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Abstract  Conservation biologists need robust, intuitive mathematical tools to 
quantify and assess patterns and changes in biodiversity. Here we review some com-
monly used abundance-based species diversity measures and their phylogenetic gen-
eralizations. Most of the previous abundance-sensitive measures and their 
phylogenetic generalizations lack an essential property, the replication principle or 
doubling property. This often leads to inconsistent or counter-intuitive interpreta-
tions, especially in conservation applications. Hill numbers or the “effective number 
of species” obey the replication principle and thus resolve many of the interpreta-
tional problems. Hill numbers were recently extended to incorporate phylogeny; the 
resulting measures take into account phylogenetic differences between species while 
still satisfying the replication principle. We review the framework of phylogenetic 
diversity measures based on Hill numbers and their decomposition into independent 
alpha and beta components. Both additive and multiplicative decompositions lead to 
the same classes of normalized phylogenetic similarity or differentiation measures. 
These classes include multiple-assemblage phylogenetic generalizations of the 
Jaccard, Sørensen, Horn and Morisita-Horn measures. For two assemblages, these 
classes also include the commonly used UniFrac and PhyloSør indices as special 
cases. Our approach provides a mathematically rigorous, self-consistent, ecologi-
cally meaningful set of tools for conservationists who must assess the phylogenetic 
diversity and complementarity of potential protected areas. Our framework is applied 
to a real dataset to illustrate (i) how to use phylogenetic diversity profiles to com-
pletely convey species abundances and phylogenetic information among species in 
an assemblage; and (ii) how to use phylogenetic similarity (or differentiation) pro-
files to assess phylogenetic resemblance or difference among multiple assemblages.
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�Introduction

Many of the most pressing and fundamental questions in biodiversity conservation 
require robust and sensible measures for quantifying and assessing changes in bio-
diversity. Many environmental and monitoring projects also require objective and 
meaningful similarity (or differentiation) measures to compare the diversities of 
multiple assemblages and their degree of complementarity in order to best conserve 
genetic, species, and ecosystem diversity. An enormous number of diversity mea-
sures and related similarity (or differentiation) indices have been proposed, not only 
in ecology but also in genetics, economics, information science, linguistics, phys-
ics, and social sciences, among others. See Magurran (2004) and Magurran and 
McGill (2011) for overviews.

In traditional species diversity measures, all species are considered to be equally 
different from each other; only species richness and abundances are involved. There 
are two general approaches: parametric and non-parametric (Magurran 2004). 
Parametric approaches assume a particular species abundance distribution (such as 
the lognormal or gamma) or a species rank abundance distribution (such as the 
negative binomial or log-series), and then use the parameters (e.g., Fisher’s alpha) 
of the distribution to quantify diversity. However, these methods often do not per-
form well and the results are un-interpretable unless the “true” species abundance 
distribution is known (Colwell and Coddington 1994; Chao 2005). The parametric 
model also does not permit meaningful comparison of assemblages with different 
abundance distributions. For example, a log-normal abundance model cannot be 
compared to an assemblage whose abundance distribution follows a gamma distri-
bution. Non-parametric methods make no assumptions about the distributional form 
of the underlying species abundance distribution. The most widely used abundance-
sensitive non-parametric measures have been the Shannon entropy and the Gini-
Simpson index. These two measures, along with species richness were integrated 
into a class of measures called generalized entropies (Havrdra and Charvat 1967; 
Daróczy 1970; Patil and Taillie 1979; Tsallis 1988; Keylock 2005), which will be 
briefly reviewed in this chapter.

How to quantify abundance-based species diversity in an assemblage has been 
one of the most controversial issues in community ecology (e.g. Hurlbert 1971; 
Routledge 1979; Patil and Taillie 1982; Purvis and Hector 2000; Jost 2006, 2007; 
Jost et al. 2010). There have also been intense debates on the choice of diversity 
partitioning schemes; see Ellison (2010) and the Forum that follows it. Surprisingly, 
all authors in that forum achieved a consensus on the use of Hill numbers, also 
called “effective number of species”, as the best choice to quantify abundance-based 
species diversity. Hill numbers are a mathematically unified family of diversity indi-
ces (differing among themselves only by a parameter q) that incorporate species 
richness and species relative abundances. They were first used in ecology by 
MacArthur (1965, 1972), developed by Hill (1973), and recently reintroduced to 
ecologists by Jost (2006, 2007).
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Hill numbers obey the replication principle or doubling property, an essential 
mathematical property that capture biologists’ notion of diversity (MacArthur 1965; 
Hill 1973). This property requires that if we have N equally diverse, equally large 
assemblages with no species in common, the diversity of the pooled assemblage 
must be N times the diversity of a single group. In other words, they are linear with 
respect to addition of equally-common species. We will review different versions of 
this property later. Classical diversity measures, such as Shannon entropy and the 
Gini-Simpson index, do not obey this principle and can lead to inconsistent or 
counter-intuitive interpretations, especially in conservation applications (Jost 2006, 
2007). Hill numbers resolve many of the interpretational problems caused by clas-
sical diversity indices. Diversity measures that obey the replication principle yield 
self-consistent assessment in conservation applications, have intuitively-
interpretable magnitudes, and can be meaningfully decomposed. In this chapter, 
Hill numbers are adopted as a general framework for quantifying and partitioning 
diversities.

Pielou (1975, p. 17) was the first to notice that traditional abundance-based spe-
cies diversity measures could be broadened to include phylogenetic, functional, or 
other differences between species. We here concentrate on phylogenetic differ-
ences, though our framework can also be extended to functional traits (Tilman 2001; 
Petchey and Gaston 2002; Weiher 2011). For conservation purposes, an assemblage 
of phylogenetically divergent species is more diverse than an assemblage consisting 
of closely related species, all else being equal. Phylogenetic differences among spe-
cies can be based directly on their evolutionary histories, either in the form of taxo-
nomic classification or well-supported phylogenetic trees (Faith 1992; Warwick and 
Clarke 1995; McPeek and Miller 1996; Crozier 1997; Helmus et al. 2007; Webb 
2000; Webb et al. 2002; Pavoine et al. 2010; Ives and Helmus 2010, 2011; Vellend 
et al. 2011; Cavender-Bares et al. 2009, 2012 among others). Three special issues in 
Ecology were devoted to integrating ecology and phylogenetics; see McPeek and 
Miller (1996), Webb et al. (2006), and Cavender-Bares et al. (2012) and papers in 
each issue. Phylogenetic diversity measures are especially relevant for conservation 
applications, since they quantify the amount of evolutionary history preserved by 
the assemblage; see Lean and MacLaurin (chapter “The Value of Phylogenetic 
Diversity”).

The most widely used phylogenetic metric is Faith’s phylogenetic diversity (PD) 
(Faith 1992) which is defined as the sum of the branch lengths of a phylogenetic tree 
connecting all species in the target assemblage. As shown in Chao et al. (2010), 
Faith’s PD can be regarded as a phylogenetic generalization of species richness. The 
rarefaction formula for Faith’s PD was developed by Nipperess and Matsen (2013) 
and Nipperess (chapter “The Rarefaction of Phylogenetic Diversity: Formulation, 
Extension and Application”). Recently, Chao et al. (2015) derived an integrated 
sampling, rarefaction, and extrapolation methodology to compare Faith’s PD of a 
set of assemblages. Like species richness, Faith’s PD does not consider species 
abundances. For some conservation applications, the mere presence or absence of a 
species is all that matters, or all that can be determined from the available data. In 
those cases, Faith’s PD is a good measure of phylogenetic diversity. However, there 
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are important advantages to incorporating abundance information into phylogenetic 
diversity measures for conservation. For example, some human impacts can result 
in the phylogenetic simplification of an ecosystem, reducing the population shares 
of phylogenetically distinct species relative to typical species. An abundance-based 
measure can catch this effect before it leads to actual extinctions.

Ecosystem simplification may be worthy of conservation concern even if it does 
not lead to extinctions of focal organisms. Often, the focal organisms for conserva-
tion represent a tiny fraction of the ecosystem’s biomass or richness. Each focal 
species will be tied to a web of non-focal species whose abundances are not usually 
monitored (e.g., insects). All else being equal, a more equitable distribution of the 
abundances of focal organisms will be able to support a more diverse, robust and 
stable set of non-focal species. Faith (chapter “Using Phylogenetic Dissimilarities 
Among Sites for Biodiversity Assessments and Conservation”) rightly argues that 
phylogenetic diversity is a good proxy for functional diversity. Therefore an ecosys-
tem with a more equitable distribution of abundance across phylogenetic lineages 
should also exhibit greater functional complexity (per interaction between individu-
als) than an ecosystem whose phylogenetically unusual elements are rare. If we 
have to prioritize such ecosystems, the more phylogenetically equitable one, which 
thoroughly integrates diverse lineages, should be preferred. In addition to being 
more resistant to lineage extinctions, a complex, well-integrated ecosystem may be 
worth preserving in and of itself, above and beyond its component species; conser-
vation is not just about species. Evolution may take a different course in ecosystems 
whose members are constantly surprised by their interactions compared with an 
ecosystem whose interactors are highly predictable. These conservation goals  – 
robustness against extinction of distinctive lineages, and preservation of well-
integrated ecosystems with unique future option values  – require phylogenetic 
diversity measures that incorporate species importance values.

Rao’s quadratic entropy Q (Rao 1982), a generalization of the Gini-Simpson 
index, was the first diversity measure that accounts for both phylogeny and species 
abundances. The phylogenetic entropy HP (Allen et  al. 2009) extends Shannon 
entropy to incorporate phylogenetic distances among species. Since Shannon 
entropy and the Gini-Simpson index do not obey the replication principle, neither 
do their phylogenetic generalizations. These generalizations will therefore have the 
same interpretational problems as their parent measures; see Chao et al. (2010, their 
Supplementary Material) for examples.

Chao et  al. (2010) extended Hill numbers and related similarity measures to 
incorporate phylogeny. The new phylogenetic Hill numbers obey a generalized rep-
lication principle. Their measures were subsequently extended by Faith and Richards 
(2012) and Faith (2013). Both the original Hill numbers and their phylogenetic 
generalizations facilitate diversity decomposition (Jost 2007; Chiu et al. 2014). As 
with the original Hill numbers, both additive and multiplicative decompositions of 
phylogenetic Hill numbers lead to the same classes of similarity (or differentiation) 
measures. Hill numbers therefore provide a unified framework to quantify both 
abundance-based and phylogenetic diversity.

In this chapter, we first briefly review the classic abundance-based species diver-
sity measures (section “Generalized Entropies”) and their phylogenetic 
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generalizations (section “Phylogenetic generalized entropies”) for an assemblage. 
Then we focus on the framework of Hill numbers (section “Hill numbers and the 
replication principle”), phylogenetic Hill numbers (section “Phylogenetic Hill num-
bers and related measures”) and related phylogenetic diversity measures. We also 
discuss the replication principle and its phylogenetic generalization (section 
“Replication principle for phylogenetic diversity measures”). For multiple assem-
blages, we review the diversity decomposition based on phylogenetic diversity mea-
sures (section “Decomposition of phylogenetic diversity measures”). The associated 
phylogenetic similarity and differentiation measures are then presented (section 
“Normalized phylogenetic similarity measures”). We use a real example for illustra-
tion (section “An example”). Our practical recommendations are provided in sec-
tion “Conclusion”.

�Classic Measures and Their Phylogenetic Generalizations

�Generalized Entropies

The species richness of an assemblage is a simple count of the number of species 
present. It is the most intuitive and frequently used measure of biodiversity, and is a 
key metric in conservation biology (MacArthur and Wilson 1967; Hubbell 2001; 
Magurran 2004). However, it does not incorporate any information about the abun-
dances of species, and it is a very hard number to estimate accurately from small 
samples (Colwell and Coddington 1994; Chao 2005; Gotelli and Colwell 2011).

Shannon entropy is a popular classical abundance-based diversity index and has 
been used in many disciplines. Shannon entropy is
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where S is the number of species in the assemblage, and the ith species has relative 
abundance pi. Shannon entropy gives the uncertainty in the species identity of a 
randomly chosen individual in the assemblage. Another popular measure is the 
Gini-Simpson index,
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which gives the probability that two randomly chosen individuals belong to differ-
ent species. These two abundance-sensitive measures, along with species richness, 
can be united into a single family of generalized entropy:
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The parameter q determines the sensitivity of the measure to the relative frequencies 
of the species. When q = 0, qH becomes S − 1; When q tends to 1, qH tends to Shannon 
entropy. When q = 2, qH reduces to the Gini-Simpson index. This family was found 
many times in different disciplines (Havrdra and Charvat 1967; Daróczy 1970; Patil 
and Taillie 1979; Tsallis 1988; Keylock 2005). There are many other families of 
generalized entropies, notably the Rényi entropies (Rényi 1961).

Although the traditional abundance-sensitive generalized entropies and their 
special cases have been useful in many disciplines (e.g., see Magurran 2004), they 
do not behave in the same intuitive linear way as species richness. In ecosystems 
with high diversity, mass extinctions hardly affect their values (Jost 2010). They 
also lead to logical contradictions in conservation biology, because they do not mea-
sure a conserved quantity (e.g., under a given conservation plan, the proportion of 
“diversity” lost and the proportion preserved can both be 90 % or more); see Jost 
(2006, 2007) and Jost et  al. (2010). Thus, changes in their magnitude cannot be 
properly compared or interpreted. Also, the main measure of similarity in the addi-
tive approach for traditional measures, the within-group or “alpha” diversity divided 
by the total or “gamma” diversity, does not actually quantify the compositional 
similarity of the assemblages under study. This ratio can be arbitrarily close to unity 
(supposedly indicating high similarity) even when the assemblages being compared 
have no species in common. Finally, these measures each use different units (e.g., 
the Gini-Simpson index is a probability whereas Shannon entropy is in units of 
information), so they cannot be compared with each other. All these problems are 
consequences of their failure to satisfy the replication principle. Hill numbers obey 
the replication principle and resolve all these problems; see section “Hill numbers 
and the replication principle”.

�Phylogenetic Generalized Entropies

The classic measures reviewed in section “Generalized Entropies” were extended to 
incorporate phylogenetic distance between species. As mentioned in the Introduction 
and will be shown in section “Phylogenetic Hill numbers and related measures”, 
Faith’s PD can be regarded as a phylogenetic generalization of species richness.

Rao’s quadratic entropy takes account of both phylogeny and species abun-
dances (Rao 1982):
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where dij denotes the phylogenetic distance (in years since divergence, number of 
DNA base changes, or other metric) between species i and j, and pi and pj denote the 
relative abundance of species i and j. This index measures the average phylogenetic 
distance between any two individuals randomly selected from the assemblage. 
Rao’s Q represents a phylogenetic generalization of the Gini-Simpson index because 
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in the special case of no phylogenetic structure (all species are equally related to one 
another), dii = 0 and dij = 1 (i ≠ j), it reduces to the Gini-Simpson index.

The phylogenetic entropy HP is a generalization of Shannon’s entropy to incor-
porate phylogenetic distances among species (Allen et al. 2009):

	
H L a aP

i
i i i= -å log

	
(2b)

where the summation is over all branches of a rooted phylogenetic tree, Li is the 
length of branch i, and ai denotes the summed relative abundance of all species 
descended from branch i.

For ultrametric trees, Faith’s PD, Allen et al.’s HP, and Rao’s Q can be united into 
a single parametric family of phylogenetic generalized entropies (Pavoine et  al. 
2009):
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Here, Li and ai are defined in Eq. (2b) and T is the age of the root node of the tree. 
Then 0I = Faith’s PD minus T; 1I is identical to Allen et al.’s entropy HP given in Eq. 
(2b); and 2I is identical to Rao’s quadratic entropy Q given in Eq. (2a). In the special 
case that T = 1 (the tree height is normalized to unit length) and all branches have 
unit length, then the phylogenetic generalized entropy reduces to the classical gen-
eralized entropy defined in Eq. (1c), with species relative abundances {p1, p2, …, pS} 
as the tip-node abundances.

The abundance-sensitive (q > 0) phylogenetic generalized entropies provide use-
ful information, but they do not obey the replication principle and thus have the 
same interpretational problems as their parent measures. This motivated Chao et al. 
(2010) to extend Hill numbers to phylogenetic Hill numbers, which obey the repli-
cation principle; see section “Phylogenetic Hill numbers and related measures”.

�Hill Numbers and Their Phylogenetic Generalizations

�Hill Numbers and the Replication Principle

Pioneering work by Kimura and Crow (1964) in genetics and MacArthur (1965) in 
ecology showed that the Shannon and Gini-Simpson measures can be easily con-
verted to “effective number of species” (i.e., the number of equally abundant species 
that are needed to give the same value of the diversity measure), which use the same 
units as species richness. Shannon entropy can be converted by taking its exponen-
tial, and the Gini-Simpson index can be converted by the formula 1/(1−HGS). Hill 
(1973) integrated species richness and the converted Shannon and Gini-Simpson 
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measures into a class of diversity measures called “Hill numbers” of order q, or the 
“effective number of species”, defined as
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This measure is undefined for q = 1, but its limit as q tends to 1 exists and gives
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The relationship between Hill number of order q (q ≠ 1) and the generalized entropy 
can be expressed as
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When q = 0, the species abundances do not count at all and 0D = S is obtained. 
When q = 1, the species are weighed in proportion to their frequencies, and the mea-
sure 1D (in Eq. (3b)) can be interpreted as the effective number of common or 
“typical” species (i.e., species with typical abundances) in the assemblage. When 
q = 2, abundant species are favored and rare species are discounted; the measure 2D 
becomes the inverse Simpson concentration. The measure 2D can be interpreted as 
the effective number of dominant or very abundant species in the assemblage. In 
general, if qD = x, then the diversity of order q of this community is the same as that 
of an idealized reference community with x equally abundant species. All Hill num-
bers are in units of “species”. It is thus possible to plot them on a single graph as a 
continuous function of the parameter q. This diversity profile characterizes the 
species-abundance distribution of an assemblage and provides complete informa-
tion about its diversity. The steepness of its slope graphically illustrates the degree 
of dominance in the assemblage. An example is given in section “An example”.

Hill numbers differ fundamentally from Shannon entropy and the Gini-Simpson 
index in that they obey the replication principle. Hill (1973) proved a weak version 
of the doubling property: if two completely distinct assemblages (i.e., no species in 
common) have identical relative abundance distributions, then the Hill number dou-
bles if the assemblages are combined with equal weights. Chiu et al. (2014, their 
Appendix B) recently proved a strong version of the doubling property: if two com-
pletely distinct assemblages have identical Hill numbers of order q (relative abun-
dance distributions may be different, unlike the weak version), then the Hill number 
of the same order doubles if the two assemblages are combined with equal weights. 
Species richness is a Hill number (with q = 0) and obeys both versions of the dou-
bling property, but most other diversity indices do not obey even the weak version. 
Because Hill numbers obey this replication principle, changes in their magnitude 
have simple interpretations, and the ratio of alpha diversity to gamma diversity 
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accurately reflects the compositional similarity of the communities. The replication 
principle is best known in economics, where it has long been recognized as an 
important property of concentration and diversity measures (Hannah and Kay 
1977). In ecology, the doubling property has been extensively discussed by many 
authors (MacArthur 1965, 1972; Hill 1973; Whittaker 1972; Routledge 1979; Peet 
1974; Jost 2006, 2007, 2009; Ricotta and Szeidl 2009; Jost et al. 2010) and has been 
extended to phylogenetic measures (Chao et al. 2010); see below.

�Phylogenetic Hill Numbers and Related Measures

When the branch lengths are proportional to divergence time, all branch tips are the 
same distance from the root (the first node). Such trees are called “ultrametric” 
trees. We first discuss the phylogenetic diversity measures for ultrametric trees. The 
phylogenetic Hill numbers developed by Chao et al. (2010) for an ultrametric tree 
can be intuitively explained as the Hill number of a time-average of a tree’s general-
ized entropy over some evolutionary time interval of interest. Suppose the phyloge-
netic tree for an assemblage is calibrated to some relative or absolute timescale. We 
can slice this phylogenetic tree at any time t in the past; see the left panel of Fig. 1 
(reproduced from Chao et al. 2010) for illustration and details about how to deal 
with shared lineages. The number of lineages at that time is the number of branch 
cuts, and the relative importance of each of these lineages for the present-day 
assemblage is the sum of the relative abundances of the branch’s descendants in the 
present-day assemblage. Using these relative importance values, we can calculate 
the generalized entropy of order q for the slice. The mean of these entropies, begin-
ning at time –T (i.e., T years before present) and continuing until the present, is 
converted to a Hill number using Eq. (3c). This is the phylogenetic Hill number, 
which conveys information about the shape of the tree over the time interval of 
interest. Chao et al. (2010) symbolize it as qD T( ) , and also refer to it as the mean 
phylogenetic diversity of order q over T years (or simply the mean diversity for the 
interval [−T, 0]):
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where BT is the set of all branches in the time interval [−T, 0], Li is the length of 
branch i in the set BT, and ai is the total relative abundance descended from branch 
i. The mean diversity qD T( )  is interpreted as “the effective number of equally 
abundant and equally distinct lineages all with branch lengths T during the time 
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interval from T years ago to the present”. Here “equally distinct” also implies that 
the phylogenetic distance between any two species is T, so lineages are completely 
distinct (i.e., there are no shared branches).

The phylogenetic Hill numbers are invariant to the units used to measure branch 
lengths. When all lineages are completely distinct, the measure qD T( )  reduces to 

the Hill numbers q

i
i
q

q
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. This includes the special case that T tends to 

zero, i.e., the case that we ignore phylogeny and only consider the present-day com-
munity. This shows that the framework based on Hill numbers provides a unified 
approach to integrate abundances and phylogeny. Also, here we have a simple ideal-
ized reference tree to understand the value of qD T z( ) =  for an arbitrary tree: the 

Fig. 1  (a) A hypothetical ultrametric rooted phylogenetic tree with four species. Three different 
slices corresponding to three different times are shown. For a fixed T (not restricted to the age of 
the root), the nodes divide the phylogenetic tree into segments 1, 2 and 3 with duration (length) T1, 
T2 and T3, respectively. In any moment of segment 1, there are four species (i.e. four branches cut); 
in segment 2, there are three species; and in segment 3, there are two species. The mean species 
richness over the time interval [−T, 0] is ( / ) ( / ) ( / )T T T T T T1 2 34 3 2´ + ´ + ´ . In any moment 
of segment 1, the species relative abundances (i.e. node abundances correspond to the four 
branches) are {p1, p2, p3, p4}; in segment 2, the species relative abundances are {g1, g2, g3} = {p1, 
p2 + p3, p4}; in segment 3, the species relative abundances are {h1, h2} = {p1 + p2 + p3, p4}. (b) A 
hypothetical non-ultrametric tree. Let T  be the weighted (by species abundance) mean of the 
distances from root node to each of the terminal branch tips. 
T = ´ + +( )´ + +( )´ =4 0 5 3 5 2 0 2 1 2 0 3 4. . . . . Note T  is also the weighted (by branch 
length) total node abundance because T = ´ + ´ + ´ + ´ =0 5 4 0 2 3 5 0 3 1 0 5 2 4. . . . . . 
Conceptually, the ‘branch diversity’ is defined for an assemblage of four branches: each has, 
respectively, relative abundance 0 5 0 125. / .T = , 0 2 0 05. / .T = , 0 3 0 075. / .T =  and 
0 5 0 125. / .T = ; and each has, respectively, weight (i.e. branch length) 4, 3.5, 1 and 2. This is 
equivalent to an assemblage with 10.5 equally weighted ‘branches’: there are four branches with 
relative abundance 0 5 0 125. / .T = ; 3.5 branches with relative abundance 0 2 0 05. / .T = ; one 
branch with relative abundance 0 3 0 075. / .T =  and two branches with relative abundance 
0 5 0 125. / .T =  (This figure is reproduced from Fig. 1 of Chao et al. 2010)
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mean phylogenetic diversity of the tree over the time period [−T, 0] is the same as 
the diversity of an idealized assemblage consisting of z equally abundant and equally 
distinct lineages all with branch length T.

For q = 0, when T is chosen as the age of the root node, we have 
0D T T( ) /= Faith sPD , which can be interpreted as lineage richness. Faith’s PD 
can thus be regarded as a phylogenetic generalization of species richness. We can 
roughly interpret 1D T( )  as the effective number of common lineages, and 2D T( )  
as the effective number of dominant lineages in the time period [−T, 0]. When T is 
chosen as the age of the root node, a simple relationship exists between phyloge-
netic entropy HP (Allen et al. 2009) and the measure 1D T( ) :

	
1D T H TP( ) exp / .= ( ) 	

(4c)

For q = 2, when T is chosen as the age of the root node, there is a simple relationship 
between our measures and the widely used Rao’s quadratic entropy Q (Chao et al. 
2010):
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The branch or phylogenetic diversity qPD(T) of order q during the time interval 
from T years ago to the present is defined as the product of qD T( )  and T. It quanti-
fies the amount of evolutionary history on the system over the interval [−T, 0], or 
“the effective total branch-length” (Chao et al. 2010):
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(5b)

If q = 0, and T is age of the root node, then 0PD(T) reduces to Faith’s PD, regard-
less of branching pattern or abundances. As explained by Chao et al. (2010), we 
could imagine that all the branch segments in the interval [−T, 0] form a single 
assemblage with relative abundance set {ai/T; i∈BT}. In this assemblage, for each i 
there are Li “branches” with relative abundance ai/T. Then the Hill number of order 
q for this assemblage is exactly the branch diversity qPD(T) given in Eq. (5a). 
Dividing this Hill number by T, we obtain qD T( )  given in Eq. (4a). Note in our 
framework that qPD(T) is truly a class of Hill numbers (“the effective number of 
lineage-years”), whereas qD T( )  (“the effective number of lineages”) denotes a 
(generalized) mean of Hill numbers. See Faith and Richards (2012) and Faith (2013) 
for extensions of the measure qPD(T).

Unlike previous phylogenetic diversity measures developed in the literature, 
qD T( )  and qPD(T) depend explicitly on two parameters, the abundance sensitivity 
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parameter q and the time perspective (or time-depth) parameter T. The reasons we 
need this time-depth parameter and our suggestion to choose a perspective time are 
given as follows.

	1.	 When we compare the phylogenetic diversities of several assemblages based on 
the measures qD T( )  and qPD(T), all measures should refer to the same time 
periods to make meaningful comparisons. That is, the time-depth T should be 
kept as the same for all assemblages. Therefore, a parameter is required to spec-
ify the time-depth.

	2.	 The choice of time perspective should reflect an investigator’s aims and facilitate 
comparisons with other studies. We suggest that at least two selected time per-
spectives should be included: T = 0, and T = the age of the root node of a phylo-
genetic tree connecting all species in the study. For the case of T = 0, the 
phylogeny is ignored and the diversity profile reduces to the profile in the 
present-day assemblage based on the ordinary Hill numbers. If we choose T to 
be the age of the oldest node in the tree, we recover some of the standard mea-
sures of phylogenetic diversity (see Eqs. (4c) and (4d)).

	3.	 As suggested in Chiu et al. (2014), other time perspectives can be selected, such 
as T = the age of the node at which the group of interest diverges from the rest of 
the species. This choice of T is independent of the species actually sampled, so 
it allows statistically robust comparisons across investigations and regions 
(unlike the conventional choice of T as the root node of the tree containing the 
species actually observed). This choice also provides an accurate measure of the 
proportion of a taxonomic group’s evolutionary history preserved in a given 
assemblage. Another choice is the time of the most recent common ancestor of 
all taxa alive today. Other choices may be made, depending on the purpose of an 
investigation. The formula in Chiu et al. (2014, p. 42) can be used to convert 
phylogenetic diversity from one temporal perspective to another.

To see how the measures vary with q and time perspective T, we recommend 
using two types of profiles to completely characterize phylogenetic tree information 
and species abundances as described below. See section “An example” for exam-
ples. (1) The first type of diversity profile is obtained by plotting qPD(T) or qD T( )  
as a function of order q as q varies from 0 to about 3 or 4 (beyond which there is 
usually little change), for some selected values of temporal perspective T. For this 
type of profile, qPD(T) and qD T( )  have similar patterns as T is fixed, so it is suffi-
cient to plot the profile only for one measure. (2) The second type of diversity pro-
file is obtained by plotting qPD(T) and qD T( )  as functions of T separately for q = 0, 
1, and 2. This profile shows the effect of time-depth or evolution change on our 
diversity measures.

For the second type of profile, qPD(T) and qD T( )  generally exhibit different 
patterns (the profile of qD T( )  is decreasing with T whereas the profile of qPD(T) 
for q = 0 (Faith’s PD) is always increasing, and for q > 0 is generally increasing up to 
a certain point, so the profiles for both measures are informative. The parameter q 
gives the sensitivity of the two measures to present-day species relative abundances. 
As in the ordinary Hill numbers, the measures with q = 2 favor more abundant 
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species, so they are useful in ecological studies to examine the phylogenetic rela-
tionships of the dominant species in a set of assemblages, or those examining func-
tional diversity. The measures of q = 0 emphasizes rare species, so they are useful 
when abundance information is not necessarily relevant (e.g., when ecologists try to 
identify past episodes of differentiation, or for some conservation biology applica-
tions). The measures with q = 1 weigh species according to their frequencies and can 
be used in most applications when neither dominant nor rare species should be 
favored.

When the measure of evolutionary change is typically based on the number of 
nucleotide base changes at a selected locus, or the amount of functional or morpho-
logical differentiation from a common ancestor, the branches of the resulting tree 
will then be uneven, so the tree is non-ultrametric. In this case, Chao et al. (2010) 
showed that the time parameter T in all formulas should be replaced by the mean 
base change or mean branch length T ,  the mean of the distances from the tree base 
to each of the terminal branch tips (i.e., the mean evolutionary change per species 
over the interval of interest). See the right panel of Fig. 1 for an illustrative example. 
Let BT  denote the set of branches connecting all focal species, with mean branch 
length T .  Then we can express T  as T L a

i
i i

T

=
Î
å
B

. The diversity of a non-ultrametric 

tree with mean evolutionary change T  is the same as that of an ultrametric tree with 
time parameter T .  Therefore, the diversity formulas for a non-ultrametric tree are 
obtained by replacing T by T  in Eqs. (4a), (4b), (5a), and (5b). The resulting mea-
sures are denoted respectively as qD T( ) , 1D T( ) , qPD T( )  and 1PD T( ) ; see Chao 
et al. (2010) for details. When we compare the phylogenetic diversity based on the 
measures qD T( )  and qPD T( )  for several non-ultrametric trees, all measures 
should refer to the same mean base change T  to make meaningful comparisons.

�Replication Principle for Phylogenetic Diversity Measures

The replication principle was generalized to a phylogenetic version in Chao et al. 
(2010). Suppose there are N equally large and completely phylogenetically distinct 
assemblages (no shared lineages across assemblages, though lineages within an 
assemblage may be shared); see Fig. 2 (reproduced from Chiu et al. 2014) for an 
illustrative example. Suppose these assemblages have the same phylogenetic Hill 
number X. If these assemblages are pooled, then the pooled assemblages must have 
a phylogenetic Hill number N × X. In the proof of this replication principle, Chao 
et al. (2010) assumed that these N assemblages have the same mean branch lengths. 
Here we relax this assumption and allow assemblages to have different mean branch 
lengths. (In the special case of ultrametric trees, this means that we allow different 
time perspectives for different assemblages.)

Suppose in assemblage k, the mean branch length is Tk , and the branch set is 
BT kk ,

 (we omit Tk  in the subscript and just use Bk in the following proof for nota-
tional simplicity) with branch lengths {Lik; i∈Bk} and the corresponding nodes 
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abundances {aik; i∈Bk}, k = 1, 2, …, N. Assume that all assemblages have the same 

phylogenetic Hill numbers 
q

kD T X( ) ,=  implying 
i

ik ik
q q

k

k

L a X T
Î

-å =
B

1  for all k =1, 

2, …, N. When the N trees are pooled with equal weight for each tree, each node 
abundance aik in the pooled tree becomes aik/N, and the mean branch length becomes 

T N T
k

N

k= ( )
=
å1

1

/ . Then the phylogenetic Hill number of order q for the pooled 

assemblage becomes
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(6)

This proves a stronger version of the replication principle for phylogenetic Hill 
numbers. Note the mean branch length in the pooled assemblage is the average of 
individual mean branch lengths. For example, if q qD T D T1 22 6 10=( ) = =( ) = ,  
then in an effective sense, there are ten lineages with mean branch length 2  in 
Assemblage 1 and there are ten lineages with mean branch length 6 in Assemblage 
2. The replication principle implies that there are 20 lineages in the pooled tree with 
mean branch length 4. Since q

k
q

k kPD T D T T( ) ( )= ´ , the replication principle for 
the phylogenetic diversity qPD T( )  does need the assumption that all assemblages 

Fig. 2  Replication Principle for two completely phylogenetically distinct assemblages with 
totally different structures. Left panel: Assemblage 1 (black) includes three species with species 
relative abundances {p11, p21, p31} for the three tips. Assemblage 2 (grey) includes four species with 
species relative abundances {p12, p22, p32, p42} for the four tips. The diversity of the pooled tree is 
double of that of each tree as long as the two assemblages are completely phylogenetically distinct 
as shown (no lineages shared between assemblages, though lineages within an assemblage may be 
shared) and have identical mean diversities (i.e., phylogenetic Hill number). Right panel: The same 
is valid for two completely phylogenetically distinct non-ultrametric assemblages (This figure is 
reproduced from Fig. 1 of Chiu et al. 2014)
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have the same mean branch lengths ( )T T TN1 2= =¼= . The proof is parallel and 
thus omitted.

�Decomposition of Phylogenetic Diversity Measures

Decomposition of species richness and its phylogenetic analogues into within- and 
between-group (alpha and beta) components is widely used (Whittaker 1972; Faith 
et al. 2009). However, these take no notice of abundance differences between sites. 
Conservationists using these measures cannot distinguish a site whose species are 
equally abundant from a site with the same species but with a highly skewed abun-
dance distribution whose most phylogenetically distinctive species are rare. The 
former site would be a better bet for conservation. These considerations, and others, 
motivate the development of decomposition theory for abundance-based phyloge-
netic diversity measures. The decomposition also leads to abundance-sensitive mea-
sures of phylogenetic similarity and complementarity.

When there are N assemblages, the phylogenetic Hill numbers qD T( )  (Eqs. 4a 
and 4b) and phylogenetic diversity qPD(T) (Eqs. 5a and 5b) of the pooled assem-
blage can be multiplicatively decomposed into independent alpha and beta compo-
nents (Chiu et  al. 2014). We briefly describe the decomposition of the measure 
qD T( )  here for the ultrametric case, and only summarize the decomposition of the 
measure qPD(T). The extension to the non-ultrametric case for both measures is 
obtained by simply replacing all T in the formulas with the mean branch length T  
of the pooled assemblage.

To begin the partitioning, a pooled tree is constructed for the N assemblages. 
Assume that there are S species in the present-day assemblage (i.e., there are S tip 
nodes). For any tip node i, let zik denote any measure of species importance of the 
ith species in the kth assemblage, i = 1, 2, …, S, k = 1, 2, …, N. The measure zik is 
referred to as “abundance” for simplicity, although it can be absolute abundances, 
relative abundances, incidence, biomasses, cover areas or any other importance 

measure. Define z zk
i

S

ik+
=

= å
1

 (i.e., the “+” sign in z+k denotes a sum over the tip 

nodes only) as the current size of the kth assemblage. Let z z
k

N

k++
=

+= å
1

 be the total 

abundance in the present-day pooled assemblage.
Now consider the phylogenetic tree in the time interval [−T, 0], and in the pooled 

assemblage define BT and Li as in section “Phylogenetic Hill numbers and related 
measures”. We extend the definition of zik to include all nodes and their correspond-
ing branches by defining zik for all i∈BT as the total abundances descended from 
branch i. (Here the index i can correspond to both tip-node and internal node; if i is 
a tip-node, then zik represents data of the current assemblage as defined in the pre-
ceding paragraph.) As shown in Fig. 2 of Chiu et al. (2014), the diversity for each 
individual assemblage can be computed from the pooled tree structure, and only the 
node abundances vary with assemblages.
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In the pooled assemblage, the node abundance for branch i (i∈BT) is z zi
k

N

ik+
=

= å
1

 

with branch relative abundance zi+/z++, so the phylogenetic gamma diversity of order 
q can be calculated from Eq. (4a) as
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The limit when q approaches unity exists and is equal to
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(7b)

The gamma diversity is the effective number of equally abundant and equally dis-
tinct lineages all with branch lengths T in the pooled assemblage.

Chiu et al. (2014) derived the following phylogenetic alpha diversity for q ≥ 0 
and q ≠ 1:
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For q = 1, we have
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(8b)

The alpha diversity is interpreted as the effective number of equally abundant and 
equally distinct lineages all with branch lengths T in an individual assemblage. 
When normalized measures of species importance (like relative abundance or rela-
tive biomass) are used to quantify species importance, we have z++ = N in Eqs. (8a) 
and (8b). The alpha formula then reduces to a generalized mean of the local diversi-
ties with the following property: if all assemblages have the same diversity X, the 
alpha diversity is also X (Jost 2007). For non-normalized measures of species 
importance, like absolute abundance or biomass, this property does not hold. This is 
because when species absolute abundances are compared, for example, a three-
species assemblage with absolute abundances {2, 5, 8} will not be treated as identi-
cal as another three-species assemblage with absolute abundances {200, 500, 800}. 
However, these two assemblages are treated as identical when only relative abun-
dances are compared.

Chiu et al. (2014) proved that the phylogenetic gamma Hill number (Eqs. 7a and 
7b) is always greater than or equal to the phylogenetic alpha Hill number (Eqs. 8a 
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and 8b) for all q ≥ 0 regardless of species abundances and tree structures. Based on 
a multiplicative partitioning, the phylogenetic beta diversity is the ratio of gamma 
diversity to alpha diversity:

	

q
q
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g
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(9)

When the N assemblages are identical in species identities and species abun-
dances, then qD Tb ( ) =1  for any T. When the N assemblages are completely phylo-
genetically distinct (no shared lineages), then qD T Nb ( ) ,=  no matter what the 
diversities or tree shapes of the assemblages. The measure qD Tb ( )  thus quantifies 
the effective number of completely phylogenetically distinct assemblages in the 
interval [−T, 0]. As proved by Chiu et al. (2014), the phylogenetic beta diversity 
qD Tb ( )  is always between unity and N for any given alpha value, implying alpha 
and beta components are unrelated (or independent) for both measures, qD T( )  and 
qPD(T); see Chao et al. (2012) for a rigorous discussion of un-relatedness and inde-
pendence of two measures. When all lineages in the pooled assemblage are com-
pletely distinct (no lineages shared) in the interval [−T, 0], the phylogenetic alpha, 
beta and gamma Hill numbers reduce to those based on ordinary Hill numbers. This 
includes the limiting case in which T tends to zero, so that phylogeny is ignored.

Parallel decomposition can be made for the phylogenetic diversity qPD(T), and 
we summarize the following relations: q qPD T D T Tg g( ) ( )= ´  and 
q qPD T D T Ta a( ) ( ) .= ´  Under a multiplicative partitioning scheme, we have 
q q q qPD T PD T PD T D Tb g a b( ) ( ) / ( ) ( )= = , i.e., the beta components from parti-
tioning the phylogenetic Hill numbers qD T( )  and phylogenetic diversity qPD(T) 
are identical, implying the interpretation and the corresponding similarity or dif-
ferentiation measures (in the next section) are also identical. Thus, it is sufficient to 
focus only on the measure qD Tb ( ) , which will be referred to as the phylogenetic 
beta diversity or beta component for simplicity.

For each of the two measures, qD T( )  and qPD(T), alpha and gamma diversities 
obey the replication principle. Then the beta diversity formed by taking their ratio is 
replication-invariant (Chiu et al. 2014). That is, when assemblages are replicated, 
the beta diversity does not change. Therefore, when we pool equally-distinct sub-
trees, such as pooling equally-ancient subfamilies, the beta diversity is unchanged 
by pooling the subfamilies if all subfamilies show the same beta diversity (“consis-
tency in aggregation”).

We now give the phylogenetic beta diversities for the special cases of q = 0, 1  
and 2.

	(a)	 When q = 0, we have 0D T L T L Tb g a( ) /( ) ( )= , where Lγ(T) denotes the total 
branch length of the pooled tree (the gamma component of Faith’s PD) and 
Lα(T) denotes the average length of individual trees (the alpha component of 
Faith’s PD).

	(b)	 When q = 1, the phylogenetic beta diversity of order 1 is
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where HP,γ and HP,α denote respectively the gamma and alpha phylogenetic entropy. 
When the species importance measure zik represents the ith species relative abun-
dance in the kth current-time assemblage, then z z N z z Nk k+ ++ + ++= = =1 1, , / / .  In 
this special case, we have 1D T H H TP Pb g a( ) exp /, ,= -( )éë ùû . Thus an additive 
decomposition for phylogenetic entropy HP holds (Pavoine et al. 2009; Mouchet 
and Mouillot 2011), as for ordinary Shannon entropy (Jost 2007).
	(c)	 When q = 2, the phylogenetic beta diversity can be expressed as
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In the special case of z z Nk+ ++= =1, , this phylogenetic beta diversity of order 2 
can be linked to quadratic entropy as

	
2 1 1

1 1D T Q T Q Tb g a( ) / / / ,= -( ) -( )- -

	
(10b)

where Qγ and Qα denote respectively the gamma and alpha quadratic entropy. The 
above formula is also applicable to non-ultrametric trees by replacing all T with T , 
the mean branch length in the pooled assemblage; see Chiu et al. (2014, Appendix 
C) for a proof.

�Normalized Phylogenetic Similarity Measures

For traditional abundance-based diversity, the most commonly used similarity mea-
sures include N-assemblage generalizations of the Jaccard et al. (1966) and Morisita-
Horn (Morisita 1959) measures. The latter three measures were integrated into a 
class of CqN measures by Chao et al. (2008). Jost (2006, 2007), Chao et al. (2008, 
2012), and Chiu et al. (2014) have demonstrated that all the above measures are 
monotonic transformations of beta diversity based on the ordinary Hill numbers. 
This is an advantage of using the framework of Hill numbers: a direct link exists 
between diversity and similarity (or differentiation) among assemblages.

Chiu et al. (2014) extended this framework by proposing four classes of similar-
ity (or differentiation) measures that are monotonic functions of phylogenetic beta 
diversity. The basic idea is that the phylogenetic beta diversity, a ratio of gamma and 
alpha phylogenetic Hill numbers, is independent of alpha and measures the pure 
differentiation among assemblages. The phylogenetic beta component always lies 
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in the range [1, N] for any measures of species importance and all orders q ≥ 0. 
Since the range depends on N, the phylogenetic beta diversity cannot be used to 
compare phylogenetic differentiation among assemblages across multiple regions 
with different numbers of assemblages. To remove the dependence on N, several 
transformations can be used to transform the phylogenetic beta component onto [0, 
1] to measure local overlap, regional overlap, homogeneity and turnover. We give a 
summary of these four transformations below and tabulate formulas and the rela-
tionship with previous measures in Table 1 for the two most important classes. The 
formulas for the special cases for q = 0, 1 and 2 are also displayed there.

	1.	 A class of branch overlap measures from a local perspective:
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(11a)

		 This gives the effective average proportion of shared branches in an individual 
assemblage. This class of similarity measures extends the CqN overlap measure 
derived in Chao et al. (2008) to a phylogenetic version. The corresponding dif-
ferentiation measure 1-C TqN ( )  quantifies the effective average proportion of 
non-shared branches in an individual assemblage.

	(1a)	 For q = 0, this similarity measure is referred to as the “phylo-Sørensen” 
N-assemblage overlap measure because for N = 2, it reduces to the measure 
PhyloSør (phylo-Sørensen) developed by Bryant et al. (2008) and Ferrier 
et al. (2007).

	(1b)	 For q = 1, this measure C TN1 ( )  is called the “phylo-Horn” N-assemblage 
overlap measure because it extends Horn (1966) two-assemblage measure 
to incorporate phylogenies for N assemblages.

	(1c)	 For q = 2, C TN2 ( )  is called the “phylo-Morisita-Horn” N-assemblage simi-
larity measure because it extends Morisita-Horn measure (Morisita 1959) 
to incorporate phylogenies for N assemblages. The differentiation measure 
1 2-C TN ( )  when the species importance measure is relative abundances 
reduces to the measure proposed by de Bello et al. (2010). However, their 
measure is valid only for ultrametric trees (p. 7 of de Bello et al. 2010). 
Here, the measure can be applied to non-ultrametric trees to obtain
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		� where Qγ and Qα are respectively gamma and alpha quadratic entropy, and 
T  is the mean branch length in the pooled assemblage. A general form for 
any species importance measure (including absolute abundances) is
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		 The above expression shows that the similarity index C TN2 ( ) , as in all other 
abundance-sensitive similarity measures, is unity if and only if z zij ik=  (i.e., 
species importance measures are identical for any node i in the branch set and for 
any two assemblages j and k). This reveals that the similarity index C TN2 ( )  
quantifies the node-by-node resemblance among the N abundance sets {zik; 
i∈BT̅}, k = 1, 2, …, N from a local perspective. See Fig. 2 of Chiu et al. (2014) for 
a simple example of the framework.

	2.	 A class of branch overlap measures from a regional perspective:
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		 This class of measures quantifies the effective proportion of shared branches in 
the pooled assemblage. The corresponding differentiation measure 1-U TqN ( )  
quantifies the effective average proportion of non-shared branches in the pooled 
assemblage.

	(2a)	 For q = 0, this measure is called the “phylo-Jaccard” N-assemblage measure 
because for N = 2 the measure 1 02-U T( )  reduces to the Jaccard-type 
UniFrac measure developed by Lozupone and Knight (2005) and the PD-
dissimilarity measure developed by Faith et al. (2009).

	(2b)	 For q = 1, this measure is identical to the “phylo-Horn” N-assemblage over-
lap measure C TN1 ( ) ; see Table 1.

	(2c)	 For q = 2, we refer to the measure U̅2N(T) as a “phylo-regional-overlap” 
measure. When the species importance measure is relative abundance, we 
have the following formula for non-ultrametric trees:
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	� where T  denotes the mean branch length in the pooled assemblage. A 
general form for any species importance measure (including absolute abun-
dances) is
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	 The numerator is the same as that in C TN2 ( ) , revealing that the similarity 
index U TN2 ( )  also quantifies the node-by-node resemblance among the N 
abundance sets {zik; i∈BT̅}, k = 1, 2, …, N; but here the denominator (for the 
purpose of normalization) is different and takes a regional perspective.

	3.	 A class of phylogenetic homogeneity measures

	
S T

D T N

NqN

q
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/ ( ) /

/
.=
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1 1

1 1
b

	
(12b)

		 This measure is linear in the proportion of regional phylogenetic diversity con-
tained in a typical assemblage.

	(3a)	 For q = 0, it reduces to the “phylo-Jaccard” measure U̅0N (T), i.e., 
S T U TN N0 0( ) ( )= .

	(3b)	 For q = 1, this measure does not reduce to the “phylo-Horn” overlap 
measure.

	(3c)	 For q = 2, this measure is identical to C TN2 ( ) , the “phylo-Morisita-Horn” 
similarity measure, i.e., S T C TN N2 2( ) ( ).=

	4.	 A class of measures of the complement of “phylogenetic turnover rate”:
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		 This measure in linear in the phylogenetic beta diversity and the corresponding 
differentiation measure qD T Nb ( ) /-éë ùû -( )1 1  quantifies the relative branch 
turnover rate per assemblage.

	(4a)	 For q = 0, the measure V TN0 ( )  is identical to the “phylo-Sørensen” mea-
sure, i.e., V T C TN N0 0( ) ( )= .

	(4b)	 For q = 1, this measure does not reduce to the “phylo-Horn” overlap 
measure.

	(4c)	 For q = 2, this measure is identical to U2̅N (T), the “phylo-regional-overlap” 
measure. That is, V T U TN N2 2( ) ( )= .

As with the phylogenetic diversity measures, all the above similarity or differentia-
tion measures are functions of two parameters: the sensitivity parameter q and the 
time perspective T. Thus, for each measure, we suggest using the two types of pro-
files described in section “Phylogenetic Hill numbers and related measures” for the 
two major similarity measures C TqN ( )  and U̅qN(T) (or their complements) to convey 
complete information about the similarity or differentiation of a set of assemblages. 
An example showing the two types of profiles is given in section “An example”.

The lineage excess q qD T D Tg a( ) ( )-  and the phylogenetic diversity excess 
q qPD T PD Tg a( ) ( )-  can be interpreted as the effective number of regional lineages 
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(or regional phylogenetic diversity) not contained in a typical local assemblage. 
However, they cannot be directly applied to compare the similarity or differentiation 
across multiple regions because both depend not only on the number of assem-
blages, but also on their corresponding alpha diversity. Following Chao et al. (2012) 
and Chiu et al. (2014, their Appendix D) proved that we can eliminate these depen-
dences by using an appropriate normalization. After proper normalizations, the two 
measures lead to the same four classes of normalized similarity and differentiation 
measures as those obtained from the phylogenetic beta diversity. This is another 
advantage of using the framework of phylogenetic Hill numbers. That is, a consen-
sus can be achieved on phylogenetic similarity and differentiation measures, includ-
ing N-assemblage phylogenetic generalizations of the classic Jaccard, Sørensen, 
Horn and Morisita-Horn measures, regardless of whether one prefers multiplicative 
or additive decompositions.

�An Example

We apply the phylogenetic diversity measures and similarity (or differentiation) 
measures considered in this chapter to a real conservation biology case discussed by 
Pavoine et  al. (2009), a heavily-fished assemblage of 52 rockfish species of the 
genus Sebastes collected for 20 years over three decades (1980–1986, 1993–1994, 
1996, 1998–2007) from the Southern California Bight, USA. The phylogenetic tree 
for these 52 species was obtained from Hyde and Vetter (2007); see Fig. 3a. The age 
of the root for these species is around 7.9 million years (Myr).

We separate the data into three decades: 1980s, 1990s and 2000s, which will be 
referred to as Assemblages (and Decades) I, II and III respectively. Within each 
decade’s assemblage, species abundances are pooled. The species relative abun-
dances for the three assemblages are shown in Fig. 3a. There were 48, 44 and 39 
species in Decades I, II and III, respectively. (Note that each data point here is a 
mean of many years’ observations.) A sub-tree containing only the six dominant 
species (those with relative abundance >8 % in at least one assemblage) is shown in 
Fig. 3b. All six species are shared in the three assemblages and four of them have 
been in isolated lineages for 6 Myr.

As suggested in section “Phylogenetic Hill numbers and related measures”, we 
present for each assemblage two types of profiles. In Fig. 4a, we plot the measure 
qD T( )  as a function of order q, 0 ≤ q ≤ 3, for two selected values of temporal per-
spectives: T = 0 (phylogeny is ignored) and T = 7.9 Myr (whole phylogenetic tree in 
Fig. 3a is considered). In Fig. 4b, we plot qD T( )  and qPD(T) as functions of T sepa-
rately for q = 0, 1, and 2 for 0 ≤ T ≤ 10.

Based on our phylogenetic diversity measures, all profiles in Fig. 4 reveal that the 
diversity in the most recent decade (Decade III) is the lowest among the three 
decades in the rockfish assemblage. This implies an appreciable loss of species (as 
shown in the first type of profile for T = 0), loss of lineages (as shown in the second 
type of profile based on the measure qD T( ) ), and loss of evolutionary history (as 
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shown in the second type of profiles based on the measure qPD(T)) over the three 
decades.

When species/lineage abundances are discounted (q = 0  in the left panels of 
Fig.  4b), both lineage richness (based on the measure 0D T( ) ) and total branch 
lengths (based on the measure 0PD(T), i.e., Faith’s PD) exhibit the expected order-
ing: Decade I > Decade II > Decade III.  When species/lineage abundances are 
counted (i.e. q = 1 and 2 in Fig. 4b), the profiles for Decades I and II cross because 
the assemblage of Decade II has more even abundant species than that of Decade I 
(see the first type of profiles for T = 0 and Fig. 3a, b). Note that if the time-depth is 
greater than 6 Myr (including the age of the root), then all the abundance-sensitive 
phylogenetic measures for the three assemblages are very close because most of the 
dominant species began to diverge around 6 Myr (Fig. 3b). This also explains the 
closeness of the three profiles in the first type of profile for T = 7.9 Myr (the right 
panel in Fig. 4a).

Fig. 3  (a) The phylogenetic tree of 52 rockfish species of the genus Sebastes (Hyde and Vetter 
2007) and the species relative abundances in three assemblages: 1980s (Decade I), 1990s (Decade 
II) and 2000s (Decade III). The age of the root is T = 7.9 Myr. (b) A sub-tree contains only the 
dominant species (those with relative abundance >8 % in at least one assemblage), and these spe-
cies are marked in figure (a). All six species are shared by the three assemblages and four of them 
diverged around 6 Myr ago (i.e., they have been in isolated lineages for 6 Myr) (See Pavoine et al. 
(2009) for details)
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To illustrate the phylogenetic differentiation among assemblages, we focus on 
measuring the phylogenetic differentiation between any two decades for three pairs 
(i.e. Decades I vs. II, Decades I vs. III and Decades II vs. III). To see how the phy-
logenetic differentiation measures vary with the time perspective q and with the 
order T, we show two types of profiles for each of the two differentiation measures 
1-C TqN ( )  and 1-U TqN ( )  in Figs. 5 and 6. In Fig. 5a, we present the first type of 
profile that plots the measure 1-C TqN ( )  as a function of q where q is in the range 
[0, 3] for two time perspectives: T = 0 (non-phylogenetic case) and T = 7.9 Myr (the 
age of the root node). In Fig. 5b, the same type of differentiation profile is shown for 
the other measure 1-U TqN ( ) . Then in Fig. 6a, b, we present the second type of 

Fig. 4  (a) The first type of diversity profile plots qD T( )  as a function of order q, 0 ≤ q ≤ 3, for 
two selected values of temporal perspectives: T = 0 (non-phylogenetic case) and T = 7.9 Myr (the 
age of the root of the phylogenetic tree in Fig. 3a). (b) The second type of diversity profile plots 
qD T( )  (phylogenetic Hill number) and qPD(T) (phylogenetic diversity) as functions of T, 

0 ≤ T ≤ 10, separately for q = 0, 1 and 2
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profile that shows the two measures as a function of temporal perspective T, 
0 ≤ T ≤ 10, for q = 0, 1 and 2 separately.

Based on the two phylogenetic differentiation measures, all profiles in Figs. 5 
and 6 show consistent patterns. When species/lineages abundances are discounted 
(q = 0), the differences among the differentiation measures of the three pairs of 
assemblages are not appreciable, as shown in the two left panels in Fig. 6 and in the 
initial point in each of profiles in Fig.  5. When species/lineages abundances are 
counted (q > 0), the compositional differentiation between Decades I vs. II is gener-
ally close to that between Decades I vs. III, and the differentiation between two 
recent decades (Decades II vs. III) is much lower than any of the other two pairs. 
This implies that the composition of species/lineage abundances has changed after 
1990. Examining the relative abundances for those dominant species listed in 

Fig. 5  (a) Differentiation profiles of the measure 1-C TqN ( )  and (b) of the measure 1-U TqN ( )  
as a function of order q, 0 ≤ q ≤ 3, for two specific time perspectives: T = 0 (left panels, correspond-
ing to non-phylogenetic differentiation profiles), and T = 7.9 Myr (right panels, corresponding to 
the profiles for the age of the root node of the pooled phylogenetic tree in Fig. 3a) for three pairs 
of assemblages (I vs. II, I vs. III, and II vs. III)
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Fig. 3b, we see that the most abundant species S. paucispinis (23 %) in Decade I 
became less abundant in both Decade II (9 %) and Decade III (11 %); the second 
most abundant species S. mystinus (11 %) in Decade I became quite rare in both 
Decade II (4 %) and Decade III (5 %). Also, the species S. miniatus in Decade I was 
rare, but it became the most dominant species in both Decade II (12 %) and Decade 
III (25  %). These compositional changes for dominant species help explain the 
above findings.

As the time perspective T becomes large, more dominant shared lineages are 
added to the two assemblages, implying the differentiation between any two assem-
blages should exhibit a non-increasing trend as T is increased. Our two differentia-
tion measures for q > 0 in Fig. 6 show the expected decreasing trend, and the decline 
rates differ for q = 1 and q = 2. Based on Fig. 3b, we see that most of the dominant 
and isolated species began to diverge around 6 Myr ago. Thus, the two differentia-
tion profiles for q = 1 and 2 start to decrease sharply around 6 Myr especially for 
order q = 2. Since the node abundances near roots (where the differentiation values 
are near zero) are relatively high and dominant in the whole tree, all values of the 
phylogenetic differentiation measures for T = 7.9 Myr (the first type of profile for 
T = 7.9 Myr in the right panel of Fig. 5) are substantially lower than their corre-
sponding non-phylogenetic differentiation measure by comparing two figures (T = 0 
and T = 7.9 Myr) in each row of Fig. 5. The two types of profiles (in Fig. 5a, b, and 
6a, b) demonstrate that the two differentiation measures 1-C TqN ( )  and 1-U TqN ( )  
can incorporate the differences in both tree structure and lineage abundances.

Fig. 6  (a) Differentiation profiles of the measure 1-C TqN ( )  and (b) of the measure 1-U TqN ( ) , 
as a function of the time perspective (or time-depth) T, 0 ≤ T ≤ 10, for q = 0 (left panel), q = 1 (middle 
panel), and q = 2 (right panel) for three pairs of assemblages. All measures are computed for the inter-
val [−T, 0], where T varies from 0 to 10
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In summary, our phylogenetic diversity measures have shown an appreciable loss 
of species, lineage and evolutionary history in rockfish assemblage over time due to 
fishing pressure, and our phylogenetic differentiation measures show a pronounced 
change of species/lineages composition after 1990.

�Conclusion

	1.	 To quantify phylogenetic diversity of an assemblage, we suggest using two mea-
sures: (i) the phylogenetic Hill number qD T( )  (Eqs. 4a and 4b) which measures 
the “the effective number of equally abundant and equally distinct lineages all 
with branch lengths T”, and (ii) the phylogenetic or branch diversity qPD(T) 
(Eqs. 5a and 5b) which measures the “effective total lineage-length”, i.e., the 
total evolutionary history on an assemblage since time T. These two measures 
depend explicitly on two parameters, the abundance sensitivity parameter q and 
the time perspective (or time-depth) parameter T.

	2.	 Two types of diversity profiles are recommended for considering species/branch 
abundances and phylogenetic information: (i) The first type of diversity profile is 
obtained by plotting qPD(T) or qD T( )  as a function of order q, for some selected 
values of temporal perspective T including T = 0 (i.e., the non-phylogenetic pro-
file based on the ordinary Hill numbers), and T = the age of the most basal node. 
See the upper panels of Fig. 4 for an example. It would be also informative to 
include T = the age of the divergence between the group under study and the rest 
of the tree. (ii) The second type of diversity profile is obtained by plotting qPD(T) 
and qD T( )  as functions of T separately for q = 0, 1, and 2; see the middle and 
lower panels of Fig. 4 for an example. The second type of profile shows the effect 
of time-depth or evolution change on our diversity measures.

	3.	 When there are multiple assemblages, the phylogenetic gamma Hill number is 
the effective number of equally abundant and equally distinct lineages in the 
pooled assemblage; the phylogenetic alpha Hill number is the effective number 
of equally abundant and equally distinct lineages per assemblage. Thus the phy-
logenetic beta Hill number, as the ratio of gamma and beta, is interpreted as “the 
number of phylogenetically completely distinct assemblages”. In this case, alpha 
and beta are unrelated (or independent). The difference of phylogenetic gamma 
and alpha Hill numbers is lineage excess, which is dependent on both alpha and 
gamma. The phylogenetic beta Hill number and lineage excess lead to the same 
classes of similarity and differentiation measures, listed in section “Normalized 
phylogenetic similarity measures”. See Table 1 for the two major classes of phy-
logenetic overlap measures, C TqN ( )  from a local perspective and U̅qN(T) from a 
regional perspective.

	4.	 To assess the phylogenetic resemblance or differentiation among assemblages, 
two types of similarity or differentiation profiles as those in Point 2 are suggested 
for the two major classes of measures, C TqN ( )  and U̅qN(T) (Table 1); see Figs. 5 
and 6 for examples.
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in the work’s Creative Commons license and the respective action is not permitted by statutory 
regulation, users will need to obtain permission from the license holder to duplicate, adapt or 
reproduce the material.
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