
Some Recent Developments in Ambit
Stochastics

Ole E. Barndorff-Nielsen, Emil Hedevang, Jürgen Schmiegel
and Benedykt Szozda

Abstract Some of the recent developments in the rapidly expanding field of Ambit
Stochastics are here reviewed. After a brief recall of the framework of Ambit Sto-
chastics, two topics are considered: (i) Methods of modelling and inference for
volatility/intermittency processes and fields; (ii) Universal laws in turbulence and
finance in relation to temporal processes. This review complements two other recent
expositions.
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1 Introduction

Ambit Stochastics is a general framework for the modelling and study of dynamic
processes in space-time. The present paper outlines some of the recent developments
in the area, with particular reference to finance and the statistical theory of turbu-
lence. Two recent papers [8, 36] provide surveys that focus on other sides of Ambit
Stochastics.
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A key characteristic of the Ambit Stochastics framework, which distinguishes this
from other approaches, is that beyond the most basic kind of random input it also
specifically incorporates additional, often drastically changing, inputs referred to as
volatility or intermittency.

Such “additional” random fluctuations generally vary, in time and/or in space, in
regard to intensity (activity rate and duration) and amplitude. Typically the volatil-
ity/intermittency may be further classified into continuous and discrete (i.e. jumps)
elements, and long and short term effects. In turbulence the key concept of energy
dissipation is subsumed under that of volatility/intermittency.

The concept of (stochastic) volatility/intermittency is ofmajor importance inmany
fields of science. Thus volatility/intermittency has a central role in mathematical
finance and financial econometrics, in turbulence, in rain and cloud studies and
other aspects of environmental science, in relation to nanoscale emitters, magne-
tohydrodynamics, and to liquid mixtures of chemicals, and last but not least in the
physics of fusion plasmas.

As described here, volatility/intermittency is a relative concept, and its mean-
ing depends on the particular setting under investigation. Once that meaning is
clarified the question is how to assess the volatility/intermittency empirically and
then to describe it in stochastic terms, for incorporation in a suitable probabilistic
model. Important issues concern the modelling of propagating stochastic volatil-
ity/intermittency fields and the question of predictability of volatility/intermittency.

Section2 briefly recalls some main aspects of Ambit Stochastics that are of rel-
evance for the dicussions in the subsequent sections, and Sect. 3 illustrates some of
the concepts involved by two examples. The modelling of volatility/intermittency
and energy dissipation is a main theme in Ambit Stochastics and several approaches
to this are discussed in Sect. 4. A leading principle in the development of Ambit
Stochastics has been to take the cue from recognised stylised features—or universal-
ity traits—in various scientific areas, particularly turbulence, as the basis for model
building; and in turn to seek new such traits using the models as tools. We discuss
certain universal features observed in finance and turbulence and indicate ways to
reproduce them in Sect. 5. Section6 concludes and provides an outlook.

2 Ambit Stochastics

2.1 General Framework

In terms of mathematical formulae, in its original form [17] (cf. also [16]) an ambit
field is specified by

Y (x, t) = μ +
∫

A(x,t)
g(x, ξ, t, s)σ (ξ, s) L(dξ ds) + Q(x, t) (1)
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Fig. 1 A spatio-temporal ambit field. The value Y (x, t) of the field at the point marked by the black
dot is defined through an integral over the corresponding ambit set A(x, t) marked by the shaded
region. The circles of varying sizes indicate the stochastic volatility/intermittency. By considering
the field along the dotted path in space-time an ambit process is obtained

where

Q(x, t) =
∫

D(x,t)
q(x, ξ, t, s)χ(ξ, s) dξ ds. (2)

Here t denotes time while x gives the position in d-dimensional Euclidean space.
Further, A(x, t) and D(x, t) are subsets ofRd ×R and are termed ambit sets, g and q
are deterministic weight functions, and L denotes a Lévy basis (i.e. an independently
scattered and infinitely divisible random measure). Further, σ and χ are stochastic
fields representing aspects of the volatility/intermittency. In Ambit Stochastics the
models of the volatility/intermittency fields σ and χ are usually themselves specified
as ambit fields. We shall refer to σ as the amplitude volatility component. Figure1
shows a sketch of the concepts.

The development of Y along a curve in space-time is termed an ambit process.
As will be exemplified below, ambit processes are not in general semimartingales,
even in the purely temporal case, i.e. where there is no spatial component x .
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In a recent extension the structure (1) is generalised to

Y (x, t) = μ +
∫

A(x,t)
g(x, ξ, t, s)σ (ξ, s) LT (dξ ds) + Q(x, t) (3)

where Q is like (2) or the exponential thereof, and where T is a metatime expressing
a further volatility/intermittency trait. The relatively new concept of metatime is
instrumental in generalising subordination of stochastic processes by time change
(as discussed for instance in [22]) to subordination of random measures by random
measures. We return to this concept and its applications in the next section and refer
also to the discussion given in [8].

Note however that in addition to modelling volatility/intermittency through the
components σ , χ and T , in some cases this may be supplemented by probability
mixing or Lévy mixing as discussed in [12].

It might be thought that ambit sets have no role in purely temporal modelling.
However, examples of their use in such contexts will be discussed in Sect. 3.

In many cases it is possible to choose specifications of the volatility/intermittency
elements σ ,χ and T such that these are infinitely divisible or even selfdecomposable,
making the models especially tractable analytically. We recall that the importance
of the concept of selfdecomposability rests primarily on the possibility to represent
selfdecomposable variates as stochastic integrals with respect to Lévy processes,
see [32].

So far, the main applications of ambit stochastics has been to turbulence and, to
a lesser degree, to financial econometrics and to bioimaging. An important potential
area of applications is to particle transport in fluids.

2.2 Existence of Ambit Fields

The paper [25] develops a general theory for integrals

X (x, t) =
∫
Rd×R

h(x, y, t, s) M(dx dx)

where h is a predictable stochastic function and M is a dispersive signed random
measure. Central to this is that the authors establish a notion of characteristic triplet
of M , extending that known in the purely temporal case. A major problem solved in
that regard has been to merge the time and space aspects in a general and tractable
fashion. Armed with that notion they determine the conditions for existence of the
integral, analogous to those in [37] but considerably more complicated to derive and
apply. An important property here is that now predictable integrands are allowed
(in the purely temporal case this was done in [23]). Applications of the theory to
Ambit Stochastics generally, and in particular to superposition of stochastic volatility
models, is discussed.



Some Recent Developments in Ambit Stochastics 7

Below we briefly discuss how the metatime change is incorporated in the frame-
work of [25]. Suppose that L = {L(A) | A ∈ Bb(R

d+1} is a real-valued, homo-
geneous Lévy basis with associated infinitely divisible law μ ∈ ID(Rd+1), that is
L([0, 1]d+1) is equal in law to μ. Let (γ,Σ, ν) be the characteristic triplet of μ.
Thus γ ∈ R, Σ ≥ 0 and ν is a Lévy measure on R.

Suppose that T = {T(A) | A ∈ B(Rd+1} is a random meta-time associated
with a homogeneous, real-valued, non-negative Lévy basis T = {T (A) | A ∈
B(Rd+1)}. That is the sets T(A) and T(B) are disjoint whenever A, B ∈ B(Rd+1)

are disjoint, T(∪∞
n=0An) = ∪∞

n=0T(An) whenever An,∪∞
n=0An ∈ B(Rd+1) and

T (A) = Lebd+1(T(A)) for all A ∈ B(Rd+1). Here and in what follows, Lebk

denotes the Lebesgue measure on R
k . For the details on construction of random

meta-times cf. [11]. Suppose also that λ ∈ I D(R) is the law associated to T and that
λ ∼ I D(β, 0, ρ). Thus β ≥ 0 and ρ is a Lévy measure such that ρ(R−) = 0 and∫
R
(1 ∧ x) ρ(dx) < ∞.
Now, by [11, Theorem 5.1] we have that LT = {L(T(A)) | A ∈ B(Rd+1)}

is a homogeneous Lévy basis associated to μ# with μ# ∼ I D(γ #,Σ#, ν#) and
characteristics given by

γ # = βγ +
∫ ∞

0

∫
|x |≤1

xμs(dx)ρ(ds)

Σ# = βΣ

ν#(B) = βν(B) +
∫ ∞

0
μs(B)ρ(ds), B ∈ B(Rd+1 \ {0}),

where μs is given by μ̂s = μ̂s for any s ≥ 0.
Finally, suppose that σ(x, t) is predictable and that LT has no fixed times of

discontinuity (see [25]). By rewriting the stochastic integral in the right-hand side of
(3) as

X (x, t) =
∫
Rd+1

H(x, ξ, t, s) LT (dξds),

with H(x, ξ, t, s) = 1A(x,t)(ξ, s)g(x, ξ, t, s)σ (ξ, s) we can use [25, Theorem 4.1].
Observe that the assumption that σ is predictable is enough as both A(x, t) and
g(x, ξ, t, s) are deterministic. This gives us that X is well defined for all (x, t) if the
following hold almost surely for all (x, t) ∈ R

d+1:

∫
Rd+1

∣∣∣∣H(x, ξ, t, s)γ # +
∫
R

[τ(H(x, ξ, t, s)y) − H(x, ξ, t, s)τ (y)]ν#(dy)

∣∣∣∣ dξds < ∞
(4)∫

Rd+1
H2(x, ξ, t, s)Σ# dξds < ∞ (5)

∫
Rd+1

∫
R

(1 ∧ (H(x, ξ, t, s)y)2 ν#(dy)dξds < ∞. (6)
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3 Illustrative Examples

We can briefly indicate the character of some of the points on Ambit Stochastics
made above by considering the following simple model classes.

3.1 BSS and LSS Processes

Stationary processes of the form

Y (t) =
∫ t

−∞
g(t − s)σ (s)BT (ds) +

∫ t

−∞
q(t − s)σ (s)2 ds. (7)

are termed Brownian semistationary processes—or BSS for short. Here the setting
is purely temporal and BT is the time change of Brownian motion B by a chronome-
ter T (that is, an increasing, càdlàg and stochastically continuous process ranging
from −∞ to ∞), and the volatility/intermittency process σ is assumed stationary.
The components σ and T represent respectively the amplitude and the intensity of
the volatility/intermittency. If T has stationary increments then the process Y is sta-
tionary. The process (7) can be seen as a stationary analogue of the BNS model
introduced by Barndorff-Nielsen and Shephard [14].

Note that in case T increases by jumps only, the infinitesimal of the process BT

cannot be reexpressed in the form χ(s)B(ds), as would be the case if T was of type
Tt = ∫ t

0 ψ(u) du with χ = √
ψ .

Further, for the exemplification we take g to be of the gamma type

g(s) = λν

Γ (ν)
sν−1e−λs1(0,∞)(s). (8)

Subject to a weak (analogous to (4)) condition on σ , the stochastic integral in (7)
will exist if and only if ν > 1/2 and then Y constitutes a stationary process in time.
Moreover, Y is a semimartingale if and only if ν does not lie in one of the intervals
(1/2, 1) and (1, 3/2]. Note also that the sample path behaviour is drastically different
between the two intervals, since, as t → 0, g(t) tends to∞when ν ∈ (1/2, 1) and to 0
when ν ∈ (1, 3/2]. Further, the sample paths are purely discontinuous if ν ∈ (1/2, 1)
but purely continuous (of Hölder index H = ν − 1/2) when ν ∈ (1, 3/2).

The caseswhereν ∈ (1/2, 1)have aparticular bearing in the context of turbulence,
the value ν = 5/6 having a special role in relation to the Kolmogorov-Obukhov
theory of statistical turbulence, cf. [3, 33].

The class of processes obtained by substituting the Brownian motion in (7) by a
Lévy process is referred to as the class of Lévy semistationary processes—or LSS
processes for short. Such processes are discussed in [8, 24, Sect. 3.7] and references
therein.
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3.2 Trawl Processes

The simplest non-trivial kind of ambit field is perhaps the trawl process, introduced
in [2]. In a trawl process, the kernel function and the volatility field are constant
and equal to 1, and so the process is given entirely by the ambit set and the Lévy
basis. Specifically, suppose that L is a homogeneous Lévy basis on Rd ×R and that
A ⊆ R

d ×R is a Borel subset with finite Lebesgue measure, then we obtain a trawl
process Y by letting A(t) = A + (0, t) and

Y (t) =
∫

A(t)
L(dξ ds) =

∫
1A(ξ, t − s) L(dξ ds) = L(A(t)) (9)

The process is by construction stationary.Depending on the purpose of themodelling,
the time component of the ambit set A may or may not be supported on the negative
real axis. When the time component of A is supported on the negative real axis,
we obtain a causal model. Despite their apparent simplicity, trawl processes possess
enough flexibility to be of use. If L ′ denotes the seed1 of L , then the cumulant
function (i.e. the distinguished logarithm of the characteristic function) of Y is given
by

C{ζ ‡ Y (t)} = |A|C{ζ ‡ L ′}. (10)

Here and later, |A| denotes the Lebesguemeasure of the set A. For themean, variance,
autocovariance and autocorrelation it follows that

E[Y (t)] = |A|E[L ′],
var(Y (t)) = |A| var(L ′),

r(t) := cov(Y (t), Y (0)) = |A ∩ A(t)| var(L ′), (11)

ρ(t) := cov(Y (t), Y (0))

var(Y (0))
= |A ∩ A(t)|

|A| .

From this we conclude the following. The one-dimensional marginal distribution
is determined entirely in terms of the size (not shape) of the ambit set and the
distribution of the Lévy seed; given any infinitely divisible distribution there exists
trawl processes having this distribution as the one-dimensional marginal; and the
autocorrelation is determined entirely by the size of the overlap of the ambit sets,
that is, by the shape of the ambit set A. Thus we can specify the autocorrelation
and marginal distribution independently of each other. It is, for example, easy to
construct a trawl process with the same autocorrelation as the OU process, see [2,
8] for more results and details. By using integer-valued Lévy bases, integer-valued

1The Lévy seed L ′(x) at x of a Lévy basis L with control measure ν is a random variable with the
property thatC{ζ ‡L(A)} = ∫

A C{ζ ‡L ′(x)} ν(dx). For a homogeneous Lévy basis, the distribution
of the seed is independent of x .
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trawl processes are obtained. These processes are studied in detail in [5] and applied
to high frequency stock market data.

We remark, that Y (x, t) = L(A + (x, t)) is an immediate generalisation of trawl
processes to trawl fields. It has the same simple properties as the trawl process.

Trawl processes can be used to directly model an object of interest, for example,
the exponential of the trawl process has been used to model the energy dissipation,
see the next section, or they can be used as a component in a composite model, for
example to model the volatility/intermittency in a Brownian semistationary process.

4 Modelling of Volatility/Intermittency/Energy
Dissipation

A very general approach to specifying volatility/intermittency fields for inclusion in
an ambit field, as in (1), is to take τ = σ 2 as being given by a Lévy-driven Volterra
field, either directly as

τ(x, t) =
∫
R2×R

f (x, ξ, t, s) L(dξ, ds) (12)

with f positive and L a Lévy basis (different from L in (1), or in exponentiated form

τ(x, t) = exp

(∫
Rd×R

f (x, ξ, t, s) L(dξ, ds)

)
. (13)

When the goal is to have stationary volatility/intermittency fields, such as in mod-
elling homogeneous turbulence, that can be achieved by choosing L to be homo-
geneous and f of translation type. However, the potential in the specifications (12)
and (13) is much wider, giving ample scope for modelling inhomogeneous fields,
which are by far themost common, particularly in turbulence studies. Inhomogeneity
can be expressed both by not having f of translation type and by taking the Lévy
basis L inhomogeneous.

In the following we discuss two aspects of the volatility/intermittency mod-
elling issue. Trawl processes have proved to be a useful tool for the modelling of
volatility/intermittency and in particular for the modelling of the energy dissipation,
as outlined in Sect. 4.1. Section4.2 reports on a recent paper on relative volatil-
ity/intermittency. In Sect. 4.3 we discuss the applicability of selfdecomposability to
the construction of volatility/intermittency fields.
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4.1 The Energy Dissipation

In [31] it has been shown that exponentials of trawl processes are able to repro-
duce the main stylized features of the (surrogate) energy dissipation observed for a
wide range of datasets. Those stylized features include the one-dimensional marginal
distributions and the scaling and self-scaling of the correlators.

The correlator of order (p, q) is defined by

cp,q(s) = E[ε(t)pε(t + s)q ]
E[ε(t)p]E[ε(t + s)q ] . (14)

The correlator is a natural analogue to the autocorrelation when one considers a
purely positive process. In turbulence it is known (see the reference cited in [31])
that the correlator of the surrogate energy dissipation displays a scaling behaviour
for a certain range of lags,

cp,q(s) ∝ s−τ(p,q), Tsmall � s � Tlarge, (15)

where τ(p, q) is the scaling exponent. The exponent τ(1, 1) is the so-called intermit-
tency exponent. Typical values are in the range 0.1 to 0.2. The intermittency exponent
quantifies the deviation from Kolmogorov’s 1941 theory and emphasizes the role of
intermittency (i.e. volatility) in turbulence. In some cases, however, the scaling range
of the correlators can be quite small and therefore it can be difficult to determine the
value of the scaling exponents, especially when p and q are large. Therefore one also
considers the correlator of one order as a function of a correlator of another order. In
this case, self-scaling is observed, i.e., the one correlator is proportional to a power
of the other correlator,

cp,q(s) ∝ cp′,q ′(s)τ(p,q;p′,q ′), (16)

where τ(p, q; p′, q ′) is the self-scaling exponent. The self-scaling exponents have
turned out to be much easier to determine from data than the scaling exponents,
and like the scaling exponents, the self-scaling exponents have proved to be key
fingerprints of turbulence. They are essentially universal in that they vary very little
fromonedataset to another, covering a large range of the so-calledReynolds numbers,
a dimensionless quantity describing the character of the flow.

In [31] the surrogate energy dissipation ε is, more specifically, modelled as

ε(t) = exp(L(A(t))), (17)

where L is a homogeneous Lévy basis onR×R and A(t) = A+(0, t) for a bounded
set A ⊂ R × R. The ambit set A is given as

A = {(x, t) ∈ R × R | 0 ≤ t ≤ Tlarge,− f (t) ≤ x ≤ f (t)}, (18)
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Fig. 2 The shaded region marks the ambit set A from (18) defined by (19) where the parameters
are chosen to be Tlarge = 1, Tsmall = 0.1 and θ = 5

where Tlarge > 0. For Tlarge > Tsmall > 0 and θ > 0, the function f is defined as

f (t) =
(
1 − (t/Tlarge)

θ

1 + (t/Tsmall)
θ

)1/θ

, 0 ≤ t ≤ Tlarge. (19)

The shape of the ambit set is chosen so that the scaling behaviour (15) of the corre-
lators is reproduced. The exact values of the scaling exponents are determined from
the distribution of the Lévy seed of the Lévy basis. The two parameters Tsmall and
Tlarge determine the size of the small and large scales of turbulence: in between we
have the inertial range. The final parameter θ is a tuning parameter which accounts
for the lack of perfect scaling and essentially just allows for a better fit. (Perfect
scaling is obtained in the limit θ → ∞). See Fig. 2 for an example. Furthermore,
self-scaling exponents are predicted from the shape, not location and scale, of the
one-point distribution of the energy dissipation alone.

To determine a proper distribution of the Lévy seed of L , it is in [31] shown
that the one-dimensional marginal of the logarithm of the energy dissipation is well
described by a normal inverse Gaussian distribution, i.e. log ε(t) ∼ NIG(α, β, μ, δ),
where the shape parameters α and β are the same for all datasets (independent of
the Reynolds number). Thus the shape of the distribution of the energy dissipation
is a newly discovered universal feature of turbulence. Thus we see that L should be
a normal inverse Gaussian Lévy basis whose parameters are given by the observed
distribution of log ε(t). This completely specifies the parameters of (17).
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4.2 Realised Relative Volatility/Intermittency/Energy
Dissipation

By its very nature, volatility/intermittency is a relative concept, delineating varia-
tion that is relative to a conceived, simpler model. But also in a model for volatil-
ity/intermittency in itself it is relevant to have the relative character in mind, as
will be further discussed below. We refer to this latter aspect as relative volatil-
ity/intermittency and will consider assessment of that by realised relative volatil-
ity/intermittency which is defined in terms of quadratic variation. The ultimate
purpose of the concept of relative volatility/intermittency is to assess the volatil-
ity/intermittency or energy dissipation in arbitrary subregions of a region C of space-
time relative to the total volatility/intermittency/energy dissipation inC . In the purely
temporal setting the realised relative volatility/intermittency is defined by

[Yδ]t/[Yδ]T (20)

where [Yδ]t denotes the realised quadratic variation of the process Y observed with
lag δ over a time interval [0, t]. We refer to this quantity as RRQV (for realised
relative quadratic volatility).

As mentioned in Example 1, in case g is the gamma kernel (8) with ν ∈ (1/2, 1)∪
(1, 3/2] then the BSS process (7) is not a semimartingale. In particular, if ν ∈
(1/2, 1)—the case ofmost interest for the study of turbulence—the realised quadratic
variation [Yδ]t does not converge as it would if Y was a semimartingale; in fact it
diverges to infinity whereas in the semimartingale case it will generally converge to
the accumulated volatility/intermittency

σ 2+
t =

∫ t

0
σ 2

s ds, (21)

which is an object of key interest (in turbulence it represents the coarse-grained
energy dissipation). However the situation can be remedied by adjusting [Yδ]t by a
factor depending on ν; in wide generality it holds that

cδ2(1−ν)[Yδ]t
p−→ σ 2+

t (22)

as δ −→ 0, with x = λ−122(ν−1/2)(Γ (ν)+Γ (ν + 1/2))/Γ (2ν − 1)Γ (3/2− 1). To
apply this requires knowledgeof the value of ν and in general νmust be estimatedwith
sufficient precision to ensure that substituting the estimate for the theoretical value of
ν in (22) will still yield convergence in probability. Under relatively mild conditions
that is possible, as discussed in [26] and the references therein. An important aspect
of formula (20) is that its use does not involve knowledge of ν as the adjustment
factor cancels out (Fig. 3).

Convergence in probability and a central limit theorem for the RRQV is estab-
lished in [10]. Figure2 illustrates its use, for two sections of the “Brookhaven”dataset,
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Fig. 3 Brookhaven turbulence data periods 18 and 25—RRQV and 95% confidence intervals

one where the volatility effect was deemed by eye to be very small and one where
it appeared strong. (The “Brookhaven” dataset consist of 20 million one-point mea-
surements of the longitudinal component of the wind velocity in the atmospheric
boundary layer, 35m above ground. The measurements were performed using a
hot-wire anemometer and sampled at 5 kHz. The time series can be assumed to be
stationary. We refer to [27] for further details on the dataset; the dataset is called
no. 3 therein).

4.3 Role of Selfdecomposability

If τ is given by (12) it is automatically infinitely divisible, and selfdecomposable
provided L has that property; whereas if τ is defined by (13) it will only in exceptional
cases be infinitely divisible.

A non-trivial example of such an exceptional case is the following. The Gumbel
distribution with density

f (x) = 1

b
exp

(
x − a

b
− exp

(
x − a

b

))
, (23)

where a ∈ R and b > 0 is infinitely divisible [39]. In [31] it was demonstrated that
the one-dimensional marginal distribution of the logarithm of the energy dissipation
is accurately described by a normal inverse Gaussian distribution. One may also
show (not done here) that the Gumbel distribution with b = 2 provides another fit
that is nearly as accurate as the normal inverse Gaussian. Furthermore, if X is a
Gumbel random variable with b = 2, then exp(X) is distributed as the square of
an exponential random variable, hence also infinitely divisible by [39]. Therefore, if
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the Lévy basis L in (17) is chosen so that L(A) follows a Gumbel distribution with
b = 2, then exp(L(A(t))) will be infinitely divisible.

For a general discussion of selfdecomposable fields we refer to [13]. See also [32]
which provides a survey of when a selfdecomposable random variable can be rep-
resented as a stochastic integral, like in (12). Representations of that kind allow, in
particular, the construction of field-valued processes of OU or supOU type that may
be viewed as propagating, in time, an initial volatility/intermittency field defined on
the spatial component of space-time for a fixed time, say t = 0. Similarly, suppose
that a model has been formulated for the time-wise development of a stochastic field
at a single point in space. One may then seek to define a field on space-time such that
at every other point of space the time-wise development of the field is stochastically
the same as at the original space point and such that the field as a whole is stationary
and selfdecomposable.

Example 1 (One dimensional turbulence) Let Y denote an ambit field in the tempo-
spatial casewhere the spatial dimension is 1, and assume that for a preliminary purely
temporal model X of the same turbulent phenomenon a model has been formulated
for the squared amplitude volatility component, say ω. It may then be desirable
to devise Y such that the volatility/intermittency field τ = σ 2 is stationary and
infinitely divisible, and such that for every spatial position x the law of τ(x, · ) is
identical to that formulated for the temporal setting, i.e. ω. If the temporal process
is selfdecomposable then, subject to a further weak condition (see [13]), such a field
can be constructed.

To sketch how this may proceed, recall first that the classical definition of self-
decomposability of a process X says that all the finite-dimensional marginal distri-
butions of X should be selfdecomposable. Accordingly, due to a result by [38], for
any finite set of time points û = (u1, . . . , un) the selfdecomposable vector variable
X (û) = (X (u1), . . . , X (un)) has a representation

X (û) =
∫ ∞

0
e−ξ L(dξ, û)

for some n-dimensional Lévy process L( · , û), provided only that the Lévy measure
of X (û) has finite log-moment. We now assume this to be the case and that X is
stationary

Next, for fixed û, let {L̃(x, û) | x ∈ R}, be the n-dimensional Lévy process having
the property that the law of L̃(1, û) is equal to the law of X (û). Then the integral

X (x, û) =
∫ x

−∞
e−ξ L̃(dξ, û)

exists and the process {X (x, û) | x ∈ R} will be stationary—of Ornstein-Uhlenbeck
type—while for each x the law of X (x, û) will be the same as that of X (û).
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However, off hand the Lévy processes L̃( · , û) corresponding to different sets û
of time points may have no dynamic relationship to each other, while the aim is to
obtain a stationary selfdecomposable field X (x, t) such that X (x, · ) has the same
law as X for all x ∈ R. But, arguing along the lines of theorem 3.4 in [9], it is possible
to choose the representative processes L̃( · , û) so that they are all defined on a single
probability space and are consistent among themselves (in analogy to Kolmogorov’s
consistency result); and that establishes the existence of the desired field X (x, t).
Moreover, X ( · , · ) is selfdecomposable, as is simple to verify.

The same result can be shown more directly using master Lévy measures and the
associated Lévy-Ito representations, cf. [13].

Example 2 Assume that X has the form

X (u) =
∫ u

−∞
g(u − ξ) L(dξ) (24)

where L is a Lévy process.
It has been shown in [13] that, in this case, provided g is integrable with respect

to the Lebesgue measure, as well as to L , and if the Fourier transform of g is non-
vanishing, then X , as a process, is selfdecomposable if and only if L is selfdecompos-
able. When that holds we may, as above, construct a selfdecomposable field X (x, t)
with X (x, · ) ∼ X ( · ) for every x ∈ R and X ( · , t) of OU type for every t ∈ R.

As an illustration, suppose that g is the gamma kernel (8) with ν ∈ (1/2, 1). Then
the Fourier transform of g is

ĝ(ζ ) = (1 − iζ/λ)−ν .

and hence, provided that L is such that the integral (24) exists, the field X (x, u) is
stationary and selfdecomposable, and has the OU type character described above.

5 Time Change and Universality in Turbulence
and Finance

5.1 Distributional Collapse

In [4], Barndorff-Nielsen et al. demonstrate two properties of the distributions of
increments Δ� X (t) = X (t)− X (t − �) of turbulent velocities. Firstly, the increment
distributions are parsimonious, i.e., they are described well by a distribution with
few parameters, even across distinct experiments. Specifically it is shown that the
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four-parameter family of normal inverse Gaussian distributions (NIG(α, β, μ, δ))
provides excellent fits across a wide range of lags �,

Δ� X ∼ NIG(α(�), β(�), μ(�), δ(�)). (25)

Secondly, the increment distributions are universal, i.e., the distributions are the same
for distinct experiments, if just the scale parameters agree,

Δ�1 X1 ∼ Δ�2 X2 if and only if δ1(�1) = δ2(�2), (26)

provided the original velocities (not increments) have been non-dimensionalized
by standardizing to zero mean and unit variance. Motivated by this, the notion of
stochastic equivalence class is introduced.

The line of study initiated in [4] is continued in [16], where the analysis is extended
to many more data sets, and it is observed that

Δ�1 X1 ∼ Δ�2 X2 if and only if var(Δ�1 X1) ∼ var(Δ�2 X2), (27)

which is a simpler statement than (26), since it does not involve any specific distri-
bution. In [21], Barndorff-Nielsen et al. extend the analysis from fluid velocities in
turbulence to currency and metal returns in finance and demonstrate that (27) holds
when Xi denotes the log-price, so increments are log-returns. Further corrobora-
tion of the existence of this phenomenon in finance is presented in the following
subsection.

A conclusion from the cited works is that within the context of turbulence or
finance there exists a family of distributions such that for many distinct experiments
and a wide range of lags, the corresponding increments are distributed according
to a member of this family. Moreover, this member is uniquely determined by the
variance of the increments.

Up till recently these stylised features had not been given any theoretical back-
ground. However, in [20], a class of stochastic processes is introduced that exactly
has the rescaling property in question.

5.2 A First Look at Financial Data from SP500

Motivated by the developments discussed in the previous subsection, in the following
we complement the analyses in [4, 16, 21] with 29 assets from Standard & Poor’s
500 stock market index. The following assets were selected for study: AA, AIG,
AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, IBM, INTC, JNJ, JPM, KO,
MCD, MMM, MRK, MSFT, PG, SPY, T, UTX, VZ, WMT, XOM. For each asset,
between 7 and 12years of data is available. A sample time series of the log-price of
asset C is displayed in Fig. 4, where the thin vertical line marks the day 2008-01-01.
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Fig. 4 Time series of the log-price of asset C on an arbitrary scale. The thin vertical line marks the
day 2008-01-01 and divides the dataset into the two subsets “pre” (blue) and “post” (yellow)

Asset C is found to be representative of the feature of all the other datasets. Each
dataset is divided into two subsets: the “pre” subset consisting of data from before
2008-01-01 and the “post” subset consisting of data from after 2008-01-01. This
subdivision was chosen since the volatility in the “post” dataset is visibly higher
than in the “pre” dataset, presumably due to the financial crisis. The data has been
provided by Lunde (Aarhus University), see also [29].

Figure5 shows that the distributions of log-returns across a wide range of lags
ranging from 1s to approximately 4.5h are quite accurately described by normal
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1 to 16384s. The dots denote the data and the solid line denotes the fitted NIG distribution. Blue
and yellow denote the “pre” and “post” datasets, respectively. The log-returns have been multiplied
with 100 in order to un-clutter the labeling of the x-axes
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inverse Gaussian distributions, except at the smallest lags where the empirical dis-
tributions are irregular. We suspect this is due to market microstructure noise. The
accuracy of the fits is not surprising given that numerous publications have demon-
strated the applicability of the generalised hyperbolic distribution, in particular the
subfamily consisting of the normal inverse Gaussian distributions, to describe finan-
cial datasets. See for example [1, 14, 15, 28, 40]. We note the transition from a
highly peaked distribution towards the Gaussian as the lag increases.

Next, we see on Fig. 6 that the distributions at the same lag of the log-returns for
the 29 assets are quite different, that is, they do not collapse onto the same curve. This
holds for both the “pre” and the “post” datasets. However, the transition from a highly
peaked distribution at small lags towards a Gaussian at large lags hints that a suitable
change of time, though highly nonlinear, may cause such a collapse. Motivated by
the observations in [21] we therefore consider the variance of the log-returns as a
function of the lag. Figure7 shows how the variance depends on the lag. Except at the
smallest lags, a clear power law is observed. The behaviour at the smallest lags is due
to market microstructure noise [29]. Nine variances have been selected to represent
most of the variances observed in the 29 assets. For each selected variance and each
asset the corresponding lag is computed. We note that for the smallest lags/variances
this is not without difficulty since for some of the assets the slope approaches zero.

Finally, Fig. 8 displays the distributions of log-returns where the lag for each
asset has been chosen such that the variance is the one specified in each subplot. The
difference between Figs. 6 and 8 is pronounced. We see that for both the “pre” and
the “post” dataset, the distributions corresponding to the same variance tend to be
the same. Furthermore, when the “pre” and “post” datasets are displayed together,
essentially overlaying the top part of Fig. 8 with the bottom part, a decent overlap is
still observed. So while the distributions in Fig. 8 do not collapse perfectly onto the
same curve for all the chosen variances, in contrast to what is the case for velocity
increments in turbulence (see [4]), we are invariably led to the preliminary conclusion
that also in the case of the analysed assets from S&P500, a family of distributions
exists such that all distributions of log-returns are members of this family and such
that the variance of the log-returns uniquely determines this member. The lack of
collapse at the smaller variances may in part be explained by the difficulty in reading
off the corresponding lags.

The observed parsimony and in particular universality has implications for mod-
elling since any proper model should possess both features. Within the context of
turbulence, BSS-processes have been shown to be able to reproduce many key fea-
tures of turbulence, see [35] and the following subsection for a recent example.
The extent to which BSS-processes in general possess universality is still ongoing
research [20] but results indicate that BSS-processes and in general LSS-process are
good candidates for models where parsimony and universality are desired features.



20 O.E. Barndorff-Nielsen et al.

- 0.4 - 0.2 0.0 0.2 0.4

0.001

0.010

0.100

1

10

100

lag = 1

- 0.4 - 0.2 0.0 0.2 0.4
0.001

0.010

0.100

1

10

100
lag = 4

- 0.4 - 0.2 0.0 0.2 0.4

0.001

0.010

0.100

1

10

lag = 16

- 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6

0.001

0.010

0.100

1

10

lag = 32

- 1.0 - 0.5 0.0 0.5 1.0
10- 4
0.001

0.010

0.100

1

10

lag = 128

- 2 - 1 0 1 2
10- 4

0.001

0.010

0.100

1

10
lag = 512

- 2 - 1 0 1 2

0.001

0.010

0.100

1

lag = 1024

- 4 - 2 0 2 4

0.001

0.010

0.100

1

lag = 4096

- 4 - 2 0 2 4

0.001

0.010

0.100

1

lag = 16384

- 1.0 - 0.5 0.0 0.5 1.0

0.001

0.010

0.100

1

10

lag = 1

- 1.0 - 0.5 0.0 0.5 1.0

0.001

0.010

0.100

1

10

lag = 4

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5

0.001

0.010

0.100

1

10

lag = 16

- 2 - 1 0 1 2

0.001

0.010

0.100

1

10

lag = 32

- 3 - 2 - 1 0 1 2 3
10- 4

0.001

0.010

0.100

1

10

lag = 128

- 4 - 2 0 2 4

0.001

0.010

0.100

1

lag = 512

- 5 0 5

0.001

0.010

0.100

1

lag = 1024

- 10 - 5 0 5 10

0.001

0.010

0.100

1

lag = 4096

- 10 - 5 0 5 10
0.001

0.005
0.010

0.050
0.100

0.500
1

lag = 16384

Fig. 6 Probability densities on a log-scale for the log-returns of all 29 assets at various lags ranging
from 1 to 16384s. The top and bottom halfs represent the “pre” and “post” datasets, respectively.
The log-returns have been multiplied with 100 in order to un-clutter the labeling of the x-axes
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Fig. 7 The variance of the log-returns for the 29 assets as a function of the lag displayed in
a double logarithmic representation. The top and bottom graphs represent the “pre” and “post”
datasets, respectively

5.3 Modelling Turbulent Velocity Time Series

A specific time-wise version of (1), called Brownian semistationary processes has
been proposed in [18, 19] as a model for turbulent velocity time series. It was shown
that BSS processes in combination with continuous cascade models (exponentials of
certain trawl processes) are able to qualitatively capture some main stylized features
of turbulent time series.
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Fig. 8 Probability densities on a log-scale of log-returns where the lag for each asset has been
chosen such that the variances of the assets in each subplot is the same. The chosen variances are
also displayed in Fig. 7 as horizonal lines. For the smallest and largest variances, not all dataset are
present since for some datasets those variances are not attained. Top “pre”, bottom “post”
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Recently this analysis has been extended to a quantitative comparison with turbu-
lent data [31, 35]. More specifically, based on the results for the energy dissipation
oulined in Sect. 4.1, BSS processes have been analyzed and compared in detail to
turbulent velocity time series in [35] by directly estimating the model parameters
from data. Here we briefly summarize this analysis.

Time series of the main component vt of the turbulent velocity field are modelled
as a BSS process of the specific form

v(t) = v(t; g, σ, β) =
∫ t

−∞
g(t − s)σ (s)B(ds) + β

∫ t

−∞
g(t − s)σ (s)2 ds =: R(t) + βS(t)

(28)
where g is a non-negative L2(R+) function, σ is a stationary process independent
of B, β is a constant and B denotes standard Brownian motion. An argument based
on quadratic variation shows that when g(0+) �= 0, then σ 2 can be identified with
the surrogate energy dissipation, σ 2 = ε, where ε is the process given by (17). The
kernel g is specified as a slightly shifted convolution of gamma kernels [30],

g(t) = g0(t + t0),

g0(t) = atν1+ν2−1 exp(−λ2t)1F1(ν1, ν1 + ν2, (λ2 − λ1)t)1(0,∞)(t)

with a > 0, νi > 0 and λi > 0. Here 1F1 denotes the Kummer confluent hypergeo-
metric function. The shift is needed to ensure that g(0+) �= 0.

The data set analysed consists of one-point time records of the longitudinal (along
the mean flow) velocity component in a gaseous helium jet flow with a Taylor
Reynolds number Rλ = 985. The same data set is also analyzed in [31] and the
estimated parameters there are used to specify σ 2 = ε in (28). The remaining para-
meters for the kernel g and the constant β can then be estimated from the second
and third order structure function, that is, the second and third order moments of
velocity increments. In [35] it is shown that the second order structure function is
excellently reproduced and that the details of the third order structure function are
well captured. It is important to note that the model is completely specified from the
energy dissipation statistics and the second and third order structure functions.

The estimated model for the velocity is then succesfully compared with other
derived quantities, including higher order structure functions, the distributions of
velocity increments and their evolution as a function of lag, the so-calledKolmogorov
variable and the energy dissipation, as prediced by the model.

6 Conclusion and Outlook

The present paper highlights some of the most recent developments in the theory
and applications of Ambit Stochastics. In particular, we have discussed the existence
of the ambit fields driven by metatime changed Lévy bases, selfdecomposability of
random fields [13], applications of BSS processes in the modelling of turbulent time
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series [35] and new results on the distributional collapse in financial data. Some of
the topics not mentioned here but also under development are the integration theory
with respect to time-changed volatility modulated Lévy bases [7]; integration with
respect to volatility Gaussian processes in the White Noise Analysis setting in the
spirit of [34] and extending [6]; modelling of multidimensional turbulence based
on ambit fields; and in-depth study of parsimony and universality in BSS and LSS
processes motivated by some of the discussions in the present paper.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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