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Abstract To price options on emission certificates reduced-form models have
proved to be useful. We empirically analyse the performance of the model proposed
in Carmona and Hinz [2] and Hinz [8]. As we find evidence for a time-varying mar-
ket price of risk, we extend the Carmona-Hinz framework by introducing a bivariate
pricing model. We show that the extended model is able to extract information on
the market price of risk and evaluate its impact on the EUA options.

Keywords Carbon market · EUA futures · Risk-neutral valuation ·Market price of
risk · Option pricing

1 Introduction

The European Union Emissions Trading Scheme (EU ETS) was launched in 2005
and constitutes still the world’s largest carbon market. The EU ETS was set up
as a cap-and-trade scheme and split up into three phases, namely Phase I (2005–
07) without the possibility to bank unused permits; Phase II (2008–12) in which
banking was allowed; and the current Phase III (2013–20) which, compared to the
two previous periods, introduced significant changes, such as the abolishment of
national allocation plans and the auctioning of permits.

Besides permits, futures and options on permits are being traded. Various authors
have discussed the design of the market and the pricing of the permits and the
derivatives traded. The fundamental concepts for emission trading and the market
mechanism have been reviewed in the paper of Taschini [15], which also provides
a literature overview. Equilibrium models for allowance permit markets have been
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widely used to capture the theoretical properties of emission trading schemes. Exam-
ples are the dynamic but deterministic model proposed by Rubin [13] and stochastic
equilibrium approaches such as Seifert et al. [14], Wagner [16] and Carmona et al.
[3]. These models use optimal stochastic control to investigate the dynamic emission
trading in the risk-neutral framework. Carmona et al. [4] derive the permit price for-
mula which can be described as the discounted penalty multiplied by the probability
of the excess demand event. Its historical model fit has been evaluated by Grüll and
Taschini [6]. Grüll and Kiesel [5] used the formula to analyse the emission permit
price drop during the first compliance period. Carmona and Hinz [2] and Hinz [8]
propose a reduced-formmodel which is particular feasible for the calibration of EUA
futures and options as it directly models the underlying price process. Both Paolella
and Taschini [12] and Benz and Trück [1] provide an econometric analysis for the
short-term spot price behavior and the heteroscedastic dynamics of the price returns.
For the option pricing, Carmona and Hinz [2] derive a option pricing formula from
their reduced-formmodel for a single trading period. They also discuss the extension
of the formula to two trading periods.Hitzemann andUhrig-Homburg [9, 10] develop
an option pricing model for multi-compliance periods by considering a remaining
value component in the pricing formula capturing the expected value after a finite
number of trading periods.

As emission certificates are traded assets their price paths carry information on
the market participant expectations on the development of the fundamental price
drivers of the certificates including the regulatory framework. In particular, prices
of futures and options of certificates carry forward-looking information which can
be extracted by using appropriate valuation models. In this paper we derive such
a model by extending the reduced-form pricing model of Carmona and Hinz [2].
Using an extensive data set we extract a time series for the implied market price of
risk, which relates to the risk premium the investors attach to the certificates. This
requires a calibration of themodel to historical price data during varying time periods
and with different maturities of futures and options. A crucial step in the calibration
procedure is a price transformation of normalized futures prices of permits from a
pricingmeasure to the historicalmeasure.Wefind that the impliedmarket price of risk
possesses stochastic characteristics. Therefore, we extend the existing reduced-form
model bymodeling the dynamics of themarket price of risk as anOrnstein-Uhlenbeck
process and show that the extended model captures the appropriate properties of the
market. The market price of risk is an implied value related to the permit prices, this
requires an extension of the univariate permit pricing model to a bivariate one. In
this context, the standard Kalman filter algorithm is considered to be an effective
way to calibrate to the historical prices. We apply this methodology and estimate the
implied risk premia. Once the risk premia have been determined, EUA option prices
can be derived to fit the bivariate model setting, which helps to improve the accuracy
of the pricing.

This paper is organized as follows. In Sect. 2 we introduce the basic reduced-form
model based on a risk-neutral framework. We calibrate the model with an extended
data series and compare the calibration results. In Sect. 3 an extended bivariate pricing
modelwill be introduced in order to capture themarket information of the risk premia.
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We demonstrate how to calibrate the extended model by applying the standard
Kalman filter algorithm, we present the estimation results of this procedure and
discuss the model fit. In Sect. 4 we evaluate the option pricing performance by taking
into account the calibration results of the bivariate model. Section5 concludes.

2 Univariate EUA Pricing Model and Parameter Estimation

The basic reduced-form model based on a risk-neutral framework was introduced
by Carmona and Hinz [2]. Here, the aggregated normalised emissions are modelled
directly and it can be shown that the emission certificate futures process solves a
stochastic differential equation. In this section we give a brief introduction to the
model and discuss the quality of the model calibration.

2.1 Univariate Model

We consider an emission trading scheme with a single trading phase with horizon
[0, T ]. The price evolution of emission permits is assumed to be adapted stochastic
processes on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with an equivalent
risk-neutral measure Q ∼ P. Based on the assumption of a market compliance
at time T the price has only two possible outcomes, namely zero or the penalty
level. The argument is as follows. If there are sufficient emission allowances in
the market to cover the total emissions at compliance time, surplus allowances will
become worthless. Otherwise, for undersupplied permits the price will increase to
the penalty level.

We introduce the reduced-form model of Carmona and Hinz [2]. Here the nor-
malized futures price process is a martingale under Q given by

at = E
Q[1{ΓT ≥1}|Ft], t ∈ [0, T ]. (1)

The process (Γt)t∈[0,T ] denotes the aggregated normalized emission, and is assumed
to follow a lognormal process given by

Γt = Γ0e
∫ t
0 σsdW̃s− 1

2

∫ t
0 σ 2

s ds, Γ0 ∈ (0,∞),

where σt stands for the volatility of the emission pollution rate. t ↪→ σt is a determi-
nistic function which is continuous and square-integrable. (W̃t)t∈[0,T ] is a Brownian
motion with respect to Q. Carmona and Hinz [2] prove that at solves the stochastic
differential equation

dat = Φ ′(Φ−1(at))
√

ztdW̃t, (2)
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with the function t ↪→ zt , t ∈ (0, T), given by

zt = σ 2
t∫ T

t σ 2
u du

. (3)

In order to calibrate the model, Carmona and Hinz [2] suggest to use the function

zt = β(T − t)−α,

with α ∈ R and β ∈ (0,∞), so one has

dat = Φ ′(Φ(at))
√

β(T − t)−αdW̃t . (4)

To estimate the parameters one has to determine the distribution of the price variable.
For this purpose one considers the price transformation process ξt defined by at =
Φ(ξt), where Φ denotes the cumulative distribution function of the standard normal
distribution. By applying Itô’s formula one has

dξt =
(
1

2
ztξt + √

zth

)
dt + √

ztdWt, (5)

where Wt denotes the Brownian motion under the objective measure P and h is the
market price of risk which is assumed to be constant. Moreover, it can be shown that
ξt is conditional Gaussian with mean μt and variance σ 2

t so that the log-likelihood
can be calculated and Maximum-likelihood estimation can be applied to find the
model parameters.

2.2 Estimation

We calibrate the model to different emission trading periods during the first and
second EU ETS trading phases. We consider the daily prices of the EUA futures
with maturities in December from 2005 to 2012. Their historical price series are
shown in Fig. 1.

The price transformation ξt is conditional Gaussian with its mean μt and vari-
ance σ 2

t . We consider the daily historical observations of the EUA futures at time
t1, t2, . . . , tn. Their corresponding price transformations can be determined using the
definition at = Φ(ξt). Thus the parameters α, β, h can be estimated by maximizing
the log-likelihood function given by

Lξti ,...,ξtn
(h, α, β) =

n∑
i=1

(
− (ξti − μi(h, α, β))2

2σ 2
i (α, β)

− ln

(√
2πσ 2

i (α, β)

))
. (6)
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Fig. 1 Historical prices of the EUA futures with maturities in December from 2005 to 2012

Under the model assumptions the residuals

wi = ξti − μi(h, α, β)√
σ 2

i (α, β)

, i = 1, . . . , n, (7)

must be a series of independent standard normal random variables. So standard
statistical analysis can be applied to test the quality of the model fit. We show our
estimation results in Table1. The horizons of the price data are two years, starting
from the first trading day in January of the previous trading year to the last trading
day in December of the next year.

Comparing the estimation values in Table1, the instability of the parameter va-
lues in each cell for different time periods can be observed. Note the value for the
market price of risk changes its sign during the first and second trading phase. This
implies the inappropriateness of the assumption for a constant market price of risk.
The fourth value in each cell is the negative of LLF. Note the -LLF are much lower
after the first trading phase because the price collapse during 2006 to 2007 affects
the data partially.

FromFigs. 2, 3, 4, 5 and 6wedisplay the time series of the residualswi, their empir-
ical auto-correlations, empirical partial auto-correlations and quantile-quantile-plots.
We choose EUA futures with maturity in December 2007 (EUA 07) and EUA futures
with maturity in December 2012 (EUA 12) as examples.

The time series wi show an effect of volatility clustering. This is confirmed by
significant values to high lags in the sample autocorrelation and sample partial auto-
correlation. Also the Q-Q plots, especially for the first trading phase, indicate heavy
tails and a non-Gaussian behavior. A formal analysis with an application of Jarque-
Bera test rejects the hypothesis that the data set is generated fromnormally distributed
random variables. In order to improve the model fit we extend the model by intro-
duction of a dynamic market price of risk in Sect. 3.
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Fig. 2 Statistical analysis of EUA 07, time period 05–06 and 06–07
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Fig. 3 Statistical analysis of EUA 12, time period 05–06 and 06–07
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Fig. 4 Statistical analysis of EUA 12, time period 07–08 and 08–09
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Fig. 5 Statistical analysis of EUA 12, time period 09–10 and 10–11
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Fig. 6 Statistical analysis of
EUA 12, time period 11–12
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3 Bivariate Pricing Model for EUA

The evidence in the previous section shows that the market price of risk is actually
time varying rather than constant. In order to illustrate the dynamic property of the
market price of risk we consider a bivariate permit pricing model in this section.

3.1 Model Description

We model the market price of risk as an Ornstein-Uhlenbeck process as its value
can be either positive or negative and denote it by λt . Recall the equation for the
normalized price process under the risk-neutral measure Q given by (2). According
to Girsanov’s theorem, the bivariate pricing model under the objective measure P is
given by

dat = Φ ′(Φ−1(at))
√

zt(λtdt + dW 1
t ),

dλt = θ(λ̄ − λt)dt + σλdW 2
t ,

dW 1
t dW 2

t = ρdt,

where W 1
t and W 2

t are two one-dimensional Brownianmotions with correlation coef-
ficient ρ. Note that under themodel assumptions, the filtration (Ft) in the probability
space must be assumed to be generated by the bivariate Brownian motion.

The use of Girsanov’s theorem in the bivariate model requires the condition that
the process Zt given by

Zt = exp
( ∫ t

0
λsdWs − 1

2

∫ t

0
λ2s ds

)
(8)

is a martingale. A sufficient condition for (8) is Novikov’s condition:

E

[
exp

(1
2

∫ T

0
λ2s ds

)]
< ∞. (9)



350 Y. Wen and R. Kiesel

Under our model assumptions, this condition is always satisfied.1

To calibrate the model we use the transformed price process to avoid complex
numerical calculations in the calibration procedure. The bivariatemodel can be refor-
mulated as

dξt =
(
1

2
ztξt + √

ztλt

)
dt + √

ztdW 1
t , (10)

dλt = θ(λ̄ − λt)dt + σλdW 2
t , (11)

dW 1
t dW 2

t = ρdt. (12)

In (11), λ̄ represents the long-term mean value. θ denotes the rate with which the
shocks dissipate and the variable reverts towards the mean. σλ is the volatility of the
market price of risk. According to Carmona and Hinz [2], the price transformation
is conditional Gaussian and its SDE can be solved explicitly.

3.2 Calibration to Historical Data

We consider the discretization of the model (10)–(12). By assuming the constant
volatility terms in the time interval [tk−1, tk], the model equations can be discretized
under Euler’s scheme given by

ξtk = √
ztk−1	tλtk−1 +

(
1 + 1

2
ztk−1

)
ξtk−1 +

√
ztk−1	tE 1

tk , (13)

λtk = (1 − θ	t)λtk−1 + θλ̄	t + σλ

√	tE 2
tk , (14)

Cov(E 1
tk ,E

2
tk ) = ρ, (15)

where 	t = tk − (tk−1), namely the time interval, and E 1
tk , E

2
tk ∼ N (0, 1). ztk can

be modeled by using the function β(T − tk)−α . The model parameter-set is therefore
ψ = [θ, λ̄, σλ, ρ, α, β].

As λtk is a hidden state variable related to the price transformation, and only values
of ξtk at time points t1, t2, . . . , tn can be determined from themarket observations, the
market price of risk series can be estimated by applying the Kalman filter algorithm.
We have chosen to use the transformation process instead of the normalized price atk .
Because of the linear form of Eqs. (13) and (14) the standard Kalman filter algorithm
is considered to be an efficientmethod for themodel calibration.A detailed procedure
to apply the standard Kalman filter can be found in [7]. To apply the Kalman filter
model Eqs. (13)–(15) must be put into the state space representation to fit the model
framework. The measurement equation links the unobservable state to observations.
It can be derived from (13) and (14). After some manipulations, the equations of the

1A proof can be found in Appendix 1.
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state space form for the model can be rewritten2 as

Stk = √
β(T − tk)−α	tλtk +

(
1 + 1

2
(β(T − tk)

−α)

)
ξtk + √

β(T − tk)−α	tĒ 1
tk ,

(16)
and

λtk =
[
θλ̄	t − σλρ√

β(T − tk)−α

((
1 + 1

2
(β(T − tk)

−α)

)
ξtk−1 − ξtk

)]

+(1 − θ	t − σλρ	t)λtk−1 + σλ

√
(1 − ρ2)	tĒ 2

tk , (17)

where Ē 1
tk and Ē 2

tk are independent, standard normally distributed random variables.
For the estimation of the parameter vector ψ = [θ, λ̄, σλ, ρ, α, β] consider

the variable ξtk . In each iteration of the filtering procedure, the conditional mean
E[ξtk |ξt1, . . . , ξtk−1 ] and the conditional variance Var(ξtk |ξt1, . . . , ξtk−1) can be cal-
culated. We denote mean and variance byμtk (ψ) andΣtk (ψ), respectively. The joint
probability density function of the observations is denoted by f (ξt1:n |ψ) and is given
by

f (ξt1:n |ψ) =
n∏

k=1

1√
2πΣtk (ψ)

exp

(
− (ξtk − μtk (ψ))2

2Σtk (ψ)

)
,

where ξt1:n summarize the observations from ξt1 to ξtn . Its corresponding log-
likelihood function is given by

Lobs(ψ |ξt1:n) = −n

2
log 2π − 1

2

n∑
k=1

logΣtk (ψ) − 1

2

n∑
k=1

(ξtk − μtk (ψ))2

Σtk (ψ)
. (18)

The estimation results, their standard errors, t-tests and p-values can be found in
Table2. Figure7 shows the estimation results of the market price of risk, compared
with the price transformation and the historical futures price. In Fig. 8, a negative
correlation between the price transformation and the market price of risk can be seen.
The market price of risk is the return in excess of the risk-free rate that the market
wants as compensation for taking the risk.3 It is a measure of the extra required rate
of return, or say, a risk premium, that investors need for taking the risk. The more
risky an investment is, the higher the additional expected rate of return should be.
So in order to achieve a higher required rate of return, the asset must be discounted
and thus will be sold at a lower price. Figure8 reveals this inverse relationship.

Moreover, we use themean pricing errors (MPE) and the root mean squared errors
(RMSE) given by

2For a derivation of the state equation see Appendix 2.
3For an economical explanation see [11], Chap.27. or [17], Chap.30.
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Table 2 Test of model parameters at significance level 5%, sample size 1536

Parameter Coeff Std Err t-test p-value

θ 1.5130 0.3195 5.7601 0.0000

λ̄ 0.4091 0.6117 4.0641 0.0001

σλ 0.2913 0.0193 17.6365 0.0000

ρ 0.0017 0.0016 9.0910 0.0000

α −1.5772 0.0256 61.5603 0.0000

β 0.0172 0.0005 35.6312 0.0000
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Table 3 Performance of MPE and RMSE with 2000 observations

Maturity MPE RMSE

1 month −0.0153 0.0182

3 months −0.0208 0.0234

6 months −0.0366 0.0397

9 months −0.1273 0.1302
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Fig. 9 Statistical tests for the residuals in trading phase 2

respectively, to assess the quality of model fit. Here N denotes the number of obser-
vations, ξ̄ti,τ is the estimated price to maturity τ , and ξti,τ is the observed price. Their
values can be seen in Table3. The absolute values of MPE and RMSE increase with
time but still remain very low even 9 months before the maturity. Therefore, the
conclusion is that the model is able to reproduce the price dynamics.

In Fig. 9 we show the standard statistical test results of the residuals by taking into
account the dynamic market price of risk. Comparing with the results from Figs. 2, 3,
4, 5 and 6, the time series of the residuals is relative stable with smaller variance. The
sample auto-correlations and sample partial auto-correlations reveal veryweak linear
dependence of the variables at different time points. Also, the Q-Q plot indicates a
better fit of a Gaussian distribution.

4 Option Pricing and Market Forward Looking Information

A general pricing formula of a European call is given by

Ct = e− ∫ τ
t rsds

E
Q[(Aτ − K)+|Ft],
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where {rs}s∈[0,T ] stands for a deterministic rate, At denotes the futures price, K ≥ 0
is the strike price, and τ ∈ [0, T ] is the maturity. The normalized price process at is
given by at = At/P, whereP denotes the penalty for each ton of exceeding emissions,
and therefore we have At = PΦ(ξt). A call option price formula written on EUA has
been derived by Carmona and Hinz [2] under the assumption of a constant market
price of risk. Under the assumption of a dynamic market price of risk, the option
price formula is coherent with the formula in [2] given by

Ct = e− ∫ τ
t rsds

∫
R

(PΦ(x) − K)+ϕ(μt,τ , σ
2
t,τ )dx,

where ϕ stands for the density function of a standard normal distribution. Here μt,τ

and σ 2
t,τ are the parameters of the distribution of ξt , which is conditional Gaussian.

Under the risk neutral measure Q, μt,τ and σ 2
t,τ are given by

μt,τ = e
1
2

∫ τ
t zsdsξt, σ 2

t,τ =
∫ τ

t
zse

∫ τ
s zududs.

In the following example, the penalty level is P = 100, the initial time t = 0
starts in April 2005. EUA futures has maturity T on the last trading day in 2012. The
European calls written on EUA futures with a strike at K = 15 and maturity T will
be considered under a constant interest rate at r = 0.05. Figure10 shows the call
option prices and the futures prices. The red curve stands for the option prices under
dynamic MPR while the green curve stands for the option prices under constant
MPR.

To measure the impact of the dynamic market price of risk on the EUA option for
different strikes we calculate the option price in the univariate and bivariate model
setting respectively. Durations from 1, 3, 6 and 12 months to maturity are chosen for
calls written on EUA 2012. The results are plotted in Fig. 11. The red curve stands for
the option prices evaluated by the bivariatemodel and the blue curve by the univariate
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Fig. 10 Futures price and call option prices with K = 15 from 2005 to 2012
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Fig. 11 Call option prices comparison for durations of 1, 3, 6, 12months on EUA 2012 for different
strikes

model. The green line is the corresponding futures price at the given time. In most
cases, one is interested in the option prices near the underlying price. According to
the figure, the option prices in different model settings coincide except for a interval
around the corresponding futures. In a short time before the maturity of EUA 2012,
Fig. 11 shows a price overestimation by the constant MPR. This result is consistent
with the result shown in Fig. 10, where we take K = 15 as a sample path.

Moreover, one notes that the call price process with constantMPR develops below
the call process with dynamic MPR in the first trading phase before 2008 and then
increases slowly and moves to the upside of the call process with dynamic MPR dur-
ing the second trading phase, before both processes vanish to the maturity because of
lower underlying prices. The reason for the price underestimation before 2008 and
overestimation thereafter can be explained as the assumption of a constant MPR in
the whole trading periods and thus causes a neglect on the information of the market
participants. Due to the regulatory framework of the carbon market, certificates carry
information on the market participant expectations on the development of the fun-
damental price drivers. Since the implied risk premia increase with time and exceed
their ’average’ level in 2008, asset price must be discounted to compensate the higher
risk. By using appropriate valuationmodels, this risk premia and the forward-looking
information carried by prices of futures and options of certificates can be extracted.

5 Conclusion

We extract forward-looking information in the EU ETS by applying an extended
pricing model of EUA futures and analyzing its impact on option prices. We find
that the implied risk premium is time-varying and has to be modeled by a stochastic
process. Using the information given by the risk premium we show that the option
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prices during the first and second trading phases are underestimated and overesti-
mated, respectively. The reason for the pricing deviation is caused by the assumption
of a constant market price of risk which rigidifies the market participant expectations
on the development of price drivers. The over- and underestimated prices are mostly
concentrated in the interval including the corresponding futures, which is the area
where the price most likely will evolve in the future. Although there is not a closed
form for the option pricing formula, a simple numerical approach can be used to
determine the price.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix 1

In order to show the condition in (8), it is sufficient to prove the Novikov’s condition
given by

E

[
exp

(1
2

∫ T

0
λ2s ds

)]
< ∞.

In the bivariate EUA pricing model, where λt follows a Ornstein-Uhlenbeck-Process
given by

λt = θ(λ̄ − λt)dt + σλdW t,

this condition is always satisfied.

Proof We first show that there exists a constant ε > 0 such that for any S ∈ [0, T ],
we have

E

[
exp

(1
2

∫ S+ε

S
λ2t dt

)]
< ∞. (19)

To show (19) we consider the term in the expectation notation. By applying Jensen’s
inequality we have

exp
(1
2

∫ S+ε

S
λ2t dt

)
= exp

( ∫ S+ε

S

1

ε

ε

2
λ2t dt

)

= exp
(1

ε

∫ S+ε

S

ε

2
λ2t dt

)
≤ 1

ε

∫ S+ε

S
exp

(ε

2
λ2t

)
dt.

By applying Fubini’s theorem (19) becomes

1

ε

∫ S+ε

S
E

[
exp

(ε

2
λ2t

)]
dt. (20)
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The process λt is a Gaussian process with mean and variance given by

E[λt] = μt = λ0e−θ t + λ̄(1 − e−θ t),

Var(λt) = σ 2
t = σ 2

λ

2θ
(1 − e−2θ t).

We have λt ∼ N (μt, σ
2
t ). Now let Z be a standard normal-distributed random

variable Z ∼ N (0, 1). So in (20) we have

E

[
exp

(ε

2
λ2t

)]
= E

[
exp

(ε

2
(μt + σtZ)2

)]

= E

[
exp

(εμ2
t

2
+ εμtσtZ + εσ 2

t Z2

2

)]

=
∫
R

exp
(εμ2

t

2
+ εμtσtx + εσ 2

t x2

2

) 1√
2π

exp
(

− x2

2

)
dx

= exp
(εμ2

t

2

) ∫
R

1√
2π

exp
(

− 1 − εσ 2
t

2
x2 + εμtσtx

)
dx.

To calculate the integration term above, let at = 1− εσ 2
t and bt = εμtσt , and make

the integral-substitution. Then we have

∫
R

1√
2π

exp
(

− 1 − εσ 2
t

2
x2 + εμtσtx

)
dx

=
∫
R

1√
2π

exp
(

− 1

2
(atx

2 − 2btx)
)

dx

=
∫
R

1√
2π

exp
(

− 1

2

(
y2 − 2bt

1√
at

y
)) 1√

at
dy

= 1√
at

∫
R

1√
2π

exp
(

− 1

2

(
y2 − 2bt√

at
y +

( bt√
at

)2 −
( bt√

at

)2))
dy

= 1√
at

exp
( b2t
2at

) ∫
R

1√
2π

exp
(

−
(y − 2bt√

at
)2

2

)
dy

= 1√
at

exp
( b2t
2at

)
.

According to the assumptions at = 1 − εσ 2
t is positive and the expectation is con-

vergent for a small ε and its value is

E

[
exp

(ε

2
λ2t

)]
= 1√

at
exp

(εμ2
t

2

)
exp

( b2t
2at

)

= 1√
1 − εσ 2

t

exp
(εμ2

t

2

)
exp

( ε2μ2
t σ

2
t

2 − 2εσ 2
t

)
.
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Thus the integral in (20) is finite and the exponential term in (19) is integrable.
In order to show Zt is a martingale we first consider that Zt is a local martingale,

hence it is a supermartingale. Therefore, Zt is a martingale if and only if the condition
E[Zt] = 1, ∀t ∈ [0, T ], is satisfied. This martingale property can be shown by
induction. Suppose E[Z0] = 1 which is trivial and E[Zt] = 1 for t ∈ [0, S] for
S < T . Let now t ∈ [S, S + ε] and set

Zt
S = exp

( ∫ t

S
λsdWs − 1

2

∫ t

S
λ2s ds

)
.

According to Novikov condition and (19), Zt
S is a martingale. Then we have

E[Zt] = E[ZSZt
S] = E[E[ZSZt

S]|FS] = E[ZSE[Zt
S|FS]] = E[ZSZS

S ] = E[ZS],

since

ZS
S = exp

( ∫ S

S
λsdWs − 1

2

∫ S

S
λ2s ds

)
= exp(0) = 1.

It follows
E[Zt] = E[ZS] = 1 for t ∈ [S, S + ε].

Then we have E[Zt] = 1 for t ∈ [0, S + ε]. Repeat this induction for T−S
ε

times
we have E[Zt] = 1 for t ∈ [0, T ], which implies Zt defined in (8) is a
martingale. �

Appendix 2

The bivariate EUA pricing model can be described as follows:

ξtk = √
ztk−1	tλtk−1 +

(
1 + 1

2
ztk−1

)
ξtk−1 +

√
ztk−1	tE 1

tk ,

λtk = (1 − θ	t)λtk−1 + θλ̄	t + σλ

√	tE 2
tk ,

Cov(E 1
tk ,E

2
tk ) = ρ,

where E 1
tk and E

2
tk are both random variables of the standard normal distribution. We

want to put the model into the state space form. Price transformation depends on
the current level of the market price of risk, which is an unobservable variable and
therefore must be modeled in the equation of λtk . We first let

E 1
tk = Ē 1

tk , E 2
tk =

√
1 − ρ2Ē 2

tk + ρĒ 1
tk ,
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where Ē 1
tk and Ē 2

tk are both random variables of the standard normal distribution as
well. This fact can be easily seen since we have

Cov(Ē 1
tk

, Ē 2
tk

) = Cov

(
E 1

tk
,
E 2

tk
− ρE 1

tk√
1 − ρ2

)
= Cov

(
E 1

tk
,

E 2
t−k√

1 − ρ2

)
+ Cov

(
E 1

tk
, − ρE 1

tk√
1 − ρ2

)
= 0.

Note that

√
ztk−1	tλtk−1 +

(
1 + 1

2
ztk−1

)
ξtk−1 +

√
ztk−1	tE 1

tk − ξtk = 0.

Multiplying−σλρ(ztk−1)
− 1

2 at the both sides of the equation and sum it to the equation
of λtk , it follows that

λtk = (1 − θ	t)λtk−1 − σλρ	tλtk−1 + θλ̄	t,

− σλρ√
ztk−1

((
1 + 1

2
ztk−1

)
ξtk−1 − ξtk

)
+ σλ

√	tE 2
tk − σλ

√	tρE 1
tk

= (1 − θ	t − σλρ	t)λtk−1 +
[
θλ̄	t − σλρ√

ztk−1

((
1 + 1

2
ztk−1

)
ξtk−1 − ξtk

)]

+ σλ

√	t
√
1 − ρ2E 2

tk .

This is the transition equation in the state space form, and the measurement equation
would be

Stk = ξtk+1 = √
ztk 	tλtk +

(
1 + 1

2
ztk

)
ξtk + √

ztk 	tE 1
tk .
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