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Abstract Contingent Convertible Bonds, or CoCos, are contingent capital instru-
mentswhich are converted into shares, ormay suffer a principalwrite-down, if certain
trigger event occurs. In this paper we discuss some approaches to the problem of pric-
ing CoCos when its conversion and the other relevant credit events are triggered by
the issuer’s share price. We introduce a newmodel of partial information which aims
at enhancing the market trigger approach while remaining analytically tractable. We
address also CoCos having the additional feature of being callable by the issuer at a
series of pre-defined dates. These callable CoCos are thus exposed to a new source
of risk—referred to as extension risk—since they have no fixed maturity, and the
repayment of the principal may take place at the issuer’s convenience.
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1 Introduction

The Basel Committee on banking Supervision was created in 1974, after the collapse
of the German Bank Herstatt, with the aim of establishing prudential rules of trading.
During the 1980s this committeewas concernedwith the bigmoral hazard of Japanese
banks that distorted the competition among countries. In 1988 it formulated a set of
rules, so called Basel I, to stabilize the international banking system. Basically the
main rule was that each bank should hold a minimum of 8% of its total assets, where,
for the valuation of the assets it was used some weights reflecting the credit risk of
each asset. These measures produced a credit crunch and some criticism appeared,
mainly related with the weights used to measure the risk of the different assets.
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These weights only took into account the kind of institution borrowing or issuing the
security and not what the spreads observed in the market. To amend the first Basel
accords and take into account the market risk and interest-rate risk, it was started a
process that concluded in 2004 with new rules, Basel II. These agreements are more
complex and consider not only new rules for capitalization, with the introduction
of VaR methodology, but also supervision and transparency rules. The regulator
calculated the weights on the basis of the formula

K = LGD × Φ

[
Φ−1(PD)√

1 − R
+
√

R

1 − R
× Φ−1 (0.999)

]
− PD × LGD, (1)

where Φ is the CDF of the standard normal distribution, LGD is the loss in case
of default, PD is the probability of default, and R is the correlation between the
portfolio of loans and a macroeconomic risk factor, see [24] for an explanation of its
underlying model. To determine the different parameters, banks were allowed to use
their own models.

In 2007 a financial crisis, originated in theU.S. home loansmarket, quickly spread
to other markets, sectors and countries, forcing the Federal Reserve and the European
Central Bank to intervene in response to the collapse of the interbank market. This
gave rise, in 2010, to new regulation rules, known as Basel III, that would change
the financial landscape. Some securities were not going to be allowed anymore as
regulatory capital and supervisors put emphasis in the fact that capital regulatory
should have a real loss absorbing capacity. This is when Contingent Convertibles
(CoCos) started to play an important role.

In 2002 Flannery proposed and early form of CoCo that he called Reverse Con-
vertible Debentures, see [22]. The idea was that whenever the bank issuing such
debentures reaches a market-based capital ratio that is below a pre-specified level, a
sufficient number of said debentures would convert into shares at the current market
price. Later, in [23], he updated the proposal and named these assets as Contingent
Capital Certificates. The idea behind was in agreement with what [19] wrote in
The Prudential Regulation of Banks. In this work they formulated the representation
hypothesis. According to this hypothesis prudential regulation should aim at replicat-
ing the corporate governance of non-financial firms, that is, acting as a representative
of the debtholders of bank, regulation should play the role of creditors in nonfinancial
institutions.

A Contingent Convertible is a bond issued by a financial institution where, upon
the appearance of a trigger event, related with a distress of the institution, either an
automatic conversion into a predetermined number of shares takes place or a partial
write-down of the bond’s face value is applied. It is intended to be a loss absorbing
security in the sense that in case of liquidity difficulties it produces a recapitalization
of the entity.

Basel III, among other regulating measures, proposed the inclusion of CoCos as
part of Additional Tier 1 Capital, where Tier 1 is, roughly speaking, the capital or the
assets that the entity have, for sure, in case of crisis, and consists of Common Equity
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Tier 1 and Additional Tier 1. Chan and van Wijnbergen [5] affirm that the inclusion
of Cocos in Tier 1 is a likely factor in the increase of CoCo issuances. In December
2013, the CoComarket had reached $49bn in size in Europe.

It is a controversial issue if CoCos are a stabilizing security. Koziol and Lawrenz
[28] show that, under certain modelling assumptions, if CoCos are part of the capital
structure of the company equity holders can take more risky strategies, trying to
maximize the value of their shares. In their work Koziol and Lawrenz use a low
level of the asset price of the company as a trigger for the conversion. Chan and
van Wijnbergen [5] point out that conversion can be seen as a negative signal by
the depositors of a bank and to produce bank runs. They also argue that far from
lowering the risks, CoCos can increase even the systemic risks. On the other hand
[20] defend that CoCos is an appropriate solution that does not lead to moral hazard
provided that conversion is tied to exogenous macroeconomic shocks.

There is also disagreement about how to establish the trigger event. It is perhaps
the most controversial parameter in a CoCo. Some advocate conversion based on
book values, like the different capital ratios used in Basel III. Others defend market
triggers like the market value of the equity. So far the CoCos issued by the private
sector are based on accounting ratios.

Themarket for contingent convertibles started inDecember 2009when the Lloyds
Banking Group launched its $13.7bn issue of Enhanced Capital Notes. Next in line
was Rabobankmaking its first entry in themarket for contingent debt with ae1.25bn
issue early 2010. After this, things turned quiet until February 2011, when Credit
Suisse launched its so-called Buffer Capital Notes ($2bn). This Credit Suisse issue
was done on the back of the new regulatory regime in Switzerland. This was called
the “Swiss Finish” and it required the larger banks such as UBS and Credit Suisse
to hold loss absorbing capital up to 19% of their risk weighted assets, see [11]. This
capital had to consist of at least 10% common equity and up to 9% in contingent
capital. In 2014 a number of banks issued CoCos, including Deutsche Bank and
Mizuho Financial Group.

From a modelling point of view and sometimes depending on the trigger chosen
for the conversion, usually a low level of a certain index related with the asset, the
debt or the equity of the firm, one can follow an intensity approach or a structural
approach tomodel the trigger. For an intensity approach formodelling the conversion
time, see for instance [8, 16]. This approach is especially useful when pricing CoCos
is the main interest, it is a kind of statistical modelling of the trigger event. In fact
what one models is the law of the conversion time. In the structural approach for
modelling the trigger, one models the random variable describing the conversion
time and one relates it with the dynamics of the assets, debt, or equities. It is a more
explanatory approach, where one can use the observed dynamics of certain economic
facts to describe the conversion time.

In the structural approach one can use a market trigger based on a low level of
the equity value. This approach is very appealing because the market value of equity
is an observable economic variable whose dynamics can be modelled in order to fit
historical data. At the same time it allows to obtain close pricing formulas, like in
[13], and to define an objective trigger that can be observed immediately. Cheridito
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and Xu [7] also use this trigger and show that pricing and hedging problems can be
treated for quite general continuousmodels and barriers and that solutions can always
be obtained, at least numerically, using Feymann-Kac type results, translating the
problem of pricing into a problem of solving a series of parabolic partial differential
equations (PDE) with Dirichlet boundary conditions.

One argument against accounting triggers is that monitoring is not continuous,
there is always a delay in the information.Moreover, in the recent crisis these triggers
did not provide any signal of distress in troubled banks. On the contrary, when using
market triggers, there exist the risk of market manipulations of the equity price trying
to force the conversion or undesirable phenomena like the death-spiral effect. In [17]
authors propose a system of multiple triggers to avoid the death spiral, whereas in
[13] a system of coupon cancellations is proposed in order to alleviate this effect.
Sundaresan andWang [39] analyze this kind of trigger and find that to use low equity
values as trigger is not innocuous. It can have destabilizing effects in the firm. Their
reasoning is roughly speaking the following. Suppose that (At)t≥0 represents the
aggregate value of the assets of the company, (Dt)t≥0 its aggregate debt, (Ct)t≥0
the aggregate value of the CoCos, and (Lt)t≥0 the aggregate liquidation value of the
CoCos issued by the firm. Set τ for the conversion time, and assume that it happens
when the (aggregate) equity value, (Et)t≥0 is lower that some level say (Ht)t≥0. Since
equity value is the residual value of the asset, at any time t ≤ τ , we will have two
possibilities:

At − Dt − Ct > Ht if t < τ (2)

or

At − Dt − Lt < Ht if t = τ. (3)

This gives that, at any time t ≤ τ ,

Dt + Ct < At < Dt + Lt . (4)

So, if Ct > Lt there is not any possible value for At and if Ct < Lt there are
multiple values, all of these allowing, according to [39], potential pricemanipulation,
market uncertainty, inefficient allocation and unreliability of conversion.Obviously
if Ct = Lt , that is, if there is no jump on the wealth of CoCo’s investors at the
conversion time, then the equilibrium is possible, but this is considered non realistic
and even problematic, since a punitive conversion for shareholders could help to
maintain the market discipline. As a possible remedy to this situation [32] propose a
trigger based not only in the value of the equities but also in the value of the CoCos.
They also propose to include, in the CoCo contract, a PUT option of the issuer on
the equities, in case of conversion, to avoid market price manipulations.

Another possibility, in the structural approach, is to use a low value of the asset
value as a trigger. It is also quite appealing, since it allows to consider the whole
capital structure of the company, to study the effect of CoCo debt in the equity value
and to obtain the optimal conversion barrier for the shareholders. See for instance
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[6, 28] or [2]. In this latter paper they also consider other triggers aiming at providing
a proxy for regulatory triggers.

Nevertheless in all these papers authors consider a fixed maturity of the CoCo
bond. However bonds often do not just have a legal maturity but can have also
different call dates. In such cases, the bond can be called back by the issuer at these
dates prior to the legal maturity. This risk of extending the life of a contract is what we
call extension risk. This has been treated for the first time in [18] using an intensity
approach and in [14] using a structural approach.

In this paper we review our work on the topic of pricing CoCos, and we introduce
new issues like delay in the information and jumps.We always consider low values of
the stock as triggers andCoCos that convert totally into equities in case of conversion.
The paper is organized as follows. The contract features are specified in Sect. 2. In
addition, amodel-free formula for theCoCoprice is presented in order to establish the
general pricing problem. In Sect. 3 a model with stochastic interest rates is studied.
A closed-form formula for the price is given and subsequently used in order to
study the Black-Scholes model and its Greeks. In Sect. 4 two advanced models are
discussed. On the one hand, the stochastic volatility Heston model is incorporated
to the share price dynamics, and the correspondent prices are later on obtained by a
PDE approach. On the other hand, an exponential Lévy model is proposed, and the
obtainment of the correspondent prices is addressed by a Fourier method exploiting
the so-called Wiener-Hopf factorization for Lévy processes. In Sect. 5 we introduce
a new trigger model which aims to describe the delay of information present in
accounting triggers. Finally, in Sect. 6 we show how the original pricing problem is
modified when no fixed maturity is imposed on the CoCo. This variation leads to
what we call CoCos with extension risk, and the pricing problem includes solving
an optimal stopping time problem which, even in the Black-Scholes, turns out to be
far from straightforward.

2 The Pricing Problem

The definition of a CoCo requires the specification of its face value K and maturity
T , along with the random time τ at which the CoCo conversion may occur, and
the prefixed price Cp at which the investor may buy the shares if conversion takes
place. We refer to τ and Cp as conversion time and conversion price, respectively.
The quantity Cr := K/Cp is refered to as conversion ratio. Assuming m coupons
are attached to the CoCo, then we further need to specify a series of credit events
that may trigger a coupon cancellation. Denote by τ1, ..., τm the random times at
which the aforementioned credit events may occur. Then the whole coupon structure
(cj, Tj, τj)

m
j=1 of the CoCo is defined, in such a way that the amount cj is paid at

time Tj, provided the τj > Tj. We establish that the last coupon is paid at maturity
time, i.e., Tm := T . The coupon cancellation feature was introduced in [13] in order
to alleviate the so-called death-spiral effect exhibited by the traditional CoCo—see
details in Sect. 3.1. Thus it is assumed that coupon cancellation precedes conversion
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according to τ1 ≥ · · · ≥ τm ≥ τ . Of course it suffices to set τ1 = · · · = τm = ∞ if
this feature were to be excluded from modelling.

It will be assumed that the issuer of the CoCo pays dividends according to a
deterministic function κ . From the investors side, it seems to be reasonable to assume
that no dividends are paid after the conversion time τ . Thus hereafter we shall assume
that the following condition holds true.

Condition (F). There are no dividends after the conversion time τ .

Remark 1 It is worth mentioning that, whereas this condition simplifies the expres-
sions obtained for the price, it is not crucial, in the sense that the computations still
can be carried on. We refer to [13] for a further discussion on this topic.

Once these features are settled, the CoCo’s final payoff, is given by

K1{τ>T} + K

Cp
Sτ 1{τ≤T} +

m∑
j=1

cje
∫ T

Tj
rudu

1{τj>Tj}, (5)

where (St)t≥0 and (rt)t≥0 stand for the share price and interest rate, respectively.

2.1 A Model-Free Formula for the CoCo Price

In Proposition 2, a model-free formula for the CoCo price is given. Let us first
introduce some notation required for what follows. Underlying to our market, we
shall consider a complete probability space (Ω,F ,P), endowed with a filtration
F := (Ft)t∈[0,T ] representing the trader’s information—this includes the information
generated by all state variables (e.g., share price, interest rates, total assets value,...)
and the default-freemarket. All filtrations considered are assumed to satisfy the usual
conditions of P-completeness and right-continuity. We shall denote the evolution of
the money in the bank account by (Bt)t∈[0,T ], i.e.,

Bt = exp

{∫ t

0
rudu

}
, 0 ≤ t ≤ T .

Recall that two probability measures on (Ω,F ), P1 and P2, are said to be equiv-
alent if, for every A ∈ F , P1(A) = 0 if and only if P2(A) = 0. We shall assume
the existence of a risk-neutral probability measure P∗, equivalent to the real-world
probability measure P, such that the discounted value of self-financing portfolios,
(Ṽt := Vt

Bt
)t∈[0,T ], follows a P∗-martingale. Hereafter the symbol tilde will be used to

denote discounted prices. Now, in addition to P
∗, we shall consider other two prob-

ability measures (also equivalent to P) which will allow us to carry on some of the
computations related with the CoCo arbitrage-free price. First, letting (B(t, Tj))t≥0
stand for the price of the default-free zero-coupon bond with maturity Tj, we define
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the Tj-forward measure P
Tj through its Radon-Nikodým derivative with respect to

P
∗ as given by

dPTj

dP∗ = e− ∫ Tj
0 rudu

B(0, Tj)
. (6)

We say that PTj is given by taking the bond price (B(t, Tj))t≥0 as numéraire.
Similarly, but now taking the issuer’s share price (St)t≥0—without dividends—as
numéraire, we obtain the share measure P

(S); its Radon-Nikodým derivative with
respect to P∗ is given by

dP(S)

dP∗ = e− ∫ T
0 [ru−κ(u)]duST

S0
. (7)

In what follows, expectation with respect to P∗, PTj and P(S) will be denoted by E∗,
E

Tj and E
(S), respectively.

Proposition 2 The discounted CoCo arbitrage-free price, on the set {t < τ }, equals

π̃t := E
∗ [ K̃1{τ>T}

∣∣Ft
] + CrE

∗ [ S̃T 1{τ≤T}
∣∣Ft

] +
m∑

j: Tj>t

E
∗ [ c̃j1{τj>Tj}

∣∣Ft
]

(8)

= KB̃(t, T)PT (τ > T | Ft) + CrS̃t

e
∫ T

t κ(u)du
P

(S)(τ ≤ T | Ft) +
m∑

j: Tj>t

cjB̃(t, Tj)P
Tj (τj > Tj| Ft). (9)

Proof Due to the Condition (F), to receive K
Cp

Sτ at time τ is equivalent to receive
K
Cp

ST at time T . Therefore the payoff in (5) is equivalent to

K1{τ>T} + K

Cp
ST 1{τ≤T} +

m∑
j=1

cje
∫ T

Tj
rudu

1{τj>Tj}, (10)

and thus expression (8) for the price follows by preconditioning, taking into account
that Cr = K

Cp
. As for (9), it suffices to notice that, in light of the abstract Bayes rule,

for every X ∈ L 1(FTj ,P
Tj ) we have

E
Tj [X| Ft] =

E
∗
[

X
dPTj

dP∗

∣∣∣∣Ft

]

E∗
[
dPTj

dP∗

∣∣∣∣Ft

] =
E

∗
[

Xe− ∫ Tj
0 rudu

∣∣∣∣Ft

]

e− ∫ t
0 ruduB(t, Tj)

, (11)
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and thus

E
∗
[

Xe− ∫ Tj
t rudu

∣∣∣∣Ft

]
= B(t, Tj)E

Tj [X| Ft]. (12)

Similarly, for every X ∈ L 1(FT ,P(S)) we have

E
∗ [XSTe

− ∫ T
t rudu

∣∣∣Ft

]
= e− ∫ T

t κ(u)duStE
(S)[X| Ft]. (13)

Combining (8) with these identities we get the expression (9).

With Proposition 2 at hand, the subsequent difference between models relies on
howconversion and coupon cancellation is defined, and how the corresponding prices
are evaluated. In this paper we follow a structural approach to price CoCos. That is
to say, given a model for the share price (St)t≥0, a series of critical time-varying
barriers � and �j are set in such a way that �1 ≥ · · · ≥ �m ≥ � and the credit events
are given by

τ := inf{t > 0 : St ≤ �(t)}, and τj := inf{t > 0 : St ≤ �j(t)}, j = 1, ..., m, (14)

with the standard convention inf ∅ := ∞. Then our main concern is to derive analyt-
ically tractable formulas for (8)–(9), either in the form of closed formulas or efficient
simulation methods. Later on in Sects. 5 and 6 we shall incorporate short-term uncer-
tainty and extension risk to the pricing problem.

2.2 Pricing CoCos with Write-Down

In the case of CoCos with write-down, upon the appearance of the trigger event the
investor does not receive a certain amount of shares. Instead, she receives only a
fraction R ∈ (0, 1) of the original face value K , provided that the issuer has not
defaulted. Let δ denote the random time at which the issuer may default. Then the
payoff of this CoCo contract with write-down equals

K1{τ>T} + RK1{τ≤T}1{δ>T} +
m∑

j=1

cje
∫ T

Tj
rudu

1{τj>Tj}.

Similarly to Proposition 2, we can give now a model-free price formula for the
CoCo with write-down. For this matter, we make no further assumption beyond
model consistency in the sense that δ and τ are modelled in such a way that δ > τ

so that default may only occur after conversion.
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Proposition 3 The discounted arbitrage-free price of the CoCo with write-down,
on the set {t < τ }, equals

π̃wd
t := (1 − R)KB̃(t, T)PT (τ > T | Ft) + RKB̃(t, T)PT (δ > T | Ft)

+
m∑

j: Tj>t

cjB̃(t, Tj)P
Tj (τj > Tj| Ft). (15)

Proof It suffices to notice that the payoff can be rewritten as

R1{δ>s}1{τ≤s} + 1{τ>s} = R1{δ>s}1{τ≤s} + (
R1{τ>s} + (1 − R)1{τ>s}

)
= R1{δ>s}1{τ≤s} + R1{τ>s}1{δ>s} + (1 − R)1{τ>s}
= R1{δ>s}

(
1{τ≤s} + 1{τ>s}

) + (1 − R)1{τ>s},

where for the second equivalence we have used the identity 1{τ>s}1{δ>s} = 1{τ>s},
which holds due to the consitency assumption τ < δ.

By comparing (9) with (15) we can see that the techniques used to price the CoCo
with conversion can be readily applied to CoCo with write-down. Across this work
we focus on the former contract.

3 A Model with Stochastic Interest Rates

In this section we assume that the price of default-free zero-coupon bonds are sto-
chastic. More specifically, for j ∈ {1, ..., m}, the default-free zero-coupon bond price
(B(t, Tj))t∈[0,Tj] is assumed to have the following P

∗-dynamics

dB(t, Tj)

B(t, Tj)
= rtdt +

d∑
k=1

bk(t, Tj)dWk
t , (16)

where each bk is a positive deterministic càdlàg function, and (W1
t , ..., Wd

t )t∈[0,T ] is a
d-dimensional Brownian motion with respect to the risk-neutral probability measure
P

∗ and the trader’s filtration F. We shall assume as well that the share price (St)t∈[0,T ]
obeys

dSt

St
= [rt − κ(t)]dt +

d∑
k=1

σk(t)dWk
t , (17)

where σ := (σk)
d
1 is a positive deterministic càdlàg function such that, for all t ∈

[0, Tj], the inequality
∥∥σ(t) − b(t, Tj)

∥∥ > 0 is satisfied.
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The conversion and coupon cancellation events in our model are linked to the
asset dividends and the evolution of bond prices, in such a way that conversion is
triggered as soon as (St)t≥0 crosses

�t := LmB(t, Tm) exp

{∫ Tm

t
κ(u)du

}
, 0 ≤ t ≤ Tm;

and similarly, for j ∈ {1, ..., m}, the j-th coupon cancellation is triggered as soon as
(St)t≥0 crosses

�
j
t :=

{
LjB(t, Tj) exp

{∫ Tj
t κ(u)du

}
, 0 ≤ t < Tj

Mj, t = Tj.
(18)

The parameters Mj and Lj are assumed to be given non-negative constants satisfying
Mj ≥ Lj, with Lm < Cp and

Lj+1

Lj
≤ exp

{
−
∫ Tj+1

Tj

κ(u)du

}
, j = 1, ..., m − 1, (19)

so that the required ordering �1t ≥ �2t ≥ · · · ≥ �m
t is fulfilled—thus ensuring that

0 ≤ τj ≤ Tj implies τj < τj+1, for j = 1, ..., m − 1. Clearly the Mertonian condition
(i.e., STj must be bigger than Mj) can be removed by taking Lj = Mj. See Fig. 1 for
an illustration of the barrier’s shape and parameters.

St

2
t

M2

L2

t

T0 T1 T2 T3 Tm

Fig. 1 The graph illustrates the share price (St)t≥0, along with the barriers �j and its parameters
Lj and Mj . The first barrier is hit at t = T1, whereas the third one is hit at some T2 < t < T3. On
the other hand, the second barrier is not hit since the share price stays above �2 on the whole period
[T0, T2], and the Mertonian condition is satisfied, i.e., ST2 > M2. Conversion is not triggered either
since the barrier � is never hit by (St)t≥0
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In the current setting, the process (Uj
t := log St

�j(t)
)t≥0 plays a fundamental role.

Indeed, from the definition of the random times τ and τj (see (14)) and the barriers
� and �j it follows that

{τ > Tm} =
{

inf
0≤t≤Tm

Um
t > 0

}
and {τj > Tj}

=
{

inf
0≤t≤Tj

Uj
t > 0, Uj

Tj
> log

Mj

Lj

}
, j = 1, ..., m.

From this observation we have that, in order to price the CoCo contract, we need to
be able to compute the conditional joint distribution of (Uj

Tj
, Uj

Tj
), where we have

defined Uj
Tj

:= inf0≤t≤Tj Uj
t . To this matter, notice that an application of the Itô

formula tells us that

dUj
t = −1

2

∥∥σ(t) − b(t, Tj)
∥∥2 dt + ∥∥σ(t) − b(t, Tj)

∥∥ dW
Tj
t .

where (W
Tj
t )t≥0 is the PTj -Brownian motion given by the Girsanov theorem, corre-

sponding to the probability change (6). In fact we can see that under P(S) we have
similar dynamics

dUj
t = 1

2

∥∥σ(t) − b(t, Tj)
∥∥2 dt + ∥∥σ(t) − b(t, Tj)

∥∥ dW (S)
t ,

where (W (S)
t )t≥0 is the P(S)-Brownian motion corresponding now to the probability

change (7). Consequently, a time change given by

aj(t) :=
∫ t

0

∥∥σ(s) − b(s, Tj)
∥∥2 ds, 0 ≤ t ≤ Tj, (20)

renders the fundamental process (Uj
t := log St

�j(t)
)t≥0 a drifted Brownian motion.

Then we can apply a known result (see [34]) on joint distribution of the Brownian
motion and its running infimum in order to obtain the following closed-formula for
the CoCo price. See details in [13].

Proposition 4 In the current setting, the CoCo arbitrage-free price, on the set {t <

τm}, is given by

πt =
m∑

j: Tj>t

1{t<τj}cj

⎛
⎝B(t, Tj)Φ(−dj

+ − Dj) − Ste− ∫ Tj
t κ(u)du

Lj
Φ(dj

− − Dj)

⎞
⎠ (21)

+ KB(t, Tm) +
(

Cr − K

Lm

)(
LmB(t, Tm)Φ(dm+) + Ste

− ∫ Tm
t κ(u)duΦ(dm−)

)
,
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where

dj
± = log

LjB(t,Tj)e
∫ Tj
t κ(u)du

St
± 1

2

∫ Tj
t

∥∥σ(u) − b(u, Tj)
∥∥2 du√∫ Tj

t

∥∥σ(u) − b(u, Tj)
∥∥2 du

, and

Dj = 1√∫ Tj
t

∥∥σ(u) − b(u, Tj)
∥∥2 du

log
Mj

Lj
, (22)

and Φ denotes the standard Gaussian cumulative distribution function.

3.1 The Black-Scholes Model and the Greeks

The Black-Scholes model is obtained as a particular case of the model above, by
taking default-free bond prices with null volatilities—i.e., by taking the b(·, Tj) in
(16) to be zero. Consequently, the closed-form price formula given by
Proposition 4 can be used in order to derive the Greeks, Delta Δ and Vega ν, which
respectively describe the CoCo’s price sensitivity to share price and volatility. We
have the following.

Proposition 5 Let Φ and φ denote, respectively, the standard Gaussian cumula-
tive distribution and density function. In the Black-Scholes model, the CoCo’s price
sensitivity to share price Δ := ∂πt

∂St
and to volatility ν := ∂πt

∂σ
are respectively given by

Δ =
m∑

j: Tj>t

1{t<τj}
cj

Lj

(
2

σ
√

Tj − t
φ(bj

−) − Φ(bj
−)

)

+
(

K

Lm
− Cr

)(
2

σ
√

Tm − t
φ(bm−) − Φ(bm−)

)
,

and

ν =
m∑

j: Tj>t

1{t<τj}
cj

Lj

log
Lj
St

− r(Tj − t)

σ 2
√

Tj − t

(
φ(−bj

+)Lje
−r(Tj−t) + Stφ(bj

−)
)

−
(

Cr − K

Lm

) log Lm
St

− r(Tm − t)

σ 2
√

Tj − t

(
φ(bm+)Lme

−r(Tm−t) + Stφ(bm−)
)

,

where

bj
± = log

Lj
St

− (r ∓ 1
2σ

2)(Tj − t)

σ
√

Tj − t
, j = 1, ..., m. (23)
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Some remarks are in order. On the one hand, it is has been documented that by
actively hedging the equity risk, investors can unintentionally force the conversion
by making the share price deteriorate and eventually trigger the conversion. This
situation is referred to as the death-spiral effect. Now, from the above expression for
the Delta Δ it can be checked that it is strictly positive, and in fact one can observe
that the Delta Δ increases sharply when the time to maturity T decreases. Thus one
of the conclusions in [13] is that the coupon cancellation feature leads to a flatter
behaviour of the Delta Δ, hence reducing the death-spiral risk. On the other hand, it
can also be checked that the Vega ν is strictly negative, this tell us that an increase in
the volatility translates into a decrease in the prices. Such observation is clearly in
line with the intuition that a higher volatility will increase the probability of crossing
the barriers � and �j defining the conversion and coupon cancellation events.

4 Advanced Models

4.1 Incorporating the Heston Stochastic Volatility Model

Let us start this section by remarking the fact that the arguments preceding the obtain-
ment of Proposition 4 hold even if the share and default-free bond price volatilities
(i.e., σ and b(·, Tj) in (17) and (16)) are no longer deterministic. However, the time
change aj in (20) would be now stochastic and, consequently, the time-changed
fundamental process dynamics

dUj
aj(t)

= −1

2
aj(t)dt + dW

Tj

aj(t)
, (24)

would no longer match those of a drifted Brownian motion. Thus one anticipates that
the pricing problem, in the setting of stochastic volatility, will lead to closed-form
formulas only in few cases, and require more advanced numerical tools otherwise.

As a particularmodel, we shall assume that the volatilities are stochastic according
to the work of [26]: we consider a new stochastic factor (Vt)t≥0 acting on both σ and
b(·, Tj), in such a way that the dynamics in (17) and (16) are now replaced by

dSt

St
= [rt − κ(t)]dt + √

Vt

d∑
k=1

σk(t)dWk
t , (25)

and

dB(t, Tj)

B(t, Tj)
= rtdt + √

Vt

d∑
k=1

bk(t, Tk)dWk
t , (26)
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respectively. The factor (Vt)t≥0 is given as the solution to the following SDE

dVt = [α − βVt]dt + γ
√

VtdZt,

where α, β and γ are constants, with 2α > γ 2 to ensure the positivity of the solution,
and (Zt)t≥0 is a one-dimensional PTj -Brownian motion. Similar dynamics under the
share measure P(S) are assumed to be satisfied by (Vt)t≥0.

If we further assume the independence between the noises driving the prices and
their volatilities, then we see that the PTj -Brownian motion in (24) is independent of
the (now stochastic) time change

aj(t) =
∫ t

0
Vs

∥∥σ(s) − b(s, Tj)
∥∥2 ds, 0 ≤ t ≤ Tj. (27)

Thus, by a preconditioning argument, we obtain the following extension of Proposi-
tion 4.

Proposition 6 In the current setting, the CoCo arbitrage-free price, on the set {t <
τm}, is given by

πt =
m∑

j,Tj>t

1{t<τj}cj

⎛
⎝B(t, Tj)E

Tj [Φ(−dj
+ − Dj)|Ft] − StE

Tj [Φ(dj
− − Dj)|Ft]

Lje
∫ Tj

t κ(u)du

⎞
⎠

+ KB(t, Tm)ETm [Φ(−dm−)| Ft] − KSt

Lje
∫ Tj

t κ(u)du
E

Tm [Φ(dm+)| Ft]

+ CrSte
− ∫ Tm

t κ(u)du
E

(S)[Φ(dm−)| Ft] + CrLmB(t, Tm)E(S)[Φ(dm+)| Ft],

where

dj
± = log

LjB(t,Tj)e
∫ Tj
t κ(s)ds

St
± 1

2

∫ Tm
t Vs

∥∥σ(s) − b(s, Tj)
∥∥2 ds√∫ Tj

t Vs
∥∥σ(s) − b(s, Tj)

∥∥2 ds
, (28)

and

Dj = 1√∫ Tj
t Vs

∥∥σ(s) − b(s, Tj)
∥∥2 ds

log
Mj

Lj
. (29)

From the pricing formula above we can see that the CoCo price is related to the
price of binary options. Indeed, for instance, for a binary option with maturity Tj and
strike Mj we have
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E
∗
[
e− ∫ Tj

t rudu1{STj <Mj}
∣∣∣∣Ft

]
= B(t, Tj)E

Tj
[

1{STj <Mj}
∣∣∣Ft

]

= B(t, Tj)P
Tj

(
Uj

Tj
≤ log

Mj

Lj

∣∣∣∣Ft

)
.

Moreover, according to our previous discussion, conditioned to FV
Tj

:= σ(Vs, 0 ≤
s ≤ Tj) the random variable Uj

Tj
is normally distributed, so that we also have

P
Tj

(
Uj

Tj
≤ log

Mj

Lj

∣∣∣∣Ft

)
= E

Tj [Φ(dj
+ + Dj)|Ft].

Let us now give an explicit computation of the probability above; this illustrates how
the CoCo price can be computed. For this matter, we use the relationship between
the characteristic and distribution functions (see for instance [38]) which allows us
to write

P
Tj

(
Uj

Tj
≤ log

Mj

Lj

∣∣∣∣Ft

)
= 1

2
+ 1

2π

∫ ∞

0

(
Mj
Lj

)iξ
ϕTj (t, Ut, Vt; −ξ) −

(
Mj
Lj

)−iξ
ϕTj (t, Ut, Vt; ξ)

iξ
dξ,

where

ϕTj (t, Ut, Vt; ξ) := E
Tj [exp{iξ(Uj

Tj
)}|Ft] = E

Tj [exp{iξ(Uj
Tj

)}|Ut, Vt], (30)

and the last equation holds by Markovianity. Hence the problem of computing
the probability above translates into the problem of finding an expression for
ϕTj (t, u, v; ξ). It follows from the Itô formula that

∂ϕTj

∂t
+ 1

2

∂2ϕTj

∂u2
vσ 2

Tj
+ 1

2

∂2ϕTj

∂v2
γ 2v − 1

2

∂ϕTj

∂u
vσ 2

Tj
+ ∂ϕTj

∂v
(α − βv) = 0, (31)

with the boundary conditionϕTj (Tj, u, v; ξ) = eiξu, andwhere σ 2
Tj

= ‖σ −b(·, Tj)‖2.
For an affine solution like

ϕTj (t, u, v; ξ) = eAj(Tj−t)+Bj(Tj−t)v+iξu, (32)

the PDE in (31) is reduced to the Riccati equation

{
∂Bj
∂t − 1

2γ
2B2

j + βBj = − ( 1
2ξ

2 − i
2ξ
)
σ 2

Tj
,

∂Aj
∂t = αBj,

(33)
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with Aj and Bj vanishing at t = Tj. As shown in [13], for a constant function σ 2
Tj
,

such equation is explicitly solved by

Bj(Tj − t) = −λ(ξ) + β

γ 2

exp
{−λ(Tj − t)

} − 1

exp
{−λ(Tj − t)

} + λ(ξ)+β
λ(ξ)−β

,

and

Aj(t) = −α
λ(ξ)−β
λ(ξ)+β

[
2
γ 2 log

(
(λ(ξ) − β) exp

{−λ(ξ)(Tj − t)
} + λ(ξ)+β

λ(ξ)−β

)

+λ(ξ)−β

γ 2 (Tj − t)
]
,

where λ(ξ) :=
√

β2 + γ 2σ 2
Tj

(ξ2 − iξ), and
√· denote the analytic extension of the

real square root to C \ R−.

4.2 An Exponential Lévy Model

In this section we shall consider an exponential Lévy model for the share price. As
opposed to the previous sections, we shall now consider a numerical approach to
pricing, based on exploiting the so-called Wiener-Hopf factorization of the driving
Lévy process (Xt)t≥0. This approach has been recently applied in order to price
contracts with path-dependent payoffs as in [12, 31]; see more details below.

4.2.1 First-Passage Times and Wiener-Hopf Factorization

Let (Xt)t≥0 be a Lévy process with characteristic triplet (μ, σ, ν), and denote its
characteristic exponent by ψX . For details and proofs of the following arguments we
refer to [1].

Recall that if e(λ) is an exponential randomvariablewith parameterλ, independent
of (Xt)t≥0, then we have the following equality in distribution

Xe(λ) = I + S,

where I and S are independent random variables, distributed as

Xe(λ) := inf
0≤u≤e(λ)

Xu and Xe(λ) := sup
0≤u≤e(λ)

Xu,

respectively. Moreover,

E
[
exp

{
zXe(λ)

}] = E
[
exp

{
zXe(λ)

}]
E
[
exp

{
zXe(λ)

}]
. (34)
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We shall refer to (34) as the Wiener-Hopf factorization. In fact, in general it holds
that

E
[
exp

{
zXe(λ)

}] = λ

λ − ψX(z)
.

Consequently, the knowledge of one of the factors in (34) allows us to establish the
other one. A particular case of interest arises when (Xt)t≥0 is a spectrally negative
process since, in this case, it is known that the right factor in (34) is given by

ψ+
λ (z) := E

[
exp

{
zXe(λ)

}] = βλ

βλ − z
, (35)

where βλ is a constant, depending on λ, defined as the solution to

ψX(β) = λ. (36)

Therefore, once we have computed βλ explicitly, we obtain the following expres-
sion for the left factor in (34):

ψ−
λ (z) := E

[
exp

{
zXe(λ)

}] = λ

λ − ψX(z)

βλ − z

βλ

. (37)

This expression can be linked to the distribution function of Xt by partial integration.
Indeed we have

ψ−
λ (z) =

∫ ∞

0
λe−λtdt

∫ 0

−∞
zezξ

P(Xt > ξ)dξ

= λz
∫ ∞

0

∫ ∞

0
e−λt−zξ F(t, ξ)dtdξ (38)

= λzF̃(λ, z)

where we have defined F(t, ξ) := P(Xt > −ξ), and denoted its Laplace transform
by F̃. As argued by [33], by combining (37) and (38)we can recoverF by the standard
Fourier transform inversion. Further, the result can be numerically computed in an
efficient way, provided the condition

lim
z→∞

1

z

∫ 0

−∞
[
ezx − 1 − zx1{|x|≤1}

]
ν(dx) = 0, (39)

holds true. This condition is imposed in order to facilitate the computation of βλ (i.e.,
the solution of (35)) by means of suitable integration contour change. In fact, such a
change allows to take βλ = λ/μ. This result is summarized in the following lemma.



196 J.M. Corcuera and A. Valdivia

Lemma 7 For fixed t and ξ , and given the parameter set (A1, A2, l1, l2, N1, N2),
define

a1 := A1

2tl1
, a2 := A2

2ξ l2
, h1 := π

tl1
, h2 := π

ξ l2
, g(x) := ψX(x/μ)

and, for every N ∈ N,

sN (t, ξ) := h1h2
4π2

N∑
n=−N

N∑
k=−N

dg

dx
(a1 + inh1)

F̃(g(a1 + inh1), a2 + ikh2)e
tg(a1t+inh1)+x(a2+ikh2).

If the condition (39) is satisfied, then the following approximation holds true

P(Xt > ξ) �
N2∑

n=0

(
N2

n

)
sN1+n(t, ξ),

where the symbol � indicates an Euler summation.

The double sum in the lemma is used as an initial approximation of F. Here the
parameters (A1, A2, l1, l2) are positive real numbers chosen large enough in order to
control the aliasing error. The final Euler summation is used in order to improve the
accuracy of the raw approximation sN . It is suggested that choosing A1 = A2 = 22,
l1 = l2 = 1, N1 = 12 and N2 = 15 gives satisfactory results. For further details see
[33] and references therein.

4.2.2 The One-Sided CGMY Lévy Process

Hereafter we shall focus on a particular spectrally negative Lévy process (Xt)t≥0
known as one-sided CGMY process, or simply CMY process. This process has no
continuous part, and only one-sided jumps with its Lévy measure being given by

ν(dx) = C exp{−Mx}|x|−1−Y 1{x<0}dx, (40)

where C, M > 0 and Y < 1 are constants. Further, its characteristic exponent can
be obtained in closed-form as

ψX(z) = μz +
∫ 0

−∞
[
ezx − 1 − zx1{|x|≤1}

]
ν(dx)

= μz + CΓ (−Y)((M + z)Y − MY ), (41)
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where Γ stands for the Gamma function. Thus it is apparent that the condition (39)
holds true. Before we proceed, let us mention that the CGMY processes are also
referred to as Tempered stable processes. On the other hand, by setting the parameter
Y = 0 (resp., Y = 1/2) the CMY process becomes a Gamma process (resp., Inverse
Gaussian process). For details on CMYprocesses we refer to [4, 31] and [36, Section
2.3.5].

In order to price CoCos we need to understand the behavior of (Xt)t≥0 both under
the risk-neutral measure P∗ and the share measure P(S). The following result shows
how the Lévy characteristics of (Xt)t≥0 change under Esscher transforms.

Lemma 8 For every real number θ , consider the probability measurePα , equivalent
to P, given by

dPα

dP
= exp {αXT }

E
[
exp {αXT }] .

Assume Mα := M − α > 0. Then the Lévy exponent of (Xt)t≥0 under Pα is given by

ψα
X (z) := zμα +

∫ 0

−∞
[
ezx − 1 − zx1{|x|≤1}

]
να(dx),

where

μα := μ +
∫
|x|≤1

x(eαx − 1)ν(dx), and να(dx) := C exp{−Mαx}|x|−1−Y 1{x<0}dx.

Proof The first part follows from (41) and [35, Theorems 33.1 and 33.2]. Now, using
the expression in (40) we have

να(dx) = C exp{−(M − α)x}|x|−1−Y 1{x<0}dx = C exp{−Mαx}|x|−1−Y 1{x<0}dx.

The assumption Mα > 0 assures that (C, Mα, Y) is a rightful parameter set for a
CMY distribution.

4.2.3 Application to CoCos

We shall assume that, under P∗, there is a pure-jump (C, M, Y )-Lévy process (Xt)t≥0
driving the share price (St)t≥0 in such a way that

St := e(r−κ)t exp {Xt}
E∗ [exp {Xt}

] = exp{μt + Xt}, t ≥ 0,

where the interest rate r and the dividends κ are assumed to be constants, and we
define� := − logE∗[eX1 ] and setμ := r −κ +� . Further, we shall assume that the
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parameter M is bigger than 1. We remark here that, on the one hand, this technical
assumption will allow us to accommodate the Variance Gamma (VG) process con-
sidered in [30]. On the other hand, this assumption is consistent with the numerical
experiments reported by [31].

Proposition 9 In the current setting, the price of a CoCo at time 0 ≤ t ≤ T can be
numerically approximated in an efficient way by means of the expression

πt ≈
m∑

j: Tj>t

e−r(Tj−t)P0
j (t, Tj) + Ke−r(Tm−t)P0

m(t, Tm) + CrSte
−κ(Tm−t)P1

m(t, Tm),

where

Pα
j (t, Tj) �

N2∑
n=0

(
N2

n

)
sα

N1+n

(
Tj − t, log St

�j(t)
+ �(Tj − t)

)
, j = 1, ..., m, α = 0, 1,

(42)
with the symbol � indicating an Euler summation, and

sα
N (t, ξ) :=

N∑
n=−N

N∑
k=−N

μα + YCΓ (−Y)
(
Mα + μ−1

α t
)Y−1

4μαtξ l1l2

F̃α(gα(a1 + inh1), a2 + ikh2)e
tgα(a1t+inh1)+x(a2+ikh2),

with the parameters (a1, a2, h1, h2, l1, l2, N1, N2) given as in Lemma 7, and

F̃α(λ, z) := λ − zμα(
λ − zμα − CΓ (−Y)((Mα + z)Y − MY

α )
)

zλ
,

gα(x) := x + CΓ (−Y)

((
Mα + μ−1

α x
)Y − MY

α

)
, α = 0, 1,

where Mα and μα are defined in Lemma 8.

Proof Taking into account the general expression for theCoCo price (c.f. Proposition
2), computing πt boils down to compute

P0
j (t, Tj) := P

∗ (τj > Tj
∣∣Ft

) = P
∗(XTj−t > −ξ)

∣∣∣
ξ=log(St/�j(t))+�(Tj−t)

,

for j = 1, ..., m, and

P1
m(t, Tm) := P

(S) ( τm > Tm|Ft) = P
(S)(XTm−t > −ξ)

∣∣∣
ξ=log(St/�m(t))+�(Tm−t)

.

These computations can be carried out by means of Lemma 7. Indeed, under this
exponential Lévy model, the share measure P

(S) (resp., risk-neutral measure P
∗)
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coincides with an Esscher transform of parameter α = 1 (resp., α = 0). In light
of Lemma 8, the driving noise (Xt)t≥0 will remain a CMY process under P(S), but
now having the shifted parameter set (C, M1, Y) = (C, M − 1, Y). Moreover, this
implies that the Lévy measure of (Xt)t≥0 also satisfies the condition (39) under P(S).
Thus, if we write P0 = P

∗ and P1 = P
(S), by the reasoning in Sect. 4.2.1 we see that

the Laplace transform of Fα(t, ξ) := P
α(Xt > −ξ) is given by F̃α as defined above.

Moreover, the correspondent contour change is given by gα .

Remark 10 [12] provides an alternative approach which exploits the Wiener-Hopf
factorization in a different way: instead of computing first-time passage probabil-
ities as done here, what is computed is the joint density of (Xt, Xt). As the noise
driving share prices, the authors consider the so-called Beta-Variance Gamma (β-
VG) process—also referred to asLamperti-Stable process by [3]—which exhibits the
same exponential decay as the Variance Gamma process, hence leading to a smile-
conform model. For this β-VG process the distribution of the variables Xe(λ) and
Xe(λ) can be specified, thus obtaining the Wiener-Hopf factors ψ+

λ and ψ−
λ . Taking

(8) into account, combining the knowledge of the (Xt, Xt) density with a Monte-
Carlo technique due to [29], the authors provide an efficient numerical pricing of
CoCos.

5 Triggering Conversion Under Short-Term Uncertainty

Linking credit events to themovements of a fully observable (i.e.,F-adapted) process
(Ut)t≥0 is certainly one of the most appealing features of structural models. Indeed,
this full observability assumption—hereafter referred to as (A1)—gives rise to clear
and analytically tractable models as we have seen in the previous sections. When
considering contingent capital contracts such as CoCos, however, the assumption
(A1) seems arguable since in most cases regulatory capital depends on the balance
sheets of the issuer, and those sheets are updated only at a series of predetermined
dates (tj)t∈N. Thusweare interested in considering the followingpartial observability
assumption.

Assumption (A1′). The fundamental process (Ut)t≥0 is fully observable only at
predetermined dates (tj)t∈N.

On the other hand, when the process (Ut)t≥0 is related to the share price, it is
also commonly assumed that the correlation between the noises driving the share
price and (Ut)t≥0 is equal to ρ = 1 (or ρ = −1)—hereafter this assumption will be
referred to as (A2). Nevertheless, it would be reasonable to consider the chance that a
different (possibly time-dependent) correlation parameter ρ ∈ [−1, 1] may provide
a better fit. Consequently we are also interested in considering the correlation ρ as
an additional rightful model parameter by taking the following alternative to (A2).

Assumption (A2′). The correlation ρ between the noises driving the share price and
(Ut)t≥0 may vary.



200 J.M. Corcuera and A. Valdivia

In what follows we revisit the simple framework of Sect. 3.1 in order to illustrate
these ideas and show how the pricing problem is modified under (A1′) and (A2′). For
a full study of this short-term uncertainty model we refer to the forthcoming paper
[15].

5.1 Pricing CoCos on a Black-Scholes Model Under
Short-term Uncertainty

As shown in Sect. 3.1, in the Black-Scholes model,

dSt = St([r − κ]dt + σdW∗
t ),

the cancellation of the j-th coupon is triggered as soon as the process

dUt := d log
St

�t
= −1

2
σ 2dt + σdW∗

t ,

crosses the critical value log
Mj
Lj
, j = 1, ..., m, whereas for conversion zero is the

critical level. In this settingAssumption (A2′) is translated as the correlation structure
between the noise driving (St)t≥0 and that of the new process

dUt(ρ) := −1

2
σ 2dt + σdWρ

t := −1

2
σ 2dt + σd(ρW∗

t +
√
1 − ρ2Zt), (43)

where ρ is the given correlation parameter, and (Zt)t≥0 is a second Brownian motion,
independent of (W∗

t )t≥0. Thus, instead of the process (Ut)t≥0 above, we shall now
consider the parametric family (Ut(ρ))t≥0 whose driving noise (Wρ

t )t≥0 is also a
Brownian motion but correlated to (W∗

t )t≥0, in such a way that dWρ
t dW∗

t = ρdt.
Further, the time at which the j-th coupon may be cancelled is given by

τj(ρ) := inf

{
t ≥ 0 : Ut(ρ) ≤ log

Mj

Lj

}
.

As for Assumption (A1′), notice that the full information flow corresponds to

Gt := σ(W∗
s , Zs, 0 ≤ s ≤ t) = FW∗

t ∨ F Z
t , t ≥ 0,

whereas, setting �t� := min{tj ∈ {0, t1, t2, ...} : tj ≤ t < tj+1}, the information
available to the modeller is now given by

F̃t := FW∗
t ∨ σ(Zs, 0 ≤ s ≤ �t�) = FW∗

t ∨ F Z�t�, t ≥ 0.
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Since Gt ⊇ F̃t , and the equality holds only at the predetermined dates {tj, j ∈ N},
we can think of (Zt)t≥0 as an extra source of noise which clears out at update times
(tj)j∈N. The fact that the extra noise is cleared out at (tj)j∈N motivates the notion of
short-term uncertainty, and it has two important implications. On the one hand, our
model differs from other partial or incomplete informationmodels like [9, 10, 21], or
[25] since the information structure is different.On the other hand, as opposed to other
structural models, the short-term uncertainty considered here prevents the conversion
time τj(ρ) from being a stopping timewith respect to the reference filtrationF, which
is generated by the relevant state variables and the risk-free market. Hence, one can
investigate conditions under which τj(ρ) admits an intensity, as done by [9, 21], or
[27].

5.2 Coupon Cancellation Probabilities Under Short-Term
Uncertainty

Let us show how the coupon cancellation probabilities are modified under the
assumptions (A1′) and (A2′). We begin by defining two auxiliary processes

ζt := σ
√
1 − ρ2(Zt − Z�t�) and ξt := ρ log

St

S�t�
+ ρ log

�t

��t�
, t ≥ 0.

These processes have an important role in the computations within our short-term
uncertainty model since they appear implicitly in (Ut(ρ))t≥0 according to the fac-
torization

Ut(ρ) = (
U�t�(ρ) + ξt

) + ζt . (44)

It is apparent that the term between parentheses belongs to F̃t = FW∗
t ∨ F Z�t�. On

the other hand, ζt is independent of F̃t , and it is normally distributed with zero mean
and variance

ν2(t) := (1 − ρ2)(t − �t�)σ 2.

We note here that the variance ν2(t) represents a key quantity within this frame-
work. Indeed, on the one hand, it actually encodes the two new features of our
model: the factor 1 − ρ2 measures how close (St)t≥0 and (Ut)t≥0 are to being com-
pletely correlated; whereas the factor t − �t� measures the elapsed time from the
last information update. On the other hand, as the following result suggests, coupon
cancellation probabilities and other analytical formulas obtained within our model
depend explicitly on ν(t).
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Proposition 11 For every x ∈ R define the random time τx(ρ) := inf {s ≥ 0 : Us

(ρ) ≤ x}. Then, for every 0 ≤ t ≤ T, the following equation holds true on {τ > �t�}

P
∗(τx(ρ) > T |F̃t) = E

∗
[
Φ

(
−D− + ζt

σ
√

T − t

)]
− e−(U�t�(ρ)−x)

(
S�t���t�

St�t

)

E
∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]
,

where the expectations above are restricted to the values

D± = x − U�t�(ρ) − ξt ± 1
2σ

2(T − t)

σ
√

T − t
. (45)

Moreover,

E
∗
[
Φ

(
−D− + ζt

σ
√

T − t

)]
=
∫
R

Φ

(
−D− + zν(t)

σ
√

T − t

)
φ(z)dz (46)

and

E
∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]
= e

1
2 ν2(t)

∫
R

Φ

(
D+ − zν(t) − ν2(t)

σ
√

T − t

)
φ(z)dz,

(47)
whereΦ and φ stand, respectively, for the standard Gaussian cumulative distribution
and density functions.

Proof Since under Gt the computation is known, for every t = tj we have, on
{τx(ρ) > t},

P
∗(τx(ρ) > T |F̃tj ) = P

∗(τx(ρ) > T |Gtj )

= Φ

(−x + Utj (ρ) + 1
2σ

2(T − tj)

σ
√

T − tj

)
− e−(Utj (ρ)−x)

Φ

(
x − Utj (ρ) + 1

2σ
2(T − tj)

σ
√

T − tj

)
.

Define

d1±(t) = x − Ut(ρ) ± 1
2σ

2(T − t)

σ
√

T − t
.
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For t /∈ {tj, j ∈ N}, by conditioning we get, on {τx(ρ) > �t�},

P
∗(τx(ρ) > T |F̃t) = E

∗ [
P

∗(τx(ρ) > T |Gt)
∣∣ F̃t

] = E
∗ [Φ

(
−d1−(t)

)∣∣∣ F̃t

]

− E
∗ [e−(Ut(ρ)−x)Φ

(
d1+(t)

)∣∣∣ F̃t

]
.

In these terms, for �t� < t, the first summand above satisfies

E
∗ [Φ (−d−(t))| F̃t

] = E
∗
[
Φ

(
−D− + ζt

σ
√

T − t

)]
,

where the right-hand side of the expectation above is restricted to the value of D−
given in (45); in fact the equation above reduces to (46) since ζt ∼ N(0, ν2(t)) for
every fixed t ≥ 0. Similarly for the second summand, it follows from (44) that

E
∗ [ e−(Ut (ρ)−x)Φ

(
d1+

)∣∣∣ F̃t

]
= e−(U�t�(ρ)−x+ξt )E

∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]

= e−(U�t�(ρ)−x)
(

S�t���t�
St�t

)
E

∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]
.

In order to obtain (47), let us consider the change of measure given by

dP
′

dP∗ = exp

{
ζt − 1

2
ν2(t)

}
= exp

{∫ T

0
σ
√
1 − ρ21[�t�,t](s)dZs

−1

2

∫ T

0
[σ
√
1 − ρ21[�t�,t](s)]2ds

}
.

In virtue of the Girsanov theorem, the process

Z
′
s := Zs −

∫ s

0
σ
√
1 − ρ21[�t�,t](u)du, s ≥ 0,

follows a P
′
-Brownian motion. Thus

E
∗
[
eζt− 1

2 ν2(t)
Φ

(
D+ − ζt

σ
√

T − t

)]
= E

P
′
[
Φ

(
D+ − ζt

σ
√

T − t

)]

= E
P

′
[
Φ

(
D+ −

∫ T
0 σ

√
1 − ρ21[�t�,t](s)dZ

′
s + ν2(t)

σ
√

T − t

)]

=
∫
R

Φ

(
D+ − x + ν2(t)

σ
√

T − t

)
exp

{
− x2

2ν2(t)

}
√
2πν2(t)

dx

=
∫
R

Φ

(
D+ − ν(t)z + ν2(t)

σ
√

T − t

)
φ(z)dz,
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where the first equivalence follows from the abstract Bayes’ rule, and for the last
equivalence we have simply used the standard change of variables z = x

ν(t) .

Jeanblanc and Valchev [27] study the role of information on defaultable-bond
prices within a Black-Scholes setting, with constant parameters and flat default bar-
rier. In some sense, the short-term uncertainty model considered here can be seen
as a bivariate extension of [27]. Despite this analogy, immediate differences arise.
For instance, the survival probabilities obtained by [27] are constant between obser-
vation dates, i.e., within each interval [tj, tj+1). Whereas in Proposition 11 these
probabilities vary in continuous time. This difference relies on the fact that, event
though within each interval [tj, tj+1) our knowledge of the short-term noise ζt is
constant, we still fully observe the evolution of (St)t≥0 and all the other F-adapted
state variables.

In order to conclude this section, let us recall that in light of our discussion
in Sect. 3.1, CoCo prices can be obtained in our current setting once we compute
expressions of the form

P
∗(τj(ρ) > Tj, STj > Lj|F̃t), and P

(S)(τm(ρ) > Tm, STm > Lm|F̃t).

It is worth noticing that the F̃t-conditional joint distribution of (τj(ρ), STj ) =
(infs≤Tj Us(ρ), STj ) cannot be computed directly from Proposition 11 since the
entries of this vector are driven by two different (though correlated) Brownian
motions. An additional complication comes from the fact that the current infor-
mation about one of them might be incomplete. The aforementioned distribution,
and full details on the model, can be found in [15].

6 Extension Risk

According to the new regulatory Basel III framework, CoCos can be categorised as
either belonging to the Additional Tier 1 or Tier 2 capital category. In order to belong
to the former class, a CoCo is supposed to have the coupon cancellation feature and,
further, no fixedmaturity is to be imposed to the contract. Instead, the issuer is entitled
to redeem the CoCo at any of the prespecified call times {Ti, i ∈ N}. Moreover, as
opposed to the common practice on callable contracts before the 2008 financial crisis,
the definition of this contract does not contain any incentive (e.g., a coupon step-up)
for the issuer to redeem at the first call date. Investing in such a contract has the
inherent risk of a financial loss due to the lengthening of the (investor’s) expected
maturity duration which ultimately postpones the payment of the face value K . This
risk is referred to as extension risk. Two recent papers [14, 18] have addressed the
problem of pricing CoCos belonging to the Additional Tier 1 capital category. As an
illustration, let us revisit the Black-Scholes model in Sect. 3.1.

In order to emphasize the correspondence with call times, we add now an extra
index i ∈ N to the coupon structure, in such a way that a coupon cij will be paid
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at Tij provided τij > Tij. It will be assumed that for every i ∈ N the ordering
Ti−1 < Ti1, ... ≤ Tim := Ti holds, where we set T0 := 0. For the sake of clarity, let
us remark that in the current setting, the barriers in (18) and their parameters become

�ij(t) :=
{

Lije−(r−κ)(Tij−t), 0 ≤ t < Tij

Mij, t = Tij.

From the issuer’s point of view, the question of whether to postpone or not the
face value K payment depends on which alternative is cheaper. Hence, similarly to
the situation of Bermuda options (see for instance [37]), the discounted price of a
CoCo belonging to Additional Tier 1 capital category equals

Π̃t :=
⎧⎨
⎩

inf
θ∈Tn

E
∗
[

Z̃(n)
θ

∣∣∣FTn

]
, t = Tn ∈ {Ti, ∈ N} (a)

E
∗ [ π̃Tn+1

∣∣Ft
]
, t ∈ (Tn, Tn+1), (b)

(48)

where Tn stands for the set of stopping times taking values in {Ti, i ≥ n} and

Z̃(n)
θ =

l:Tl=θ∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij,STij >Mij} + Ke−rθ 1{τ>θ} + K

Cp
eκτ S̃τ 1{τ≤θ}.

It is important to remark that even though the general optimal stopping theory allows
us to characterize the solution to the optimization problem in (48a), this is not enough
to tackle whole pricing problem. Indeed, the solution to (48a) must be obtained in
a relatively explicit way in order to be able to give a reasonable expression for the
price in-between call dates (48b). Here we shall address the finite horizon case, i.e.,
the case where there are only finitely many call dates {T1, ..., TN } and TN < ∞.

In this case, for every fixed Tn, the solution to the optimization problem in (7.6.1)
is related to the lower Snell envelope (Ỹ (n)

k )k∈{n,...,N} of the process (X̃(n)
k )k∈{n,...,N}

given by

X̃(n)
k := Z̃(n)

Tk
= Ke−rTk 1{τ>Tk} + K

Cp
eκτ S̃τ 1{τ≤Tk} +

k∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij,STij >Mij}.

Having a finite horizon allows us to obtain (Ỹ (n)
k )k∈{n,...,N} by means of the following

backwards procedure

Ỹ (n)
k =

{
X̃(n)

N , k = N

min
{

X̃(n)
k ,E∗

[
Ỹ (n)

k+1

∣∣∣FTk

]}
, k = N − 1, ..., n.

(49)
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As it turns out, the lower Snell envelope (Ỹ (n)
k )k∈{n,...,N} can be obtained in a rather

explicit form. Indeed, for the first iteration of (49), if τ > Tn then what we have is
the raw expression

Ỹ (n)
N−1 = min

{
X̃(n)

N−1,E
∗ [ X̃(n)

N

∣∣∣FTN−1

]}

= min

{
Ke−rTN−11{τ>TN−1} + K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij , STij >Mij},

E
∗
[

Ke−rTN 1{τ>TN } + K

Cp
eκτ S̃τ 1{τ≤TN } +

N∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij , STij >Mij}
∣∣∣∣FTN−1

]}

= K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij} (50)

+ 1{τ>TN−1} min

{
Ke−rTN−1 ,

E
∗
[

Ke−rTN 1{τ>TN } + K

Cp
eκτ S̃τ 1{τ≤TN } +

m∑
j=1

c̃Nj1{τNj>TNj ,STNj >MNj}
∣∣∣∣FTN−1

]⎫⎬
⎭

= K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij} + 1{τ>TN−1} min
{

Ke−rTN−1 , π̃TN−1

}
,

where as in the previous section, π̃TN−1 denotes the price of CoCo here with maturity
TN and coupon structure (cNj, TNj, τNj)

m
j=1. Due to the share price Markovianity, the

price π̃TN−1 can be seen as function of STN−1 ; we denote this function simply by
π̃TN−1(x). Now, as discussed in Sect. 3.1, the CoCo has a positive Delta, thus the
function π̃TN−1(x) is increasing and we can find a value S∗

N−1 such that

S∗
N−1 := inf

{
x > 0 : π̃N (x) ≥ Ke−rTN−1

}
.

Hence we obtain

Ỹ (n)
N−1 = K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij}

+ Ke−rTN−11{τ>TN−1,STN−1≥S∗
N−1} + π̃TN−11{τ>TN−1,STN−1<S∗

N−1}

= Ke−rTN−11{τ>TN−1,STN−1≥S∗
N−1} + K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij} (51)

+ E
∗
[

Ke−rTN 1{τ>TN ,STN−1<S∗
N−1} + K

Cp
eκτ S̃τ 1{STN−1<S∗

N−1,TN−1<τ≤TN }

m∑
j=1

c̃Nj1{τNj>TNj ,STNj >MNj ,STN−1<S∗
N−1}

∣∣∣∣FTN−1

]
.

So far we can see that basically all indicator functions appearing originally in (50),
has been augmented in (51) by an additional condition on STN−1 (i.e., STN−1 < S∗

N−1
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or STN−1 ≥ S∗
N−1). In [14] it has been shown that the computation of the Snell envelop

(Ỹ (n)
k )k∈{n,...,N} can be carried out bymeans of the above backward procedure. In fact,

it can be seen that the payoff of a CoCo having the callability feature can be written
in terms of

cij1{τij>Tij,ST0<S∗
0 ,...,STi−1<S∗

i−1,STij >Mij} at times Tij, i ≥ 1,

K1{τ>Ti,ST0<S∗
0 ,...,STi−1<S∗

i−1,STi >S∗
i } at Ti, i ≥ 1,

K

Cp
eκτ Sτ 1{�τ�≤TN ,ST0<S∗

0 ,...,S�τ�−1<S∗�τ�−1} at τ,

where �τ� is the element of {T1, ..., TN } such that �τ� − 1 < τ ≤ �τ�, and the
additional variables S∗

1 , ..., S∗
N−2 are defined by analogous reasoning to that behind

the obtainment of S∗
N−1. Here S∗

0 := ∞ and S∗
N := 0 are set by convention.

Proposition 12 If the CoCo with extension risk is active and conversion has not
occurred, then its discounted arbitrage-free price is given by

Π̃t =
∑

i,j: Tij>t

c̃ijP
∗ ( τij > Tij, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STij > Mij,

∣∣∣Ft

)

+
∑

i: Ti>t

K̃P
∗ ( τ > Ti, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STi > S∗

i

∣∣Ft
)

(52)

+
N∑

i=1

K

Cp
eκ(Ti−t)S̃tP

(S)
(
τ ≤ Ti, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STi ≥ S∗

i

∣∣Ft
)
.

Proof With the explicit description of the payoff corresponding to the CoCo with
extension risk, the result is obtained as in Proposition 2, here taking into account the
following identity

{
�τ� ≤ TN , ST0 < S∗

0 , ..., S�τ�−1 < S∗�τ�−1

}

= �N
i=1{τ ≤ Ti, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STi ≥ S∗

i }.

In view of this proposition, the obtainment of a closed-form formula for the price
CoCo with extension risk requires the knowledge of the conditional distribution
of (τ, ST0 , ST1 , ..., STi ) for i = 1, ..., N . In the Black-Scholes model, this can be
achieved by means of the following general lemma obtained in [14].

Lemma 13 Let (Bt)t≥0 be a Brownian motion with drift μ and volatility σ , and
denote by τ its first-passage time to level zero. Then, for arbitrary instants T1 <
· · · < Tn and arbitrary non-negative constants a1, ..., an, on {τ > t} the following
equation holds true
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P
(
τ ≥ Tn, BT1 < a1, ..., BTn−1 < an−1, BTn > an

∣∣Ft
)

= P
(−a1 < BT1 < a1, ..., −an−1 < BTn−1 < an−1, BTn > an

∣∣Ft
)

−e−2μσ−1BtP
(−a1 < B̄T1 < a1, ...,−an−1 < B̄Tn−1 < an−1, B̄Tn < −an

∣∣Ft
)
,

where B̄Tj = BTj − 2μ(Tj − t), j = 1, ..., n, and (Ft)t≥0 stands for the natural
filtration generated by (Bt)t≥0.
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