-
logenies we have, we designed two tests. The fi rst was through assessing the changes 
associated with the exclusion of a single phylogeny (single drops, a.k.a. Jackknifi ng). 
This is to see if the fi ndings are being driven by a single infl uential phylogeny. 
Secondly, we undertook a resampling (or rarefaction) procedure, by defi ning sub-
sets of 1, 2, 3… 15 phylogenies in a site and then calculating the mean and standard 
deviation of site’s scores with all possible combination of phylogenies with species 
occurring in it. This was to establish whether the results are stable with respect to 
the number of phylogenies we have available. 

 The R codes for these analyses are available from A.Ahrends@rbge.org.uk on 
request.   

    Results 

    The Role of the Number of Phylogenies on Site Scores 

 In our dataset the number of phylogenies with species occurring at a site ranged 
between 5 and 16 (mean and median = 11). So, the fi rst point that we investigated 
was the role of the number of phylogenies in site’s scores. This showed that over 
75 % of the site’s ranking with   Ws     sum  was explained by the number of phylogenies 
with species in the site (Regression model: Sum Ws = −2.13 + 0.555 number of phy-
logenies; F = 41.75; DF = 14; p = 0.000; R 2  = 0.75). With  Ws ranks  the infl uence of 
the number of phylogenies is a bit smaller but still important (Regression model: 
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Ws ranks = −1.03 + 0.259 number of phylogenies; F = 26.75; DF = 14; p = 0.000; 
R 2  = 0.66). 

 Based on it, we decided to standardize by dividing total   Ws     sum  or total  Ws ranks  
in the site by the number of phylogeny occurring in it. As expected, this came to a 
result where much less of the site’s ranking is explained by the number the phylog-
enies with species occurring in the site, but the number of phylogenies still explains 
a substantial proportion of the variance (Regression model: Ws sum/number of phy-
logenies = 0.04 + 0.0105 number of phylogenies; F = 8.9; DF = 14; p = 0.01; R 2  = 0.39; 
and Ws ranks/ number of phylogenies = 0.082 + 0.0237 number of phylogenies; 
F = 6.29; DF = 14; p = 0.025; R 2  = 0.31). In both cases, the standardized and non- 
standardized values are still correlated (Spearman  r  = 0.9, p <0.01; and  r  = 0.83, 
p < 0.01 for  Ws sum  and  Ws ranks , respectively). But ranking priorities change, put-
ting in evidence the phylogenetic distinctiveness of some groups occurring in sites 
with less phylogeny (Figs.  2  and  3 ).

        The Infl uence of  Species   Richness on Site Scores 

 The number of species in the 16 sites varied between 10 and 68 (mean = 33; 
median = 31), and over 80 % of variation in the sum of   Ws    is explained by species 
 richness  . When  Ws sums  are standardized by the number of phylogenies, 70 % of 
the variation is still explained by species richness – sites with more species have 
greater chances of accumulating high Ws sums (Fig.  4a, b ).

   The analysis with   Ws     ranks  shows that all sites had at least one top or second 
ranking species (1–14 per site, mean and median = 7). The infl uence of species  rich-
ness   on  Ws ranks  is lower than  Ws sums  with just over 50 % of the variation in  Ws 
ranks  explained by species richness. When  Ws ranks  were standardized by the num-
ber of phylogenies, the infl uence of species richness became much lower (32 %), 
although still signifi cant (Fig.  5a, b ).

       Infl uence of Individual Phylogenies 

 Tables  2  and  3  show the relative levels of evolutionary distinctiveness among sites 
when each of the 18 phylogenies is excluded from the analysis. It shows that some 
sites consistently have high levels of evolutionary distinctiveness, some have con-
sistently lower levels, whereas some others show intermediate values and their rank-
ing positions are more sensitive to the inclusion of any one phylogeny.
    The sum of absolute difference in ranks when each of phylogeny was dropped syn-
thetize this result (Figs.  6  and  7 ). It shows that several phylogenies contribute to 
site’s ranking, refuting the hypothesis that site’s ranking could be highly infl uenced 
by phylogenies with more species, or by a subset of phylogenies with more  wide-
spread   species.
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  Fig. 2    Summed  Ws   values. The main fi gure shows the values standardized (= divided) by the 
number of phylogenies present at the site. The numbers on top of each bar give the number of spe-
cies and phylogenies (in  brackets and italics ) at each site. The small fi gure at the bottom shows the 
non-standardized values       
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  Fig. 3    Summed site scores for species on top and second ranks. The main fi gures shows the values 
standardized (= divided) by the number of phylogenies present at the site. The numbers on top of 
each bar give the number of scoring species and phylogenies (in  brackets and italics ) at each site. 
The small fi gure at the bottom shows the non-standardized values       
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  Fig. 4    Over 80 % of the variation in the sites’  Ws   sums is explained by species  richness   ( upper 
fi gure part ). There is still a strong relationship between species richness and the WS sums when 
standardised by the number of phylogenies, suggesting that species rich sites also have more spe-
cies with high WS values ( lower fi gure part )       

 



  Fig. 5    A little over 50 % of the variation in the sites’ top and second top scores is explained by 
species  richness   ( upper fi gure part ). There is also still a dependency between species richness and 
the site scores when these are standardised by the number of phylogenies, suggesting that species 
rich sites also have more species with high WS values ( lower fi gure part )       
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       Values in red and bold are ‘real’ drops, i.e. the dropped phylogeny was indeed present at the site. 
A: ranks based on standardised values. B: ranks based on not standardised values. For a key to the 
phylogenies see Table  1   

   Table 2    Site ranks (based   Ws     sum ) if a given phylogeny is dropped  
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       Values in red and bold are ‘real’ drops, i.e. the dropped phylogeny was indeed present at the site. 
A: ranks based on standardised values. B: ranks based on not standardised values. For a key to the 
phylogenies see caption Table  1   

   Table 3    Site ranks (based on   Ws     ranks ) if a given phylogeny is dropped  
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  Fig. 6    Sum over all sites of absolute differences in site ranks (based on   Ws     sum ) if the phylogeny 
(x axis) is dropped. The main fi gures shows the values standardised (= divided) by the number of 
phylogenies present at the site when a phylogeny is dropped. The small fi gure at the bottom shows 
the nonstandardised values       

 

Assessing Hotspots of Evolutionary History with Data from Multiple Phylogenies…



252

20
su

m
 o

f a
bs

ol
ut

e 
di

ffe
re

nc
e 

in
 r

an
ks

 if
 p

hy
lo

g.
 d

ro
pp

ed

15

10

5

0

20

su
m

 o
f a

bs
ol

ut
e 

di
ffe

re
nc

e 
in

 r
an

ks
 if

 p
hy

lo
g.

 d
ro

pp
ed

15

10

5

0

A
ng

us
to

ni
cu

s

La
ur

ae
si

lp
ha

M
ar

m
or

os
ph

ax

S
ci

nc
id

ae

D
ie

ro
ge

kk
o

E
ur

yd
ac

ty
lo

de
s

R
ha

co
da

ct
yl

us

P
la

nc
ho

ne
lla

S
ap

ot
ac

ea
e

D
io

sp
yr

os

T
in

gi
da

e

A
gn

ot
ec

ou
s

X
an

th
oc

ho
re

m
a

H
yd

ro
ps

yc
hi

da
e

A
gm

in
a

R
ha

nt
us

Tr
og

lo
si

ro

H
yd

ro
bi

id
ae

A
ng

us
to

ni
cu

s

La
ur

ae
si

lp
ha

M
ar

m
or

os
ph

ax
S

ci
nc

id
ae

D
ie

ro
ge

kk
o

E
ur

yd
ac

ty
lo

de
s

R
ha

co
da

ct
yl

us
P

la
nc

ho
ne

lla

S
ap

ot
ac

ea
e

D
io

sp
yr

os

T
in

gi
da

e

A
gn

ot
ec

ou
s

X
an

th
oc

ho
re

m
a

H
yd

ro
ps

yc
hi

da
e

A
gm

in
a

R
ha

nt
us

Tr
og

lo
si

ro

H
yd

ro
bi

id
ae

  Fig. 7    Sum over all sites of absolute differences in site ranks (based on   Ws     ranks ) if the phylog-
eny (x axis) is dropped. The main fi gure shows the values standardised (= divided) by the number 
of phylogenies present at the site when a phylogeny is dropped. The small fi gure at the bottom 
shows the non-standardised values       
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         Resampling   Multiple Phylogenies: How Stable Are the Results? 

 This resampling procedure is based on all possible combinations of phylogenies 
present at a site (from 1 to N, where N is the number of phylogenies with species in 
the site). Although there is (a) considerable overlap in the relative evolutionary 
divergence of sites in this resampling scheme and (b) the standard deviations are 
high, there are still some differences that emerge. For instance, when only 50 % of 
the phylogenies are used in the resampling (n = 9), the standard deviations of the top 
scoring sites do not overlap with those from the least phylogenetically diverse sites 
(Figs.  8  and  9 ). Thus with only nine phylogenies one can separate the four top scor-
ing sites from the six least phylogenetically diverse ones when using   Ws     sum ; and 
the two top sites and three bottom sites when  Ws ranks  are employed.

        Consideration of Individual Sites 

 When the data set is evaluated using  Ws   sums, the site harbouring the greatest phy-
logenetic divergence is Grand Sud, and to a lesser degree La Foa Canala and Riviere 
Bleue. Grand Sud never drops in rank when individual phylogenies are dropped, 
and La Foa Canala and Riviere Bleue never below the 6th rank. The lower bound 
Ws (mean – SD) for Grand Sud still ranks 4th compared to the mean value of all 
others sites when all possible combinations of phylogenies are rarifi ed to the small-
est number of phylogenies present at any one site (n = 5) (the lower bound Ws for La 
Foa Canala and Riviere Bleue drop to ranks 9 and 10). The lowest scoring site is Col 
des Roussettes, and low phylogenetic  diversity   is also found in Ningua Foret Sailles, 
Mt Mou, Mt Kaala, and Mt Humboldt. These sites never move above the 12th rank 
when individual phylogenies are dropped, and their upper bound (mean + SD) ranks 
in the lowest two thirds compared to the mean value of all other sites when all pos-
sible combinations of phylogenies are rarifi ed to the smallest number of phyloge-
nies present at any one site. 

 When the same data set is evaluated using  Ws   ranks (summing the scores for the 
fi rst and second most divergent species for each phylogeny), the sites harbouring the 
greatest phylogenetic divergence are also La Foa Canala and Grand Sud. These sites 
never drop below the 3rd rank when individual phylogenies are dropped, and their 
lower bound (mean – SD) still ranks in the upper half compared to the mean value 
of all others sites when all possible combinations of phylogenies are rarifi ed to the 
smallest number of phylogenies present at any one site (n = 5). The lowest scoring 
sites are Col des Roussettes, Mt Kaala and Ningua Forest Sailles. These sites never 
move above the 13th rank when individual phylogenies are dropped, and their upper 
bound (mean + SD) ranks in the lowest quarter compared to the mean value of all 
other sites when all possible combinations of phylogenies are rarifi ed to the smallest 
number of phylogenies present at any one site.   
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  Fig. 8    Mean and standard deviation for the sites’ summed  Ws   values, resampled over all possible 
combinations of phylogenies present at the given site. The main fi gures shows the values stan-
dardised (= divided) by the number of phylogenies present at the site. The small fi gure at the bottom 
shows the non-standardised values       
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  Fig. 9    Mean and standard deviation for the sites’ summed site scores (  Ws     ranks ), resampled over 
all possible combinations of phylogenies present at the given site. The main fi gures shows the 
values standardised (= divided) by the number of phylogenies present at the site. The small fi gure 
at the bottom shows the nonstandardised values       

 

Assessing Hotspots of Evolutionary History with Data from Multiple Phylogenies…



256

    Discussion 

    Methodological Considerations 

 Even using metrics based on the  Ws  , there are several ways of evaluating evolution-
ary distinctiveness. Ws gives information on the total distribution of evolutionary 
divergence in the entire data set. An advantage of this index is that each phylogeny 
has its scores scaled between 0 and 1 and thus phylogenetic  diversity   can be repre-
sented by many species with small values (from phylogenies with many species), or 
few species with large values (from phylogenies with few species). However, this 
feature also introduces a limitation. If there is high  beta-diversity   (differentiation 
among sites) in each phylogeny (e.g. if each species only occurs at a single site), 
then small phylogenies have the potential to dominate the ranking of individual sites 
(as the most divergent species in small phylogenies have higher Ws values than the 
most divergent species in large phylogenies). In contrast, if there is low beta- 
diversity, then phylogenies with many species will have many species at individual 
sites, and thus will be able to ‘compete’ with the smaller phylogenies by having Ws 
totals that refl ect the sum of several co-occurring species. In this latter case (low 
beta-diversity), Ws will be strongly correlated with overall species  richness   of a 
phylogeny. 

 Using the sum of 1st and 2nd ranks circumvents these problems. The power of 
this metric is that it gets at a simple question – where are the most divergent two 
species from each phylogeny, summed across sites and phylogenies. The downside 
is that, of course, it does not include information from species below the 1st and 2nd 
ranks. Thus it is purely targeted at examining the distribution of phylogenetically 
basal species, rather than the total sum of phylogenetic  diversity  . This needs to be 
borne in mind in its interpretation. 

 Another promising application of   Ws     ranks  is in the detection of places of recent 
diversifi cation. This can be achieved by focusing on the inverse of the most phylo-
genetic divergent species as used here, i.e., through awarding fi rst and second prizes 
for the most and second most recent species of the phylogeny. Likewise, the meth-
ods of standardization and rarefaction can be very helpful for dealing with diverse 
sampling protocols and identifying the infl uence of different phylogenies to the 
ranking. Although  evolutionary potential   is a factor that requires genetic studies to 
be formally tackled (see Mace and Purvis  2008 ; the analysis of Grandcolas and 
Trewick in chapter “  What  Is   the Meaning of Extreme Phylogenetic  Diversity  ? The 
Case of Phylogenetic Relict Species    ”), the identifi cation of sites that accumulate 
species with recent diversifi cation is a fi rst step to set out future study projects and 
 monitoring   strategies for testing this hypothesis. So, the possibility of identifying 
these sites should not be neglected. 

 Both of these metrics can then be adjusted to focus on micro-endemics, by using 
the measure  Wes   from Posadas et al. ( 2001 ) and the approach of 1st and 2nd ranks 
of Wes as developed here for the  Ws  . Wes is simply the Ws divided by the number 
of sites (or any measure of spatial distribution) the species occurs. The use of Wes, 
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rather than Ws has the same issues with ‘sum’ versus 1st and 2nd ranks concepts as 
above. With Wes the Ws values are ‘diluted’ by being divided across each site that 
a species is recorded from and the main  benefi t   is that sites will score more highly 
in proportion to the uniqueness of their species composition. 

 The resampling methods used here assure that ranking is not driven by a single 
or very small set of phylogenies, and the resampling with multiple drops indicates 
the tendency of sites remaining in similar ranking positions with the addition of 
phylogenies. To the best of our knowledge, this is the fi rst time a set of phylogenetic 
studies are analysed this way (but see the proposition of Miranda-Esquivel, chapter 
“   Support   in  Area    Prioritization   Using Phylogenetic Information    ”), and this seems to 
be a very promising way of integrating the problems of  diversity   of sampling  effort  .  

    Some Considerations About the Sites Prioritized 

 The results of both analyses put in evidence that a few sites – Grand Sud, La Foa- 
Canala and Rivière Bleue are always ranking high. This clearly documents that 
these sites harbour remarkable species from a phylogenetic point of view. If ever 
these sites would be affected by disturbances, some more original evolutionary his-
tory would be lost in  New Caledonia  . How does it fi t the conservation planning in 
New Caledonia? This planning is rather opportunistic, with the defi nition of small 
protected areas with very different status and varied protection level. Given the 
amazing level of micro-endemicity, every mountain or river harbours a conspicuous 
number of endemics so that any  prioritization   is diffi cult even among different pro-
tected areas. In every province, communication or action emphasis is often put on 
emblematical and large and supposedly virgin forested areas out of mining priori-
ties, such as Massif du Panié in the North, or Rivière Bleue in the South. Our results 
do not adjust perfectly with this situation. The three high-ranking sites are not all 
emblematical and targetted areas and the protected areas concerned have different 
status. Grand Sud and Rivière Bleue areas are including natural reserves with high 
protection level but a large part of these areas are also situated outside the reserves, 
potentially putting at risk some populations of endemics. These risks are also 
increased because of the metalliferous soils derived from ultramafi c rocks that are 
 widespread   in these southern areas and which are potentially places for nickel min-
ing. La Foa-Canala  area   is another with less direct disturbances but with reserves 
with lower protection level. The reserve of Col d’Amieu is a place for forest logging 
and traditional seasonal bat hunting and is generally not targeted as an emblematical 
area. 

 Therefore, a recommendation based on our analysis of phylogenetic  diversity   
should consider that conservation planning in  New Caledonia   is modifi ed in two 
ways. The small natural parks in the South should become larger or connect with 
several new reserves, and the  Reserve   du Col d’Amieu should be carefully consid-
ered with improvement of the protection level.  
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    Future Perspectives 

 In this work we focused in one method already adjusted to deal with  prioritization   
of areas based on the evolutionary distinctiveness, the   Ws    (Posadas et al.  2001 ). The 
same procedure can be directly employed to any measure of evolutionary distinc-
tiveness (ED), in which each species has a score related to its position in the phylog-
eny and the  area   ranks are assessed through the sum of the scores of the species 
occurring in it. So, it could be identically employed when using the  EDGE   or 
 HEDGE   measures, where ED is associated to threat status (Isaac et al.  2007 ; see 
also May-Collado et al. chapter “   Global   Spatial Analyses of Phylogenetic 
 Conservation   Priorities for Aquatic  Mammals      ”), or in cases where ED is combined 
with geographical rarity, or with species abundance, as, for example, the AED from 
Cadotte and Davies ( 2010 ). 

 As shown by Faith et al. ( 2004 ) and Faith (chapter “  The  PD   Phylogenetic 
 Diversity   Framework: Linking Evolutionary History to Feature Diversity for 
 Biodiversity    Conservation      ” this volume) PD could easily be used to assess site’s 
rank when using data from several phylogenies: in cases where phylogenies are 
based on different kinds of characters or method of analysis, PD can be employed 
on the simple basis of counting nodes. The great advantage is that PD (the sum of 
the minimum spanning path linking all the species in an  area  ) is a group measure 
(see Hartman and Steel  2007 ) and takes in consideration the complementarity, 
which would result in avoiding redundancies. However, at the present state of 
knowledge the rarefaction as used here, or the standardization for number of phy-
logenies cannot be directly applied to group measures such as PD. As presented in 
the introduction of this chapter the rarefaction of PD is newly developed (Nipperess 
and Matsen  2013 ). Many solutions are designed in Nipperess’ (chapter “  The 
 Rarefaction   of Phylogenetic Diversity: Formulation, Extension and Application    ”): 
the standardization of  sampling effort  ; the calculation of phylogenetic  evenness  , 
phylogenetic  beta diversity  , and phylogenetic  dispersion  . So, an extension to the 
application of these solutions when using phylogenetic data from several phyloge-
nies will complete this framework and provide more options about the measure to 
be employed. 

  Biodiversity   conservation is a very complex issue, and conservation guidelines 
should take multiple variables in consideration. Ideally, the analysis should provide 
explicit information about the way each  variable   has been weighted and, as far as 
possible, a set of scenarios under different weights. In this perspective, complex 
frameworks for systematic conservation planning have been developed and are 
becoming to be employed more often. For example, the  Zonation   procedure 
(Moilanen  2007 ; Lehtomaki and Moilanen  2013 ) used by Arponen and Zupan 
(chapter “  Representing Hotspots of Evolutionary History in Systematic  Conservation   
Planning for European  Mammals      ”), and the  gap analysis   (Ball and Possingham 
 2000 ) used in the study of Silvano et al. (chapter “  Priorities for Conservation of the 
Evolutionary History of Amphibians in the  Cerrado      ”). In these procedures, phylo-
genetic  diversity   is included as a weight along with other biological data like spe-

R. Pellens et al.

http://dx.doi.org/10.1007/978-3-319-22461-9_15
http://dx.doi.org/10.1007/978-3-319-22461-9_15
http://dx.doi.org/10.1007/978-3-319-22461-9_3
http://dx.doi.org/10.1007/978-3-319-22461-9_3
http://dx.doi.org/10.1007/978-3-319-22461-9_3
http://dx.doi.org/10.1007/978-3-319-22461-9_10
http://dx.doi.org/10.1007/978-3-319-22461-9_10
http://dx.doi.org/10.1007/978-3-319-22461-9_13
http://dx.doi.org/10.1007/978-3-319-22461-9_13
http://dx.doi.org/10.1007/978-3-319-22461-9_14
http://dx.doi.org/10.1007/978-3-319-22461-9_14


259

cies’ distribution  area  , threat status, or some economic variables, such as the cost for 
conservation. 

 Although the results presented in this study highly stand by themselves, they can 
also be integrated in this kind of analysis as weights according to site’s rank consid-
ering both  Ws   sums and Ws ranks amongst other variables. In this case, there is no 
doubt that the procedures conducted here will give a reliable picture of the phyloge-
netic distribution across this set of sites, and provide a better instrument to the con-
servation of the phylogenetic  diversity  . 

 To conclude, the analytical problems and need for the solutions outlined above 
will decrease as large- scale   sequencing projects bring more directly comparable 
data together. However, until comprehensive and balanced sampling from common 
gene sets across taxa and sites are realized, the challenges of standardization, com-
parability and assessments of bias will remain relevant.      
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