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Abstract This paper studies the impact of wind power production on electricity
prices in the European energy market. We propose a new modelling framework
based on so-called regime-switching Lévy semistationary processes to account for
forward-looking information consisting of predicted wind power generation. We
show that our new regime-switching model, where the regime switch depends on the
so-called wind penetration index, can describe recent electricity price data well.

1 Introduction

Renewable sources of energy are of increasing importance in modern energy mar-
kets. For instance, the European Union has set the target of increasing the share of
energy from renewable sources by 2020 to 20%. In the German and Austrian energy
market, which will be the focus of this paper, the most important source of renew-
able energy is wind, followed by biogas and solar. Since many renewable sources are
highly dependent on weather conditions, they tend to increase the volatility of the
corresponding energy prices. It is hence urgent and important to find reliable models
which can describe electricity prices in these changing market conditions which can
be used for risk assessment and management in energy markets.

The recent literature has presented a variety of both discrete-time and continuous-
time time series models which promise to describe the stylised facts of energy
markets, see e.g. [3, 17] for reviews. However, reliable models which incorporate
information on renewable sources have only recently emerged and have currently
been restricted to discrete-time models, see e.g. [9–12, 18].

This paper contributes to the continuous-time literature by introducing for the first
time a modelling framework which takes the forward-looking information avail-
able to market participants through wind production forecasts into account when

A.E.D. Veraart (B)

Department of Mathematics, Imperial College London,
180 Queen’s Gate, SW7 2AZ London, UK
e-mail: a.veraart@imperial.ac.uk

© The Author(s) 2016
F.E. Benth and G. Di Nunno (eds.), Stochastics of Environmental
and Financial Economics, Springer Proceedings in Mathematics and Statistics 138,
DOI 10.1007/978-3-319-23425-0_13

321



322 A.E.D. Veraart

modelling electricity day-ahead prices. In doing so, it extends recent work by [1]
who proposed to model electricity spot prices by so-called Lévy semistationary
processes. Their model consists of a reduced form approach, which only considers
electricity prices directly and does not take any price information from other fuels
or commodities into account. Note that other types of forward-looking information,
such as capacity constraints, have been incorporated in models for electricity prices
by [8]. Also, [2] have developed a framework for incorporating forward-looking
information in electricity or weather markets through an enlargement of filtrations
approach.

With the increasing power generation through wind farms, we have observed
that electricity prices at the European Energy Exchange (EEX) started to become
negative, which happened for the first time in October 2008, and partially even
exhibited rather extremenegative price spikes, see e.g. [16] and the references therein.
Also, various articles have argued that increasing wind power production seems to
decrease the overall price level, but tends to increase the observed volatility in the
market, see e.g. [12]. These are important findings, which need to be incorporated
into a modelling framework, one of which will be presented in this paper.

The outline for the remaining part of this article is as follows. In Sect. 2 we give
a detailed description of the data from the EEX which will be used in our empirical
analysis and we carry out an exploratory data analysis to motivate the new model we
are going to introduce in this paper. Section3 contains the main contribution, where
we introduce the new class of regime-switching Lévy semistationary processes and
show how they can be calibrated to our empirical data. Finally, Sect. 4 concludes.

2 Exploratory Data Analysis

This section presents the results of an exploratory data analysis of electricity price
and wind production data from the European Energy Exchange, which motivates the
new modelling framework which we will introduce in Sect. 3.

2.1 Description of the Data

Our empirical data analysis focuses on electricity prices and wind data for a time
period from 01.01.2011 to 31.07.2014, i.e. consisting of 1308days.

We consider three sets of data: electricity prices, their corresponding volumes
(sometimes called loads) and wind production data. More precisely, daily EEX
Phelix baseload and EEX Phelix baseload volume data (for Germany and Austria)
were downloaded from Datastream and the EPEX spot website. In addition, we
downloaded the forecasted wind production data for the four German Transmission
System Operator (TSOs) (50Hz Transmission, Amprion, Tennet TSO, EnBW
Transportnetze (Transnet) ) and one Austrian TSO (Verbund (APG)). These data
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Table 1 Summary statistics of the EEX Phelix baseload from 01.01.2011 to 31.07.2014

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

–56.87 33.87 43.10 41.96 50.69 98.98

have been aggregated to obtain daily forecasts for the wind production for each of
the five TSOs.

2.2 EEX Phelix Baseload Prices

First of all, we want to explore the specific properties of the time series of the
electricity price data. We focus on the day-ahead electricity prices determined by a
daily auction at 12:00 pm, 7days a week all year (including statutory holidays). The
underlying quantity to be traded is the electricity for delivery the following day in
24h intervals. The prices are bounded (currently between [–500, 3000] EUR/MWh).
The EEX Phelix baseload is obtained as the daily averages of the 24h day-ahead
prices for Germany and Austria.

From the summary statistics in Table1, we notice that the times series does not
feature any truly extremes spikes, which have occurred in older data sets from the
EEXmarket. In addition, we notice that there are negative prices even in the baseload
prices which consists of the average of the 24h prices, see also Fig. 1. The plot of
the autocorrelation function reveals a clear weekly pattern which is one of the well-
known stylised facts of such data.

Whenwe study the distributional properties of the price data, see Fig. 2, we clearly
observe that the empirical distribution is not well described by a Gaussian distribu-
tion, but appears to be asymmetric and features heavier tails, the latter is particularly
pronounced when we focus on the left tail of the distribution.
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Fig. 1 Time series plot of the baseload prices (in EUR/MWh) and autocorrelation plot
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Fig. 2 Distributional properties of the prices: The standardised histogram of the empirical distrib-
ution and estimated kernel density function of the prices are depicted in the first plot. The second
plot compares the empirical distribution to a Gaussian distribution via a quantile-quantile plot

2.3 Predicted Wind Energy Feed-In

Next we investigate the data from the five Transmission System Operator (TSOs) in
Germany and Austria. Note that we are studying the one-day ahead predicted wind
feed-in since we assume that this is the quantity which impacts the one-day ahead
electricity prices determined in the daily auction.

Note that for each TSO, the data is available in 15min intervals, where the unit of
measurement is Megawatt (MW). In order to get the hourly forecasts, we aggregated
the data as follows. Let V (q)

t,q(i) denote the 15min wind power forecast for quarter
i within hour t . We then obtain the hourly forecasts (recorded in Megawatt hours
(MWh)), denoted by V (h)

t ( j), where t ( j) denotes the j th hour on the t th day, from

V (h)
t ( j)[MW · h] =

4∑
i=1

1

4
[h]V (q)

t ( j),q(i)[MW].

Further, we obtain the daily forecasts, denoted by V (d)
t from

V (d)
t [MW · h] =

24∑
j=1

V (h)
t ( j)[MW · h].

The data are summarised by TSO in Table2.
In the following study, we focus on the aggregated time series which accumulates

the predicted wind feed-in of all five TSOs, see Table3 for the summary statistics
and Fig. 3 for the time series plot. We clearly observe a yearly cycle in the wind data
showing that the predicted wind feed-in is always highest during the winter time
period.
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Table 2 Forecasted wind feed-in in Gigawatt hours (GWh) (rounded)

50 Hz Amprion APG Tennet Transnet Total

2011 19490 6687 18 18484 416 45095

2012 20203 7253 25 20464 246 48191

2013 19129 7742 31 21259 425 48585

2014 (Until July) 11648 4799 21 13412 399 30279

Table 3 Summary statistics of the forecasted aggregated wind production data (in GWh) from
01.01.2011 to 31.07.2014

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

12510 53870 98940 131600 176000 572600
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Fig. 3 Time series of the forecasted aggregated wind production data from 01.01.2011 to
31.07.2014 reported in GWh

2.4 Wind Penetration Index

Jónsson et al. [10] pointed out that there is a non-linear and time dependent relation-
ship between wind power forecasts and spot prices. Moreover, they found that “it is
in fact the ratio between the forecasted wind power generation and the forecasted
load that has the strongest association with the spot prices”, see [10, p. 314]. Hence,
in the following analysis, we will not use the predicted wind feed-in data directly, but
rather focus on the so-called wind penetration index, which describes the percentage
of the wind feed-in compared to the total energy production.
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Table 4 Summary statistics of the wind penetration index from 01.01.2011 to 31.07.2014

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

0.02104 0.08796 0.15480 0.19050 0.26450 0.67540

In order to compute this index, we follow the approach outlined in [10]: They
argued that according to recent work by [15], state-of-the-art forecasting models
lead to load forecasts where the predicted load equals the actual load plus an error
term, i.e. let ALt denote the actual load on day t and let Lt denote the corresponding
predicted load. Then

ALt = Lt + εt , where εt ∼ N (0,σ2).

Typically, the standard deviation σ is chosen as 2% of the average load for the period
considered.

Following thismethodology,we downloaded the actual load data fromDatastream
and the EPEX website and computed the predicted load data by adding Gaussian
perturbations to the actual load data. Clearly, this is not exactly the same as working
with the predicted load information from each TSO directly, see [10] for a discussion,
but the practical impact of this approximation has been found to be marginal.

We can now define the so-called wind penetration index on day t as

W Pt := V (d)
t

Lt
.

This is in fact the prediction of the wind penetration on day t , which is available on
day t − 1 and can hence be considered as forward-looking information. We provide
the summary information of the wind penetration index for our sample in Table4.

Moreover, a time series plot and the corresponding histogram of the wind pene-
tration index is depicted in Fig. 4. We observe that the time series plot of the wind
penetration index resembles the one for the original wind data—including a yearly
seasonal pattern. Also, the wind penetration index is overall rather low, which is
indicated by the histogram and the quantile information contained in Table4. This
is not surprising since the conventional fuels still account for the majority of the
electricity production in the European energy market.

2.5 The Relation Between Prices and Wind Data

Finally, we carry out an exploratory study of the relation between the electricity
prices and the wind penetration index. In Fig. 5, we plot the electricity prices versus
the wind penetration index to check whether we can spot any association between the
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Fig. 4 Time series plot and histogram of the wind penetration index
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Fig. 5 The electricity prices are plotted versus the wind penetration index. The five horizontal
lines correspond to the minimum, the 25%, 50%, 75% quantiles and the maximum of the wind
penetration index, respectively

two variables. We observe that the two lowest electricity prices are associated with
a rather high wind penetration index. Also, for a very high wind penetration index,
the prices seem to be below their mean value. This is in line with earlier studies
which found that a high wind production typically results in lower electricity prices.
However, we need to keep in mind that by comparing the wind and the electricity
prices, we can only obtain a partial picture, since clearly other fuels, such as coal,
gas and nuclear, play a key role in determining the corresponding electricity price
and are for the purpose of this study excluded from the analysis.
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Fig. 6 Distribution of the electricity prices for different quartiles of the wind penetration index.
E.g. the first plot corresponds to a low wind penetration index (the first quartile) and the last one to
a rather high wind penetration index (the fourth quartile)

We also compare the distribution of the electricity prices associated with different
quartiles of the wind penetration index. That is, we have divided our price data into
four groups corresponding to the 1st, 2nd, 3rd and 4th quartile of thewind penetration
index. When comparing the corresponding marginal distributions, we observe again
that smaller price data are associated with a higher wind penetration index, see Fig. 6.

The finding from this exploratory study motivates the new modelling framework
which we are going to introduce in the next section.

3 Model Building

Recent work by [1] suggests that the class of so-called Lévy semistationary (LSS)
processes is very suitable formodelling electricity day-ahead prices. In theirwork, the
class of LSS processes was used in a truly reduced form modelling set-up, meaning
that the (deseasonalised) electricity prices were modelled directly by LSS processes
and no other external variables were included in the analysis.

Here we will go one step further and explore the possibility of including forward-
looking information in form of the wind penetration index into a new modelling
framework which is based on LSS processes.

In a first step, we are going to review the basic traits of LSS processes and then we
will discuss howanLSS-basedmodel can be extended to account for forward-looking
information.
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An LSS process Y = {Y (t)}t∈R on R without drift is defined as

Y (t) =
∫ t

−∞
g(t − s)σ(s−)d L(s), (1)

where L denotes a two-sided Lévy process, g : R → R denotes a determinis-
tic weight function satisfying g(s) = 0 whenever s < 0 and σ denotes a càdlàg,
adapted stochastic volatility process, which is assumed to be independent of L . In
order to ensure the existence of the stochastic integral, we need suitable integrability
conditions on the kernel function g, see [1] for details.

Note that the name Lévy semistationary process indicates that the process Y is
stationary as soon as the stochastic volatility process σ is a stationary process. The
reason for choosing a stationary process for modelling deseasonalised electricity
prices is that commodity prices typically exhibit strong mean reversion. A stationary
process can in fact mimic such a behaviour since it ensures that the process cannot
move away from its long term mean indefinitely, but will need to return to it since
otherwise the stationarity would not be preserved.

Many well-known stochastic processes belong to the LSS class, including volatil-
ity modulated Ornstein-Uhlenbeck processes, continuous-time autoregressive mov-
ing average (CARMA) processes and fractionally integrated CARMA processes.

It is important to note that LSS processes are in general not semimartingales,
which has been discussed in detail in [1]. However, in this paper, we will in fact be
staying within the traditional semimartingale framework since we will be working
with volatility modulated CARMA processes as the main building blocks for our
new model. To this end, let us briefly recall their definition.

Suppose we have nonnegative integers p > q and we wish to define a CARMA
(p, q) process. We introduce the autoregressive (AR) and moving average (MA)
polynomials:

PAR(p)(z) = z p + a1z p−1 + · · · + ap,

PMA(q)(z) = b0 + b1z + · · · + bp−1z p−1,

where bq = 1 and b j = 0 for q < j < p. Moreover, we assume that the polynomials
have no common roots and then write formally

PAR(p)(D)Y (t) = PMA(q)(D)DL(t),

where D = d
dt . We can make sense of the “derivative” of the Lévy process through

a state space representation, where we write

Y (t) = b�V(t) , for dV(t) = AV(t)dt + ed L(t), where
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Assuming that all eigenvalues of A have negative real parts, we know that

V(t) =
∫ t

−∞
eA(t−s)e d L(s)

is the (strictly) stationary solution of the stochastic differential equation above, see
[5]. That is, in our LSS specification we can choose g(x) = b�eAx e and σ ≡ 1 to
obtain a CARMA(p, q) process. As soon as a stochastic volatility process is added,
wewould call the correspondingLSSprocess a volatility modulated CARMA process.

3.1 Deseasonalising the Data

We argued before that stationary processes can easily accommodate key stylised
facts of commodity prices. However, at the same time, we cannot ignore that strong
seasonal effects are typically present in such markets and need to be accounted for.
We proceed by introducing an arithmetic model for the electricity day-ahead price,
denoted by S = (S(t))t≥0, where

S(t) = Λ(t) + Y (t).

Here, Λ denotes a deterministic seasonality and trend function and Y denotes a sto-
chastic process. In the original framework proposed by [1], the process Y was chosen
to be an LSS process. In the following, however, we will introduce a modification of
that modelling framework.

The seasonality and trend function is chosen to be

Λ(t) = c0 + c1t + c2 cos

(
τ1 + 2πt

365

)
+ c3 cos

(
τ2 + 2πt

7

)
,

which accounts for a linear trend and weekly and yearly seasonal cycles. We used a
robust least squares estimation procedure to estimate the parameters (by truncating
the spikes in the estimation procedure) and obtained the following estimates and
standard errors, see Table5, all of which were highly significant. The estimated
parameters in the seasonality function confirm the existence of both weekly and
yearly seasonality as well as the presence of a negative trend.



Modelling the Impact of Wind Power Production on Electricity Prices … 331

Table 5 Estimated parameters in the seasonality and trend function Λ

c0 c1 c2 c3 τ1 τ2

Estimate 53.47 –0.01724 2.377 –6.815 349.25 33.59

Standard error 0.4693 0.0006203 0.3356 0.3302 50.46 0.3394
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Fig. 7 Electricity day-ahead data and fitted seasonality and trend function

Figure7 shows a graph of the original data with the fitted seasonality function
super-imposed. Also, Fig. 8 depicts the deseasonalised price data and their autocor-
relation function.

It should be noted that a variety of alternative procedures could be followed to deal
with the problem of seasonality in the electricity prices. Here we are dealing with a
rather simple deterministic parametric function to mimic the trend and the seasonal
cycles.Using e.g.weekly and yearly dummyvariables could refine this approach even
further, but would result in a less parsimonious model. A more interesting alternative
to the approach pursued here is to acknowledge the fact that the seasonality cannot
only be determined by historical data, but also through other market data available to
market participants. Example, it has been observed that gas and coal prices, given that
they are important fuels used to produce electricity, play a key role in determining
trend and also seasonal cycles of electricity prices. This suggests that e.g. forward
curve data for gas and/or coal could be used to model the trend, see e.g. [8] for
research along those lines. Also [14] give a detailed account on robust estimation
procedures of the long-term seasonal component of electricity prices.
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Fig. 8 Time series and autocorrelation plot of the deseasonalised electricity day-ahead data

Table 6 Estimated parameters of the associated ARMA(2,1) process

AR1 AR2 MA

Estimate 1.1480 –0.2324 –0.6962

Standard error 0.0597 0.0447 0.0501

Here AR1 and AR2 corresponds to the first and second autoregressive parameter, respectively, and
MA corresponds to the moving average parameter

3.2 Fitting a CARMA Process

After the seasonality has been removed, we need to find a suitable model for the
stochastic process Y . Following the success of the CARMA processes in describing
electricity prices, we choose a Lévy semistationary process where the kernel function
is given by a kernel associated with a CARMA(p,q) process. More specifically we
choose p = 2 and q = 1. Note that when choosing the order of the CARMA(p,q)
process, we need to consider pairs (p, q) such that p > q so that the CARMA
process is well defined. We choose a CARMA(2,1) process due to reasons of analyt-
ical tractability and increased flexibility compared to a simple Ornstein-Uhlenbeck
model. In our goodness-of-fit study, we indeed find that such a model choice is
suitable here.

Note that [6] have discussed in detail how a discretely sampled CARMA process
can be represented as a weak ARMA process. Using this representation we have first
estimated the correspondingARMA(2,1) parameters by a quasi-maximum likelihood
method. The corresponding parameters estimates and standard errors are provided
in Table 6.
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Fig. 9 Empirical (bars) and estimated (solid line) autocorrelation function of the estimated
CARMA(2,1) process

Following the procedure outlined in [6] we can then recover the corresponding
continuous-time parameters. In our case, we have a1 = 1.459, a2 = 0.162, b0 =
0.383. Note that one can easily verify that the estimates satisfy the condition that
the eigenvalues of A have negative real parts, which implies a stationary model. We
compare the empirical and estimated autocorrelation function in Fig. 9, where we
observe a good fit.

Under the assumption that the CARMA process is driven by a subordinator, [6]
have shown how the corresponding increments of the driving Lévy process can be
recovered from a discretely observed CARMAprocess, see also [7] for the multivari-
ate case. Here we have implemented their algorithm for the case of a CARMA(2,1)
process and have recovered the driving process. Note that the original algorithm
was designed for driving Lévy processes, but can in fact be adapted to the case of
volatility modulated Lévy processes as well, the case which will be relevant in the
next section.

Let us briefly recap our estimation procedure until now:We started off with a spot
price model S(t) = Λ(t) + Y (t), where we have estimated the seasonality function
Λ and have removed it from the data. In the next step, we have assumed that Y is an
LSS process of the form

Y (t) =
∫ t

−∞
g(t − s)d M(s),
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where g corresponds to the kernel function associated with a CARMA(2,1) process
and initially M was assumed to be a Lévy process, which can be recovered from the
observations of the CARMA process. We will now leave this traditional framework
behind and will introduce a new regime-switching model based on LSS processes.

3.3 The New Model Based on a Regime-Switching LSS
Process

The predicted wind penetration index can be viewed as forward-looking information
since the information is available before the prices for the next day are determined
in the auction market. Hence it is reasonable to try to incorporate this information in
the model.

Previous studies have included such information in discrete-time models such as
e.g. ARMAX-GARCHX models, see [12], where the wind is treated as an exoge-
nous variable.However,we are interested in a continuous-timemodelling framework.
E.g. one could consider CARMA-X models or regime-switching models. Here we
will follow the latter approach which is motivated by the work by [8] who incorpo-
rated forward-looking capacity constraints into a jump-diffusionmodel for electricity
prices.

We introduce an exogenous regime-switching variable based on the forward-
looking variable given by the predicted wind penetration index ρ, where

ρ(s) =
{
1, if the predicted wind penetration at time s is “high”

0, if the predicted wind penetration at time s is “low”.
(2)

The new spot price model is then given by S(t) = Λ(t) + Y (t), where

Y (t) =
∫ t

−∞
g(t − s)d M(s), t ≥ 0.

Here

d M(s) = ρ(s)d M (1)(s) + (1 − ρ(s))d M (2)(s),

where

d M (i)(s) = a(i)(s)ds + σ(i)(s−)d L(i)(s),

for independent Lévy processes L(1) and L(2). Also, a(i) denote suitable drift and
σ(i) stochastic volatility processes, for i ∈ {1, 2}.

The key question which remains to be addressed is how exactly the regime-
switching variable ρ should be chosen, given that the expression in (2) appears
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Fig. 10 Standardised histograms of the increments of M for different levels (associated with the
four quartiles) of the wind penetration index

rather casual. In order to answer this question, we study the empirical properties of
the recovered driving process M . More precisely, we investigate how the marginal
distribution of the driving process of the CARMA process changes in relation to
different levels of the wind penetration index. We split the sample of the recovered
increments of M into four parts corresponding to the four quartiles of the wind
penetration index, which are given in Table4.

Their empirical distributions are described in form of standardised histograms,
which describe the empirical probability density functions, in Fig. 10. Similarly to
the finding in our exploratory data analysis, we observe that also the distribution
of the increments of the driving process M changes quite remarkably for different
levels of the wind penetration index. In particular, we observe that rather extreme
negative increments are associated with a relatively high wind penetration index.

One can imagine a variety of rather sophisticatedmethods for choosing the cut-off
point for our regime-switching variable. Here we are interested in a rather simple
rule, which at the same time allows for a reasonable amount of observations in the
high regime so that inference is still feasible and does not just rely on a very small
number of observations. Hence, we choose the cut-off point to be 26.4% as a hard
threshold, meaning that all increments of M associated with a wind penetration index
in the fourth quartile belong to the high regime.
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3.4 Model for M Based on the Generalised Hyperbolic
Distribution

Motivated by the empirical study in [1], wewill fit the class of generalised hyperbolic
(GH) distributions to the increments of M in the two regimes.

Our notation for the GH distribution follows the one used in [13]. See also [4] for
more details on the implementation of the corresponding estimation procedures in R
available through the ghyp package.

Let us denote by d, k ∈ N some constants and let X denote a k–dimensional
random vector. Recall that we say that the law of X is given by the multivariate
generalised hyperbolic (GH) distribution if

X law= μ + Wγ + √
W CZ,

whereZ ∼ N (0, Ik),C ∈ R
d×k ,μ,γ ∈ R

d . Here W ≥ 0 denotes a one-dimensional
random variable, independent of Z and with Generalised Inverse Gaussian (GIG)
distribution, i.e. W ∼ G I G(λ,χ,ψ). The density of the GIG distribution with
parameters (λ,χ,ψ) has the following functional form:

fG I G(x) =
(

ψ

χ

) λ
2 xλ−1

2Kλ(
√

χψ)
exp

(
−1

2

(χ

x
+ ψx

))
,

where Kλ denotes the modified Bessel function of the third kind, and the parameters
have to satisfy one of the following three restrictions

χ > 0,ψ ≥ 0,λ < 0, or χ > 0,ψ > 0,λ = 0, or χ ≥ 0,ψ > 0,λ > 0.

The parameter μ is called the location parameter, Σ = CC′ is the dispersion matrix
andγ is the symmetry or skewness parameter. The three (scalar) parametersλ,χ,ψ of
the GIG distribution determine the shape of the GH distribution. The parametrisation
described above is referred to as the so-called (λ,χ,ψ,μ,Σ, γ)–parametrisation of
theGHdistribution. Since this parametrisation causes an identifiability problemwhen
one tries to estimate the parameters, we will work with the so-called (λ,α,μ,Σ, γ)–
parametrisation in our empirical study. One can show that the (λ,χ,ψ,μ,Σ, γ)–
parametrisation can be obtained from the (λ,α,μ,Σ, γ)–parametrisation by setting

ψ = α
Kλ+1(α)

Kλ(α)
, χ = α2

ψ
= α

Kλ(α)

Kλ+1(α)
,

and λ,Σ, γ remain the same, cf. [4].
We estimated 11 distributions within the GH class—consisting of the asymmetric

and symmetric versions of the GH, hyperbolic, Student’s t, variance gamma, nor-
mal inverse Gaussian distribution and the Gaussian distribution and compared them
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Table 7 Parameter estimates for the Student’s t-distribution in the low regime (symmetric case)
and high regime (asymmetric case)

ν̂ μ̂ σ̂ γ̂

Low regime 6.70 2.26 9.77 0

High regime 4.76 0.57 11.31 –7.68

Note that the parameter α = 0 in the case of the Student’s t-distribution
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Fig. 11 Diagnostic quantile-quantile plots: The first picture compares the empirical quantiles of the
data in the low regime with the estimated symmetric Student’s t-quantiles, and the second picture
compares the empirical quantiles of the data in the high regime with the estimated asymmetric
Student’s t-quantiles

according to the Akaike information criterion. We found that the best model for
the low regime is given by the symmetric Student’s t-distribution and for the high
regime by the asymmetric Student’s t-distribution, see Table7 for the corresponding
parameter estimates.

When comparing the parameter estimates for the low and the high regime provided
inTable7,weobserve that the skewness, fatness of the tails and the volatility increases
for the high regime and that the mean parameter decreases compared with the low
regime. This is in line with previous findings in the literature, which suggest that
the price level typically decreases with increasing wind energy production and that
the volatility and the risk for negative spikes (represented through negative skewness
and fatter tails) typically increases.

Also, we have provided quantile-quantile plots to assess the goodness-of-fit of the
Student’s t-distribution in Fig. 11, which overall look reasonable.

The estimation results suggest that a good model for the driving process M in the
regime-switching LSS specification is given by
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d M(s) = ρ(s)d M (1)(s) + (1 − ρ(s))d M (2)(s),

where

d M (1)(s) =
(

μ(1) + γ
(
σ(1)(s)

)2)
ds + σ(1)(s)dW (1)(s),

d M (2)(s) = μ(2)ds + σ(2)(s)dW (2)(s),

for independent Brownian motions W (1) and W (2). Here the stochastic volatility
processes σ(i) are chosen as Ornstein-Uhlenbeck processes with inverse Gamma
marginal distribution, since a mean-variance mixture with the inverse Gamma dis-
tribution results in the Student’s t-distribution.

Note that the reason for choosing volatility modulated Brownian motions rather
than Lévy processes with Student’s t-distribution is that we found a significant short
term (2 lags) autocorrelation in the increments of the recovered process M suggesting
that a stochastic volatilitymodel ismore suitable than a pure jumpmodel. This finding
reveals that stochastic volatility is a key feature in energy markets, but it typically
only exhibits short memory. Stochastic volatility is naturally incorporated into the
LSS framework making it a convincing modelling tool for energy markets.

4 Conclusion

This paper has presented an extension of the modelling framework based on Lévy
semistationary (LSS) processes introduced by [1]. Since forward-looking informa-
tion in terms of weather forecasts is available to market participants, the corre-
sponding predictions for the day-ahead wind production can be derived and used
when determining day-ahead electricity spot prices. We incorporated this informa-
tion through the so-called predicted wind penetration index in a regime-switching
model based on LSS processes. We have observed that the flexibility offered through
the regime switching component allows to model electricity prices in a more refined
way than it was possible in the original (reduced form) LSS modelling framework.
In particular, we have found that a relatively high wind penetration index leads to a
lower mean level, higher skewness, fatter tails and increased volatility in the distribu-
tion of the electricity prices. This confirms earlier findings in the literature and for the
first time links them to a flexible continuous-time stochastic modelling framework.

Given the increasing importance of renewable sources of energy, it will be inter-
esting to extend the current investigation to include a wider range of renewables,
including solar and biogas which up to now do not play as big of a role as wind
power generation in the European energy market.

Another area for future research would be to develop a stochastic model for the
wind penetration index, which could either result in a regime-switching model with
a stochastic switching parameter or in a joint model for electricity prices and the
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wind generation index. A preliminary analysis along those lines has revealed that
a reasonable model for ρ needs to take both yearly seasonality and clusters into
account. This could be seen as a first step for constructing models which can be used
for mid-term forecasts of electricity prices influenced by renewables and would help
to findmodelling and inference tools for reliable riskmanagement in energymarkets.
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