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Abstract For Hölder continuous functions W (t, x) and ϕt , we define nonlinear
integral

∫ b
a W (dt, ϕt ) via fractional calculus. This nonlinear integral arises naturally

in the Feynman-Kac formula for stochastic heat equations with random coefficients
(Hu and Lê, Nonlinear Young integrals and differential systems in Hölder media.
Trans. Am. Math. Soc. (in press)). We also define iterated nonlinear integrals.

Keywords Nonlinear integration · Young integral · Iterated nonlinear Young
integrals

1 Introduction

Let {ϕt , t ≥ 0} be a Hölder continuous function and let {W (t, x), t ≥ 0 , x ∈ R
d}

be another jointly Hölder continuous function of several variables (see (10) for the
precise statement about the assumption on W ). The aim of this paper is to define the
nonlinear Young integral

∫ b
a W (dt, ϕt ) by using fractional calculus.

This paper can be considered as supplementary to authors’ recent paper [5], where
the nonlinear Young integral is introduced to establish the Feynman-Kac formula for
general stochastic partial differential equations with random coefficients, namely,

∂t u(t, x) + Lu(t, x) + u(t, x)∂t W (t, x) = 0 , (1)
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where W is a Hölder continuous function of several variables (which can be a sample
path of a Gaussian random field) and

Lu(t, x) = 1

2

d∑
i, j=1

ai j (t, x, W )∂2xi x j
u(t, x) +

d∑
i=1

bi (t, x, W )∂xi u(t, x)

with the coefficients ai j and bi depending on W . The terminal condition for the
Eq. (1) is u(T, x) = uT (x) for some given function uT (x).

To motivate our study of the nonlinear Young integral, let us recall a basic result
in [5] on the Feynman-Kac formula: Let σ(t, x) = (σi j (t, x, W ))1≤i, j≤d satisfy
a(t, x, W ) = σ(t, x, W )σ (t, x, W )T (we omit the explicit dependence of σ on W ).
Consider the following stochastic differential equation

d Xr,x
t = σ(t, Xr,x

t )δBt + b(t, Xr,x
t )dt, 0 ≤ r ≤ t ≤ T, Xr,x

r = x, (2)

where (Bt , 0 ≤ t ≤ T ) is a standard Brownian motion and δBt denotes the
Itô differential. Then it is proved in [5] that under some conditions b and σ and
W (which are verified for certain Gaussian random field W ), the nonlinear inte-
gral

∫ T
r W (ds, Xr,x

s ) is well-defined and exponentially integrable and u(r, x) =
E

B
{

uT (Xr,x
T ) exp

[∫ T
r W (ds, Xr,x

s )
]}

is a Feynman-Kac solution to (1)withu(T, x)

= uT (x). One of the main tasks in that paper is the study of the nonlinear Young
integral

∫ T
r W (ds, Xr,x

s ). To this end we used the Riemann sum approximation and
the sewing lemma of [2]. In this paper, we shall study the nonlinear Young inte-
gral

∫ b
a W (dt, ϕt ) by means of fractional calculus. This approach may provide more

detailed properties of the solutions to the equations (see [6, 7]).
Under certain conditions, we shall prove that the two nonlinear Young integrals,

defined by Riemann sums (through sewing lemma) or by fractional calculus, are the
same (see Proposition 2).

To expand the solution of a (nonlinear) differential equation with explicit remain-
der term we need to define (iterated) multiple integrals (see [3]). We shall also give a
definition of the iterated nonlinear Young integrals. Some elementary estimates are
also obtained.

The paper is organized as follows. Section2 briefly recalls some preliminary
material on fractional calculus that are needed later. Section3 dealswith the nonlinear
Young integrals and Sect. 4 is concerned with iterated nonlinear Young integrals.

2 Fractional Integrals and Derivatives

In this section we recall some results from fractional calculus.
Let −∞ < a < b < ∞, α > 0 and p ≥ 1 be real numbers. Denote by L p(a, b)

the space of all measurable functions on (a, b) such that
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‖ f ‖p :=
⎛
⎝

b∫

a

| f (t)|pdt

⎞
⎠

1/p

< ∞ .

Denote byC([a, b]) the space of continuous functions on [a, b]. Let f ∈ L1 ([a, b]).
The left-sided fractional Riemann-Liouville integral I α

a+ f is defined as

I α
a+ f (t) = 1

Γ (α)

t∫

a

(t − s)α−1 f (s) ds , t ∈ (a, b) (3)

and the right-sided fractional Riemann-Liouville integral I α
b− f is defined as

I α
b− f (t) = (−1)−α

Γ (α)

b∫

t

(s − t)α−1 f (s) ds , t ∈ (a, b) (4)

where (−1)−α = e−iπα and Γ (α) = ∫ ∞
0 rα−1e−r dr is the Euler gamma function.

Let I α
a+(L p) (resp. I α

b−(L p)) be the image of L p(a, b) by the operator I α
a+ (resp.

I α
b−). If f ∈ I α

a+ (L p) (resp. f ∈ I α
b− (L p)) and 0 < α < 1, then the (left-sided or

right-sided) Weyl derivatives are defined (respectively) as

Dα
a+ f (t) = 1

Γ (1 − α)

⎛
⎝ f (t)

(t − a)α
+ α

t∫

a

f (t) − f (s)

(t − s)α+1 ds

⎞
⎠ (5)

and

Dα
b− f (t) = (−1)α

Γ (1 − α)

⎛
⎝ f (t)

(b − t)α
+ α

b∫

t

f (t) − f (s)

(s − t)α+1 ds

⎞
⎠ , (6)

where a ≤ t ≤ b (the convergence of the integrals at the singularity s = t holds point-
wise for almost all t ∈ (a, b) if p = 1 and moreover in L p-sense if 1 < p < ∞).

It is clear that if f is Hölder continuous of order μ > α, then the two Weyl
derivatives exist.

For any β ∈ (0, 1), we denote by Cβ([a, b]) the space of β-Hölder continuous
functions on the interval [a, b]. We will make use of the notation

‖ f ‖β;a,b = sup
a<θ<r<b

| f (r) − f (θ)|
|r − θ |β

(which is a seminorm) and

‖ f ‖∞;a,b = sup
a≤r≤b

| f (r)|,
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where f : R → R is a given continuous function.
It is well-known that Cβ([a, b]) with the Hölder norm ‖ f ‖β;a,b + ‖ f ‖∞;a,b is a

Banach space. However, it is not separable.
Using the fractional calculus, we have (see [9] and also [3])

Proposition 1 Let 0 < α < 1. If f and g are continuously differentiable functions
on the interval [a, b], then

b∫

a

f dg = (−1)α
b∫

a

(
Dα

a+ f (t)
) (

D1−α
b− gb− (t)

)
dt, (7)

where gb− (t) = g (t) − g (b).

In what follows κ denotes a universal generic constant depending only on λ, τ, α

and independent of W , ϕ and a, b. The value of κ may vary from occurrence to
occurrence.

For two function f, g : [a, b] → R, we can define the Riemann-Stieltjes integral∫ b
a f (t)dg(t). Here we recall a result which is well-known (see for example [3, 9]
or [6, 7]).

Lemma 1 Let f and g be Hölder continuous functions of orders α and β respec-
tively. Suppose that α + β > 1. Then the Riemann-Stieltjes integral

∫ b
a f (t)dg(t)

exists and for any γ ∈ (1 − β, α), we have

b∫

a

f (t)dg(t) = (−1)γ
b∫

a

Dγ
a f (t)D1−γ

b− gb−(t)dt . (8)

Moreover, there is a constant κ such that

∣∣∣∣∣∣
b∫

a

f (t)dg(t)

∣∣∣∣∣∣ ≤ κ‖g‖β;a,b(‖ f ‖∞;a,b|b − a|β + ‖ f ‖α;a,b|b − a|α+β). (9)

Proof We refer to [9] or [3] for a proof of (8). We shall outline a proof of (9). Let γ
be such that α > γ > 1 − β. Applying fractional integration by parts formula (8),
we obtain ∣∣∣∣∣∣

b∫

a

f (t)dg(t)

∣∣∣∣∣∣ ≤
b∫

a

|Dγ
a+ f (t)D1−γ

b− gb−(t)|dt.

From (5) and (6) it is easy to see that

|D1−γ

b− gb−(t)| ≤ κ‖g‖β;a,b(b − r)β+γ−1
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and
|Dγ

a+ f (t)| ≤ κ[‖ f ‖∞;a,b(t − a)−γ + ‖ f ‖α;a,b(t − a)α−γ ].

Therefore

∣∣∣∣∣∣
b∫

a

f (t)dg(t)

∣∣∣∣∣∣ ≤ κ‖g‖β;a,b

⎛
⎝‖ f ‖∞;a,b

b∫

a

(t − a)−γ (b − t)β+γ−1dt

+‖ f ‖α;a,b

b∫

a

(t − a)α−γ (b − t)β+γ−1dt

⎞
⎠ .

The integrals on the right hand side can be computed by making the substitution
t = b − (b − a)s. Hence we derive (9).

We also need the following lemma in the proofs of our main results.

Lemma 2 Let f (s, t), a ≤ s < t ≤ b be a measurable function of s and t such that

b∫

a

t∫

a

| f (s, t)|
(t − s)1−α

dsdt < ∞.

Then
b∫

a

I α,t
a+ f (t, t ′)|t ′=t dt = (−1)α

b∫

a

I α,t ′
b− f (t, t ′)|t ′=t dt.

Proof An application of Fubini’s theorem yields

b∫

a

I α,t
a+ f (t, t ′)|t ′=t dt = 1

Γ (α)

b∫

a

t∫

a

f (s, t)

(t − s)1−α
dsdt

= 1

Γ (α)

b∫

a

b∫

s

f (s, t)

(t − s)1−α
dtds

= (−1)α
b∫

a

I α,t ′
b− f (t, t ′)|t ′=t dt

which is the lemma.
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3 Nonlinear Integral

In this section we shall use fractional calculus to define the (pathwise) nonlinear
integral

∫ b
a W (dt, ϕt ). This method only relies on regularity of the sample paths

of W and ϕ. More precisely, it is applicable to stochastic processes with Hölder
continuous sample paths.

Another advantage of this approach is that in the theory of stochastic processes
it is usually difficult to obtain almost sure type of results. If the sample paths of the
process is Hölder continuous, then one can apply this approach to each sample path
and almost surely results are then automatic.

In what follows, we shall use W to denote a deterministic function W : R×R
d →

R
d . We make the following assumption on the regularity of W :

(W) There are constants τ, λ ∈ (0, 1] such that for all finite a < b and for all
compact sets K of Rd , the seminorm

‖W‖τ,λ;a,b,K

: = sup
a≤s<t≤b

x,y∈K ;x 	=y

|W (s, x) − W (t, x) − W (s, y) + W (t, y)|
|t − s|τ |x − y|λ

+ sup
a≤s<t≤b

x∈K

|W (s, x) − W (t, x)|
|t − s|τ + sup

a≤t≤b
x,y∈K ;x 	=y

|W (t, y) − W (t, x)|
|x − y|λ , (10)

is finite.

About the function ϕ, we assume

(φ) ϕ is locally Hölder continuous of order γ ∈ (0, 1]. That is, the seminorm

‖ϕ‖γ ;a,b = sup
a≤s<t≤b

|ϕ(t) − ϕ(s)|
|t − s|γ ,

is finite for every a < b.

Among the three terms appearing in (W), we will pay special attention to the first
term. Thus, we denote

[W ]τ,λ;a,b,K = sup
a≤s<t≤b

x,y∈K ;x 	=y

|W (s, x) − W (t, x) − W (s, y) + W (t, y)|
|t − s|τ |x − y|λ .

If a, b is clear from the context, we frequently omit the dependence on a, b. In
addition, throughout the paper, the compact set K can be chosen to be any compact set
containing the image of ϕ on the interval of integration. Thuswe omit the dependence
on K as well. For instance, ‖W‖τ,λ is an abbreviation for ‖W‖τ,λ;a,b,K , ‖ϕ‖γ is an
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abbreviation for ‖ϕ‖γ ;a,b and so on. We shall assume that a and b are finite. Thus it
is easy to see that for any c ∈ [a, b]

sup
a≤t≤b

|ϕ(t)| = sup
a≤t≤b

|ϕ(c) + ϕ(t) − ϕ(c)| ≤ |ϕ(c)| + ‖ϕ‖γ |b − a|γ < ∞ .

Thus assumption (φ) also implies that

‖ϕ‖∞;a,b := sup
a≤t≤b

|ϕ(t)| < ∞ .

Remark 1 Given a stochastic process indexed by (t, x), it is possible to obtain
almost sure regularity of the type (10) by amultiparameterGarsia-Rodemich-Rumsey
inequality. Indeed, this has been explored in [4], see also the last section of [5].

One of ourmain results in this section is to define
∫ b

a W (dt, ϕt ) under the condition
λγ + τ > 1 through a fractional integration by parts technique. The following
definition is motivated from Lemma 1.

Definition 1 We define

b∫

a

W (dt, ϕt ) = (−1)α
b∫

a

Dα,t ′
a+ D1−α,t

b− Wb−(t, ϕt ′)|t ′=t dt (11)

whenever the right hand side makes sense.

Remark 2 Assume d = 1. Let W (t, x) = g(t)x be of the product form and let
ϕ(t) = f (t), where g is a Hölder continuous function of exponent τ and f is a
Hölder continuous function of exponent λ. If 1 − τ < α < λ, then

b∫

a

W (dt, ϕt ) = (−1)α
b∫

a

Dα,t ′
a+ D1−α,t

b− Wb−(t, t ′)|t ′=t dt

= (−1)α
b∫

a

D1−α,t
b− gb−(t)Dα,t

a+ f (t)dt .

Thus from (8),
∫ b

a W (dt, ϕt ) is an extensionof the classicalYoung integral
∫ b

a f (t)dg(t)

(see [3, 8, 9]). For general d, if W (t, x) = ∑d
i=1 gi (t)xi and ϕi (t) =

fi (t), then it is easy to see that
∫ b

a W (dt, ϕt ) =
d∑

i=1

b∫

a

fi (t)dgi (t).

The following result clarifies the context in which Definition 1 is justified.
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Theorem 1 Assume the conditions (W) and (φ) are satisfied. In addition, we sup-
pose that λγ + τ > 1. Let α ∈ (1− τ, λτ). Then the right hand side of (11) is finite
and is independent of α ∈ (1 − τ, λ). As a consequence, we have

b∫

a

W (dt, ϕt )

= (−1)α
b∫

a

Dα,t ′
a+ D1−α,t

b− Wb−(t, ϕt ′)|t ′=t dt

= − 1

Γ (α)Γ (1 − α)

⎧⎨
⎩

b∫

a

Wb−(t, ϕt )

(b − t)1−α(t − a)α
dt

+α

b∫

a

t∫

a

Wb−(t, ϕt ) − Wb−(t, ϕr )

(b − t)1−α(t − r)α+1 drdt

+ (1 − α)

b∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt )

(s − t)2−α(t − a)α
dsdt

+ α(1 − α)

b∫

a

t∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )

(s − t)2−α(t − r)α+1 dsdrdt

⎫⎬
⎭ ,

(12)

where Wb− (t, x) = W (t, x) − W (b, x). Moreover, there is a universal constant κ

depending only on τ, λ and α, but independent W , ϕ and a, b such that

∣∣∣∣∣∣
b∫

a

W (dt, ϕt )

∣∣∣∣∣∣ ≤ κ‖W‖τ,λ ;a,b(b−a)τ +κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b−a)τ+λγ , (13)

where ‖W‖τ,λ ;a,b = ‖W‖τ,λ ;a,b,K and K is the closure of the image of (ϕt , a ≤
t ≤ b).

Proof Wedenote ‖W‖ = ‖W‖τ,λ;a,b. First by the definitions of fractional derivatives
(5) and (6), we have

D1−α,t
b− Wb−(t, ϕt ′) = (−1)1−α

Γ (α)

⎛
⎜⎝ Wb−(t, ϕt ′)

(b − t)1−α
+ (1 − α)

b∫

t

W (t, ϕt ′) − W (s, ϕt ′)
(s − t)2−α

ds

⎞
⎟⎠ .
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and

Dα,t ′
a+ D1−α,t

b− Wb−(t, ϕt ′)

= (−1)1−α

Γ (α)Γ (1 − α)

⎛
⎜⎝ 1

(t ′ − a)α

Wb−(t, ϕt ′)

(b − t)1−α
+ α

t ′∫

a

Wb−(t, ϕt ′) − Wb−(t, ϕr )

(t ′ − r)α+1(b − t)1−α
dr

+ 1 − α

(t ′ − a)α

b∫

t

W (t, ϕt ′) − W (s, ϕt ′)

(s − t)2−α
ds

+(1 − α)

t ′∫

a

α

(t ′ − r)α+1

b∫

t

W (t, ϕt ′) − W (s, ϕt ′) − W (t, ϕr ) + W (s, ϕr )

(s − t)2−α
dsdr

⎞
⎟⎠ .

Thus the right hand side of (11) is

− 1

Γ (α)Γ (1 − α)

⎧⎨
⎩

b∫

a

Wb−(t, ϕt )

(b − t)1−α(t − a)α
dt + α

b∫

a

t∫

a

Wb−(t, ϕt ) − Wb−(t, ϕr )

(b − t)1−α(t − r)α+1 drdt

+ (1 − α)

b∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt )

(s − t)2−α(t − a)α
dsdt

+ α(1 − α)

b∫

a

t∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )

(s − t)2−α(t − r)α+1 dsdrdt

⎫⎬
⎭

=: I1 + I2 + I3 + I4 . (14)

The condition (W) implies

I1 ≤ κ‖W‖
b∫

a

(b − t)τ+α−1(t − a)−αdt

= κ‖W‖(b − a)τ . (15)

Similarly, we also have

I3 ≤ κ‖W‖
b∫

a

b∫

t

(s − t)τ+α−2(t − a)−αdsdt

≤ κ‖W‖(b − a)τ . (16)
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The assumptions (W) and (φ) also imply

|Wb−(t, ϕt ) − Wb−(t, ϕr )| ≤ κ‖W‖|b − t |τ |ϕt − ϕr |λ
≤ κ‖W‖‖ϕ‖λ

γ |b − t |τ |t − r |λγ .

This implies

I2 ≤ κ‖W‖‖ϕ‖λ
γ

b∫

a

t∫

a

(b − t)τ+α−1(t − r)λγ−α−1drdt

≤ κ‖W‖‖ϕ‖λ
γ (b − a)τ+λγ . (17)

Using

|W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )| ≤ κ‖W‖‖ϕ‖λ
γ |t − s|τ |t − r |λγ ,

we can estimate I4 as follows.

I4 ≤ κ‖W‖‖ϕ‖λ
γ

b∫

a

t∫

a

b∫

t

|t − s|τ |t − r |λγ

(s − t)2−α(t − r)α+1 dsdrdt

≤ κ‖W‖‖ϕ‖λ
γ (b − a)τ+λγ . (18)

The inequalities (15)–(18) imply that for any α ∈ (1− τ, γ λ), the right hand side of
(11) is well-defined. The inequalities (15)–(18) also yield (13).

To show (12) is independent of α we suppose α′, α ∈ (1−τ, λγ ), α′ > α. Denote
β = α′ − α. Using Lemma 2, it is straightforward to see that

(−1)α
b∫

a

Dα,t
a+D1−α,t ′

b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α
b∫

a

I β,t
a+ Dβ,t

a+ Dα,t
a+D1−α,t ′

b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α+β

b∫

a

I β,t ′
b− Dα+β,t

a+ D1−α,t ′
b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α
′

b∫

a

Dα′,t
a+ I β,t ′

b− D1−α,t ′
b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α
′

b∫

a

Dα′,t
a+ D1−α′,t ′

b− Wb−(t, ϕt ′)|t ′=t dt .
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This proves the theorem.

Now we can improve the equality (13) as in the following theorem

Theorem 2 Let the assumptions (W)and (φ)be satisfied. Let a, b, c be real numbers
such that a ≤ c ≤ b. Then there is a constant κ depending only on τ, λ and α, but
independent W , ϕ and a, b, c such that

∣∣∣∣∣∣
b∫

a

W (dt, ϕt ) − W (b, ϕc) + W (a, ϕc)

∣∣∣∣∣∣ ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b − a)τ+λγ .

(19)

Proof Let a ≤ c < d ≤ b and let ϕ̃(t) = ϕ(c)χ[c,d)(t), where χ[c,d) is the indicator
function on [c, d). Then

W (t, ϕ̃(t ′)) =

⎧⎪⎨
⎪⎩

W (t, ϕ(c)) c ≤ t ′ < d

W (t, 0) elsewhere .

This means W (t, ϕ̃(t ′)) = W (t, ϕ(c))χ[c,d)(t ′). Hence, from (8) we have

b∫

a

W (dt, ϕ̃(t)) = (−1)α
b∫

a

D1−α,t
b− Wb−(t, ϕ(c))Dα,t ′

a+ χ[c,d)(t
′)|t ′=t dt

= (−1)α
b∫

a

D1−α,t
b− Wb−(t, ϕ(c))Dα,t

a+χ[c,d)(t)dt

= W (d, ϕ(c)) − W (c, ϕ(c)) .

Let c be any point in [a, b]. Denote W̃ (t, x) = W (t, x) − W (t, ϕc). Then W̃
satisfies (W). As in the Eq. (14), we have

b∫

a

W (dt, ϕt ) − W (b, ϕc) + W (a, ϕc) =
b∫

a

W̃ (dt, ϕt )

= Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 .

where Ĩ2 = I2 and Ĩ4 = I4 are the same as I2 and I4 in the proof of Theorem 1. But
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Ĩ1 = − 1

Γ (α)Γ (1 − α)

b∫

a

W (t, ϕt ) − W (b, ϕt ) − W (t, ϕc) + W (b, ϕc)

(b − t)1−α(t − a)α
dt

Ĩ3 = − (1 − α)

Γ (α)Γ (1 − α)

b∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt ) − W (t, ϕc) + W (s, ϕc)

(s − t)2−α(t − a)α
dsdt .

From the assumptions (W) and (φ) we see that

|W (t, ϕt ) − W (b, ϕt ) − W (t, ϕc) + W (b, ϕc)|
≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ

γ ;a,b|b − t |τ |t − c|λγ

≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b|b − t |τ |t − a|λγ .

This implies that
Ĩ1 ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ

γ ;a,b(b − a)τ+λγ . (20)

Similarly, we have

Ĩ3 ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b − a)τ+λγ . (21)

Combining these two inequalities (20) and (21) with the inequalities (17) and (18)
we have ∣∣∣∣∣∣

b∫

a

W̃ (dt, ϕt )

∣∣∣∣∣∣ ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b − a)τ+λγ ,

which yields (19).

Theorem 3 Let the assumption (W) be satisfied. Let ϕ : [a, b] → R
d satisfy

|ϕ(s) − ϕ(a)| ≤ L|s − a|� ∀s ∈ [a, b] and sup
a≤t<s≤b

|ϕ(s) − ϕ(t)|
(s − t)γ

≤ L

(22)
for some � ∈ (γ,∞) and for some constant L ∈ (0,∞). If τ +λγ > 1, then for any
β < 1 + λγ+τ−1

γ
� we have

∣∣∣∣∣∣
b∫

a

W (dt, ϕt ) − W (b, ϕa) + W (a, ϕa)

∣∣∣∣∣∣ ≤ C(b − a)β , (23)

here the constant C does not depend on b − a.

Proof As in the proof of Theorem 2we express
∫ b

a W (dt, ϕt )−W (b, ϕa)+W (a, ϕa)

as the sum of the terms Ĩ j , j = 1, 2, 3, 4 (we follow the notation there). First,
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we explain how to proceed with Ĩ4. We shall use C to denote a generic constant
independent of b − a. Denote

J := |W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )|

First, we know that we have

J ≤ C |t − s|τ |t − r |λγ . (24)

On the other hand, we also have

J ≤ |W (t, ϕt ) − W (s, ϕt ) − W (t, ϕa) + W (s, ϕa)|
+|W (t, ϕr ) − W (s, ϕr ) − W (t, ϕa) + W (s, ϕa)|

≤ C |t − s|τ
[
|t − a|λ� + |r − a|λ�

]

≤ C |t − s|τ |t − a|λ� (25)

when a ≤ r < t < s ≤ b. Therefore, from (24) and (25) it follows that for any
β1 ≥ 0 and β2 ≥ 0 with β1 + β2 = 1, we have

J ≤ C |t − s|τ |t − r |β1λγ |t − a|β2λ�

If we choose α and β1 such that

τ + α > 1 , β1λγ − α > 0 (26)

then
Ĩ4 ≤ C(b − a)β1λγ+β2λ�+τ .

For any β < 1 + λγ+τ−1
γ

� we can choose α, β1, and β2 such that (26) is satisfied
and

Ĩ4 ≤ C(b − a)β .

The term Ĩ2 can be handled in a similar but easier way and a similar bound can be
obtained.

Now, let us consider Ĩ3. We have

|W (t, ϕt ) − W (s, ϕt ) − W (t, ϕa) + W (s, ϕa)| ≤ C |t − s|τ |t − a|λ� .

This easily yields
Ĩ3 ≤ C(b − a)τ+λ� .

A similar estimate holds true for Ĩ1. However, it is easy to verify τ + λ� > 1 +
λγ+τ−1

γ
� if � > γ . The theorem is proved.
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Next, we show that the nonlinear integral defined in Definition 1 coincides with
the limit of Riemann sums. For this purpose, we need some preliminary set up. For
every s, t in [a, b], we put μ(s, t) = W (t, ϕs) − W (s, ϕs). Let π = {a = t0 < t1 <

· · · < tn = b} be a partition of [a, b] with mesh size |π | = max1≤i≤n |ti − ti−1|.
One can consider the limit of the Riemann sums

lim|π |↓0

n∑
i=1

μ(ti−1, ti )

whenever it exists. A sufficient condition for convergence of the Riemann sums is
provided by following two results of [2], see also [1] for a simple exposition.

Lemma 3 (The sewing map) Let μ be a continuous function on [0, T ]2 with values
in a Banach space B and ε > 0. Suppose that μ satisfies

|μ(a, b) − μ(a, c) − μ(c, b)| ≤ K |b − a|1+ε ∀ 0 ≤ a ≤ c ≤ b ≤ T .

Then there exists a function Jμ(t) unique up to an additive constant such that

|Jμ(b)−Jμ(a)−μ(a, b)| ≤ K (1−2−ε)−1|b−a|1+ε ∀ 0 ≤ a ≤ b ≤ T . (27)

We adopt the notation J b
a μ = Jμ(b) − Jμ(a)

Lemma 4 (Abstract Riemann sum) Let π = {a = t0 < t1 < · · · < tm = b} be an
arbitrary partition of [a, b] with |π | = supi=0,...,m−1 |ti+1 − ti |. Define the Riemann
sum

Jπ =
m−1∑
i=0

μ(ti , ti+1)

then Jπ converges to J b
a μ as |π | ↓ 0 .

Because τ + λγ is strictly greater than 1, the estimate (19) together with the
previous two Lemmas implies

Proposition 2 Assume that (W) and (φ) hold with λγ + τ > 1. As the mesh size
|π | shrinks to 0, the Riemann sums

n∑
i=1

[
W (ti , ϕti−1) − W (ti−1, ϕti−1)

]

converges to
∫ b

a W (dt, ϕt ).

Remark 3 In [5], the authors define the nonlinear integral
∫

W (dt, ϕt ) via the sewing
Lemma 3. The previous proposition shows that the approach using fractional calculus
employed here produces an equivalent definition. Let us note that this is possible
because of the key estimate (19) and the uniqueness part of the sewing Lemma 3.
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It is easy to see from here that

b∫

a

W (dt, ϕt ) =
c∫

a

W (dt, ϕt ) +
b∫

c

W (dt, ϕt ) ∀ a < c < b .

This together with (13) imply easily the following.

Proposition 3 Assume that (W) and (φ) hold with λγ + τ > 1. As a function

of t , the indefinite integral
{∫ t

a W (ds, ϕs) , t ≤ a ≤ b
}

is Hölder continuous of
exponent τ .

Further properties can be developed. For instance, we study the dependence of
the nonlinear Young integration

∫
W (ds, ϕs) with respect to the medium W and the

integrand ϕ.We state the following two propositions whose proofs are left for readers
(see, however, [5] for details).

Proposition 4 Let W1 and W2 be functions on R×R
d satisfying the condition (W).

Let ϕ be a function in Cγ (R;Rd) and assume that τ + λγ > 1. Then

|
b∫

a

W1(ds, ϕs) −
b∫

a

W2(ds, ϕs)| ≤ |W1(b, ϕa) − W1(a, ϕa) − W2(b, ϕa) + W2(a, ϕa)|

+ c(‖ϕ‖∞)[W1 − W2]β,τ,λ‖ϕ‖γ |b − a|τ+λγ .

Proposition 5 Let W be a function on R×R
d satisfying the condition (W). Let ϕ1

and ϕ2 be two functions in Cγ (R;Rd) and assume that τ + λγ > 1. Let θ ∈ (0, 1)
such that τ + θλγ > 1. Then for any u < v

|
v∫

u

W (ds, ϕ1
s ) −

v∫

u

W (ds, ϕ2
s )|

≤ C1[W ]τ,λ‖ϕ1 − ϕ2‖λ∞|v − u|τ
+ C2[W ]τ,λ‖ϕ1 − ϕ2‖λ(1−θ)∞ |v − u|τ+θλγ ,

where C1 is an absolute constant and C2 = 21−θC1(‖ϕ1‖λ
γ + ‖ϕ1‖λ

γ )θ .

4 Iterated Nonlinear Integral

From Remark 2 we see that if W (t, x) = ∑d
i=1 gi (t)xi and ϕi (t) = fi (t), then

∫ b
a W (dt, ϕt ) =

d∑
i=1

b∫

a

fi (t)dgi (t). We know that the multiple (iterated) integrals of
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the form
∫

a≤s1≤s2≤···≤sn≤b

ϕ(s1, s2, . . . , sn)dg(s1)dg(s2) · · · dg(sn)

are well-defined and have applications in expanding the solutions of differential
equations (see [3]). What is the extension of the above iterated integrals to the non-
linear integral? To simplify the presentation, we consider the case d = 1. General
dimensions can be considered in a similar way with more complex notations.

We introduce the following notation. Let

Δn,a,b := {(s1, . . . , sn) ; a ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ b}

be a simplex in R
n .

Definition 2 Let ϕ : Δn,a,b → R be a continuous function. For a fixed sn ∈
[a, b], we can consider ϕ(·, sn) as a function of n − 1 variables. Assume we can
define

∫
Δn−1,a,sn

ϕ(s1, . . . , sn−1, sn)W (ds1, ·) · · · W (dsn−1, ·), which is a function
of sn , denoted by φn−1(sn), then we define

∫

a≤s1≤···≤sn≤b

ϕ(s1, . . . , sn)W (ds1, ·) · · · W (dsn, ·) =
b∫

a

W (dsn, ϕn−1(sn)) . (28)

In the case W (t, x) = f (t)x , such iterated integrals have been studied in [3], where
an important case is when ϕ(s1, . . . , sn) = ρ(s1) for some function ρ of one variable.
This means that ϕ(s1, . . . , sn) depends only on the first variable. This case appears
in the remainder term when one expands the solution of a differential equation and
can be dealt with in the following way.

Let F1, F2, . . . , Fn be jointly Hölder continuous functions on [a, b]2. More pre-
cisely, for each i = 1, . . . , n, Fi satisfies

|Fi (s1, t1) − Fi (s2, t1) − Fi (s1, t2) + Fi (s2, t2)| (29)

≤ ‖Fi‖τ,λ;a,b|s1 − s2|τ |t1 − t2|λ , for all s1, s2, t1, t2 in [a, b].

We assume that τ + λ > 1.
Suppose that F is a function satisfying (29) with τ + λ > 1. The nonlinear

integral
∫ b

a F(ds, s) can be defined analogously to Definition 1. Moreover, for a
Hölder continuous function ρ of order λ, we set G(s, t) = ρ(t)F(s, t), it is easy to
see that



Nonlinear Young Integrals via Fractional Calculus 97

|G(s1, t1) − G(s2, t1) − G(s1, t2) + G(t1, t2)|
≤ |ρ(t1) − ρ(t2)||F(s1, t1) − F(s2, t1)|

+ |ρ(t2)||F(s1, t1) − F(s2, t1) − F(s1, t2) + Fi (t1, t2)|
≤ (‖ρ‖τ‖ + ‖ρ‖∞)‖F‖τ,λ|s1 − s2|τ |t1 − t2|λ.

Hence, the integration
∫

ρ(s)F(ds, s) is well defined. In addition, it follows from
Theorem 2 that the map t �→ ∫ t

a ρ(s)F(ds, s) is Hölder continuous of order τ .
We have then easily

Proposition 6 Let ρ be a Hölder continuous function of order λ. Under the condition
(29) and τ > 1/2, the iterated integral

Ia,b(F1, . . . , Fn) =
∫

a≤s1≤···≤sn≤b

ρ(s1)F1(ds1, s1)F2(ds2, s2) · · · Fn(dsn, sn)

(30)
is well defined.

In the simplest case when ρ(s) = 1 and Fi (s, t) = f (s) for all i = 1, . . . , n, the
above integral becomes

∫

a≤s1≤···≤sn≤b

d f (s1) · · · d f (sn) = ( f (b) − f (a))n

n! .

Therefore, one would expect that

|Ia,b(F1, . . . , Fn)| ≤ κ
|b − a|γn

n! . (31)

This estimate turns out to be true for (30).

Theorem 4 Let F1, . . . , Fn satisfy (29) and ρ be Hölder continuous with exponent λ.

We assume that ρ(a) = 0. Denote β = λ + τ − 1

λ
and �n = βn−1 − 1

β − 1
+ βn−1(τ +

λ). Then, for any γn < �n, there is a constant Cn, independent of a and b (but may
depend on γn) such that

|Ia,b(F1, . . . , Fn)| ≤ Cn|b − a|γn . (32)
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Proof Denote

I (k)
a,s (F1, . . . , Fk) =

∫

a≤s1≤···≤sk≤s

ρ(s1)F1(ds1, s1)F2(ds2, s2) · · · Fk(dsk, sk).

Thus, we see by definition that

I (k+1)
a,s (F1, . . . , Fk+1) =

s∫

a

Fk+1(dr, I (k)
a,r (F1, . . . , Fk)). (33)

We prove this theorem by induction on n. When n = 1, the theorem follows straight-
forwardly from (19) with the choice c = a. Indeed, we have |I (1)

a,t | ≤ C |t − a|λ+τ

and |I (1)
a,t − I (1)

a,s | ≤ C |t − s|τ .
The passage from n to n + 1 follows from the application of (23)–(33) and this

concludes the proof of the theorem.

Remark 4 The estimate of Theorem 4 also holds true for the iterated nonlin-
ear Young integral I (n)

a,b(F1, . . . , Fn) = ∫
a≤s1≤···≤sk≤s F1(ds1, ρ(s1))F2(ds2, s2) · · ·

Fn(dsn, sn), where I (k)
a,b(F1, . . . , Fk) = ∫ b

a Fk(ds, I (k−1)
a,s (F1, . . . , Fk−1)), and

I (1)
a,b(F1) = ∫ b

a F1(ds, ρ(s)).
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